1
|
Thakur L, Garg L, Mohiuddin I, Singh R, Kaur V, Thakur N. A conjugated oligoelectrolyte for the recognition of uranyl ion in aqueous and soil samples via RGB method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125355. [PMID: 39492092 DOI: 10.1016/j.saa.2024.125355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
The development of selective and practically applicable sensors for monitoring trace uranyl ions (UO22+) in an aqueous medium is the biggest challenge. This study presents the development of a conjugated oligoelectrolyte-based probe (COE) for the selective detection of UO22+ ions in water bodies. The COE is a water-soluble probe having an organic backbone with two ionic pendants at the terminal points. It changes its color to a dark yellow selectively in the presence of UO22+ ions. This visible change was integrated with a smartphone RGB color quantification method. The COE displayed an RGB chemo-dosimeter to selectively monitor UO22+ ions without interference from other metal ions. In the parallel experiment, COE displays a spectrofluorimetric emission signal at λems. = 525 nm (with λexc. = 420 nm), which exhibits quenching of signal when interacted with UO22+ ions. The limit of detection (LOD) is found to be 3.07 × 10-2 µM and 4.50 µM by spectrofluorimetric and RGB color value methods, respectively. 1H NMR and XPS analysis investigated the mode of interaction, and it suggested that the quenching of the emission signal was due to the interaction between the electron-rich azomethine site of COE and UO22+ ion. The smartphone-based RGB color analysis makes COE a potential probe with reduced operation time and offers a fresh approach for the immediate, real-time detection of UO22+ ions in aqueous and soil samples.
Collapse
Affiliation(s)
- Lalita Thakur
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Lipika Garg
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Irshad Mohiuddin
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Raghubir Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India.
| | - Varinder Kaur
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| | - Nikhlesh Thakur
- Department of Zoology, DAV College, Sector 10, Chandigarh 160011, India
| |
Collapse
|
2
|
Zhang Y, Rong X, Lin C, Wang B, Wu M, Wu T, Zhang X, Cheng Y, Chen X, Pan X, Xu Z, Sun Y, Fang M. A novel fluorescent probe based on dicyanoisophorone derivatives for hypochlorite detection in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125077. [PMID: 39278128 DOI: 10.1016/j.saa.2024.125077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
This study presents a long-wavelength fluorescent probe CNC for the detection of ClO- in vitro and in vivo. Upon interaction with ClO-, this probe exhibited a significant increase in fluorescence, with a significant Stokes shift (169 nm), lower detection limit (1.38 μM), high sensitivity and selectivity. Moreover, the probe demonstrated excellent cell permeability and minimal cytotoxicity, allowing for successful imaging of both endogenous and exogenous ClO- in living cells.
Collapse
Affiliation(s)
- Yibin Zhang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, China.
| | - Xiaoqian Rong
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, China
| | - Changjie Lin
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Boling Wang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, China
| | - Meihui Wu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, China
| | - Tong Wu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, China
| | - Xingyu Zhang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, China
| | - Yueting Cheng
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, China
| | - Xin Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Xingqi Pan
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Zihan Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Yu Sun
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Mingxi Fang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China.
| |
Collapse
|
3
|
Gui Y, Wang J, Gou Q, Yu X, Yang Y, Wang C, Li L, Gao W, Liu W, Wang H, Shu X, Zhang Y, Shang J. A novel dicyanoisophorone-based fluorescent probe for rapid detection of acetylcholinesterase in biological systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 329:125587. [PMID: 39700554 DOI: 10.1016/j.saa.2024.125587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Acetylcholinesterase (AChE) plays a vital role in various neurological diseases including brain disorders, neurotransmission alterations, and cancer. Developing effective methods to image AChE in biological samples is essential for understanding its mechanisms in biosystems. Here, we introduce a novel fluorescent probe CNA, that enables detection of AChE at 520 nm with rapid response time of 60 s and a detection limit of 0.014 U/mL. We successfully applied CNA to image endogenous and exogenous AChE in PC12 cells and in living mice. These findings highlight the potential of CNA as an effective method to study the physiological and pathological roles of AChE in complex living systems.
Collapse
Affiliation(s)
- Yuran Gui
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Jingran Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Quan Gou
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China
| | - Xin Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Yang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Chen Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Liping Li
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wanxia Gao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Hua Wang
- Fuling Hospital, Chongqing University, Chongqing 408000, China
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Yibin Zhang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China.
| | - Jinting Shang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
4
|
Zhang Y, Hu J, Rong X, Jiang J, Wang Y, Zhang X, Xu Z, Xu K, Wu M, Fang M. Development of a hybrid rhodamine-hydrazine NIR fluorescent probe for sensitive detection and imaging of peroxynitrite in necrotizing enterocolitis model. Bioorg Chem 2024; 152:107729. [PMID: 39178703 DOI: 10.1016/j.bioorg.2024.107729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
This study describes the synthesis and characterization of a novel near-infrared (NIR) fluorescent probe RBNE based on a hybrid rhodamine dye, which shows excellent optical capability for detecting and imaging ONOO- in necrotizing enterocolitis (NEC) mouse model. The probe RBNE undergoes hydrazine redox-process, and subsequently the spirocyclic structure's opening, resulting in a turn-on fluorescence emission with the presence of ONOO-, which exhibits several excellent features, including a significant Stokes shift of 108 nm, near-infrared emission at 668 nm, a lower detection limit of 56 nM, low cytotoxicity, and excellent imaging ability for ONOO- both in vitro and in vivo. The presented study introduces a novel optical tool that has the potential to significantly advance our understanding of peroxynitrite (ONOO-) behaviors in necrotizing enterocolitis (NEC).
Collapse
Affiliation(s)
- Yibin Zhang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, China
| | - Jing Hu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoqian Rong
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, China
| | - Jian Jiang
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yong Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaotong Zhang
- Institute of Pediatrics, Xuzhou Medical University, Xuzhou, China
| | - Zihan Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Ming Wu
- Institute of Pediatrics, Xuzhou Medical University, Xuzhou, China; Department of Pediatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Mingxi Fang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
5
|
Zhang Q, Wang Z, Shen S, Wang J, Cao J, Deng Y, Meng H, Ma L. Integrating enzyme-nanoparticles bring new prospects for the diagnosis and treatment of immune dysregulation in periodontitis. Front Cell Infect Microbiol 2024; 14:1494651. [PMID: 39554809 PMCID: PMC11564189 DOI: 10.3389/fcimb.2024.1494651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
Enzymes play a significant role in mediating inflammatory and immune responses in periodontitis. Effective diagnosis, timely treatment, and continuous management of periodontal enzymes are essential to prevent undesirable consequences; however, this remains a significant challenge. Nanoparticles (NPs) have attracted significant attention in biomedicine because of their advantageous nanosized effects. NPs are conjugated with specific enzyme substrates at responsive sites that are triggered by periodontitis enzyme biomarkers, leading to functional or characteristic changes. In contrast, NPs with enzyme-mimetic activities exhibit catalytic activity, effectively destroying pathogenic biofilms and modulating the immune response in periodontitis. The unique properties of enzyme-targeting NPs have enabled the development of biosensors and fluorescent probes capable of identifying enzyme biomarkers associated with periodontitis. Enzyme-responsive and enzyme-mimetic NPs both exert therapeutic applications in the treatment of periodontitis. In this review, we provide a comprehensive overview of the enzymes associated with periodontitis, the mechanisms of enzyme-responsive and enzyme-mimetic NPs, recent advancements in the use of NPs for detecting these enzymes, and the therapeutic applications of NPs in targeting or mimicking enzyme functions. We also discuss the challenges and prospects of using NPs in the diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhiyi Wang
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, China
| | - Shijiao Shen
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, China
| | - Junzhe Wang
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, China
| | - Jun Cao
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, China
| | - Yongqiang Deng
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, China
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, China
| | - He Meng
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, China
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, China
| | - Lin Ma
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Liu ZW, Liu F, Shao CT, Yan GP, Wu JY. Synthesis and Characterization of Sulfonamide-Containing Naphthalimides as Fluorescent Probes. Molecules 2024; 29:2774. [PMID: 38930839 PMCID: PMC11206436 DOI: 10.3390/molecules29122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
A tumor-targeting fluorescent probe has attracted increasing interest in fluorescent imaging for the noninvasive detection of cancers in recent years. Sulfonamide-containing naphthalimide derivatives (SN-2NI, SD-NI) were synthesized by the incorporation of N-butyl-4-ethyldiamino-1,8-naphthalene imide (NI) into sulfonamide (SN) and sulfadiazine (SD) as the tumor-targeting groups, respectively. These derivatives were further characterized by mass spectrometry (MS), nuclear magnetic resonance spectroscopy (1H NMR), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV), and a fluorescence assay. In vitro properties, including cell cytotoxicity and the cell uptake of tumor cells, were also evaluated. Sulfonamide-containing naphthalimide derivatives possessed low cell cytotoxicity to B16F10 melanoma cells. Moreover, SN-2NI and SD-NI can be taken up highly by B16F10 cells and then achieve good green fluorescent images in B16F10 cells. Therefore, sulfonamide-containing naphthalimide derivatives can be considered to be the potential probes used to target fluorescent imaging in tumors.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (Z.-W.L.); (F.L.); (C.-T.S.); (J.-Y.W.)
| | - Fan Liu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (Z.-W.L.); (F.L.); (C.-T.S.); (J.-Y.W.)
| | - Chun-Tao Shao
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (Z.-W.L.); (F.L.); (C.-T.S.); (J.-Y.W.)
| | - Guo-Ping Yan
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Jiang-Yu Wu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (Z.-W.L.); (F.L.); (C.-T.S.); (J.-Y.W.)
| |
Collapse
|
7
|
Wang H, Zhang Y, Rong X, Wang B, Wang L, Wang C, Gao W, Ye X, Hou X, Liu W, Wu M, Cheng Y, Shu X, Shang J. A novel lysosome-targeted fluorescent probe for precise formaldehyde detection in water samples, living cells and breast cancer tumors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124105. [PMID: 38461560 DOI: 10.1016/j.saa.2024.124105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
This study investigated the potential ability of the fluorescent probe Ly-CHO to detect formaldehyde (FA) in living cells and tumor-bearing mice. Ly-CHO exhibited great selectivity, excellent sensitivity, and rapid response to FA, making it a valuable tool for tracking FA concentration changes. The probe was also found to target lysosomes specifically. Furthermore, Ly-CHO showed an obvious fluorescence increase in endogenous CHO detection after adding tetrahydrogen folic acid (THFA). This study validated Ly-CHO's possibility for FA imaging in vivo, with potential applications in understanding formaldehyde-related diseases.
Collapse
Affiliation(s)
- Haiping Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Yibin Zhang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China.
| | - Xiaoqian Rong
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China
| | - Boling Wang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China
| | - Li Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Chen Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wanxia Gao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xiansheng Ye
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Xiaoying Hou
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Meihui Wu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China
| | - Yueting Cheng
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.
| | - Jinting Shang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; Cancer Institute, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
8
|
Mao J, Zhang Y, Zhang S, Song B. Turn-On Fluorescent Probe for BSA Detection Constructed by Supramolecular Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5479-5487. [PMID: 38421608 DOI: 10.1021/acs.langmuir.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The fluorescent probe method has attracted significant research attention due to its high sensitivity and reproducibility in detecting bovine serum albumin (BSA). In this study, we constructed a fluorescent probe for BSA detection by assembling an amphiphilic organic fluorescent molecule, termed 2-(2'-hydroxyphenyl) benzothiazole (HBT-11), with BSA. In an aqueous solution, HBT-11 exhibited a weak fluorescence emission at 501 nm. However, the addition of BSA substantially enhanced the fluorescence emission at 501 nm, indicating that the assembly was driven by electrostatic interactions between HBT-11 and BSA. HBT-11, serving as a fluorescent probe for BSA detection, demonstrated a limit of detection (LOD) as low as 3.92 nmol L-1, excellent photostability, high selectivity, and robust anti-interference capability. Notably, we successfully applied HBT-11 for detecting BSA in fetal bovine serum and selectively imaging BSA in HeLa cells.
Collapse
Affiliation(s)
- Jingyao Mao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuteng Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Shensong Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Bo Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
9
|
Chen J, Wang X, Guo J, Lv Y, Chen M, Tong H, Liu C. Heavy Metal-Induced Assembly of DNA Network Biosensor from Double-Loop Hairpin Probes for Ultrasensitive Detection of UO 22+ in Water and Soil Samples. Anal Chem 2024. [PMID: 38320403 DOI: 10.1021/acs.analchem.3c05526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The uranyl ion (UO22+) is the most stable form of uranium, which exhibits high toxicity and bioavailability posing a severe risk to human health. The construction of ultrasensitive, reliable, and robust sensing techniques for UO22+ detection in water and soil samples remains a challenge. Herein, a DNA network biosensor was fabricated for UO22+ detection using DNAzyme as the heavy metal recognition element and double-loop hairpin probes as DNA assembly materials. UO22+-activated specific cleavage of the DNAzyme will liberate the triggered DNA fragment, which can be utilized to launch a double-loop hairpin probe assembly among Hab, Hbc, and Hca. Through multiple cyclic cross-hybridization reactions, hexagonal DNA duplex nanostructures (n[Hab•Hbc•Hca]) were formed. This DNA network sensing system generates a high fluorescence response for UO22+ monitoring. The biosensor is ultrasensitive, with a detection limit of 2 pM. This sensing system also displays an excellent selectivity and robustness, enabling the DNA network biosensor to work even in complex water and soil samples with excellent accuracy and reliability. With the advantages of enzyme-free operation, outstanding specificity, and high sensitivity, our proposed DNA network biosensor provides a reliable, simple, and robust method for trace levels of UO22+ detection in environmental samples.
Collapse
Affiliation(s)
- Junhua Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junhui Guo
- School of Material and Food, Jiangmen Polytechnic, Jiangmen 529000, China
| | - Yiwen Lv
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
10
|
Nguyen CL, Dayaratna N, Graham S, Azimi F, Mak C, Pulitano C, Warrier S. Evolution of Indocyanine Green Fluorescence in Breast and Axilla Surgery: An Australasian Experience. Life (Basel) 2024; 14:135. [PMID: 38255750 PMCID: PMC10821188 DOI: 10.3390/life14010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The evolution of indocyanine green (ICG) fluorescence in breast and axilla surgery from an Australasian perspective is discussed in this narrative review with a focus on breast cancer and reconstruction surgery. The authors have nearly a decade of experience with ICG in a high-volume institution, which has resulted in publications and ongoing future research evaluating its use for predicting mastectomy skin flap perfusion for reconstruction, lymphatic mapping for sentinel lymph node (SLN) biopsy, and axillary reverse mapping (ARM) for prevention of lymphoedema. In the authors' experience, routine use of ICG angiography during breast reconstruction postmastectomy was demonstrated to be cost-effective for the reduction of ischemic complications in the Australian setting. A novel tracer combination, ICG-technetium-99m offered a safe and effective substitute to the "gold standard" dual tracer for SLN biopsy, although greater costs were associated with ICG. An ongoing trial will evaluate ARM node identification using ICG fluorescence during axillary lymph node dissection and potential predictive factors of ARM node involvement. These data add to the growing literature on ICG and allow future research to build on this to improve understanding of the potential benefits of fluorescence-guided surgery in breast cancer and reconstruction surgery.
Collapse
Affiliation(s)
- Chu Luan Nguyen
- Department of Breast Surgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (S.G.); (F.A.); (C.M.); (S.W.)
- Department of Surgery, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia;
- Department of Surgery, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Nirmal Dayaratna
- Department of Surgery, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Susannah Graham
- Department of Breast Surgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (S.G.); (F.A.); (C.M.); (S.W.)
- Department of Surgery, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia;
- Department of Surgery, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Farhad Azimi
- Department of Breast Surgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (S.G.); (F.A.); (C.M.); (S.W.)
- Department of Surgery, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Cindy Mak
- Department of Breast Surgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (S.G.); (F.A.); (C.M.); (S.W.)
| | - Carlo Pulitano
- Department of Surgery, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia;
- Department of Surgery, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Sanjay Warrier
- Department of Breast Surgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (S.G.); (F.A.); (C.M.); (S.W.)
- Department of Surgery, The University of Sydney, Camperdown, NSW 2050, Australia;
| |
Collapse
|
11
|
Zhang Y, Qiu X, Sun L, Wang B, Rong X, Liu J, Liu J, Gao W, Wang H, Wang C, Gao W, Liu W, Shu X, Shang J. Development of a fluorescence-based sensor based on 1,8-naphthalimide for highly sensitive detection of phosgene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123285. [PMID: 37716045 DOI: 10.1016/j.saa.2023.123285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/18/2023] [Accepted: 08/19/2023] [Indexed: 09/18/2023]
Abstract
Developing advanced sensing technologies for phosgene is critical for public safety and national security. Here, we report a novel fluorescent probe NP (abbreviation for naphthalimide-based probe) for the selective detection of phosgene. The sensor was synthesized through a substitution reaction between 1,8-naphthalimide with 1,4,7-triazacyclononane. The high reactivity of probe NP towards phosgene led to a marked fluorescence emission turn-on, demonstrating the high selectivity of this sensor. Furthermore, a practical on-site detection method for phosgene was developed by loading probe NP on test strips. These test strips can detect gaseous phosgene below 1 ppm. The successful development of this sensor opens up new possibilities for detecting methods for phosgene.
Collapse
Affiliation(s)
- Yibin Zhang
- Wuhan Institute of Biomedical Sciences, Key Laboratory of Hubei Province for Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, 430056, China; College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Xianyu Qiu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Lin Sun
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Boling Wang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Xiaoqian Rong
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Jun Liu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Wei Gao
- Jiangxi Academy of Forestry, Nanchang, China.
| | - Haiping Wang
- Wuhan Institute of Biomedical Sciences, Key Laboratory of Hubei Province for Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Chen Wang
- Wuhan Institute of Biomedical Sciences, Key Laboratory of Hubei Province for Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Wanxia Gao
- Wuhan Institute of Biomedical Sciences, Key Laboratory of Hubei Province for Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Wei Liu
- Wuhan Institute of Biomedical Sciences, Key Laboratory of Hubei Province for Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Xiji Shu
- Wuhan Institute of Biomedical Sciences, Key Laboratory of Hubei Province for Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, 430056, China.
| | - Jinting Shang
- Wuhan Institute of Biomedical Sciences, Key Laboratory of Hubei Province for Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, 430056, China; Huazhong University of Science and Technology, Wuhan, China; Advanced Technology Institute of Suzhou Chinese Academy of Science, Co., Ltd, Suzhou, China.
| |
Collapse
|
12
|
Ju M, Yoon K, Lee S, Kim KG. Single Quasi-Symmetrical LED with High Intensity and Wide Beam Width Using Diamond-Shaped Mirror Refraction Method for Surgical Fluorescence Microscope Applications. Diagnostics (Basel) 2023; 13:2763. [PMID: 37685301 PMCID: PMC10486995 DOI: 10.3390/diagnostics13172763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
To remove tumors with the same blood vessel color, observation is performed using a surgical microscope through fluorescent staining. Therefore, surgical microscopes use light emitting diode (LED) emission and excitation wavelengths to induce fluorescence emission wavelengths. LEDs used in hand-held type microscopes have a beam irradiation range of 10° and a weak power of less than 0.5 mW. Therefore, fluorescence emission is difficult. This study proposes to increase the beam width and power of LED by utilizing the quasi-symmetrical beam irradiation method. Commercial LED irradiates a beam 1/r2 distance away from the target (working distance). To obtain the fluorescence emission probability, set up four mirrors. The distance between the mirrors and the LED is 5.9 cm, and the distance between the mirrors and the target is 2.95 cm. The commercial LED reached power on target of 8.0 pW within the wavelength band of 405 nm. The power reaching the target is 0.60 mW in the wavelength band of 405 nm for the LED with the beam mirror attachment method using the quasi-symmetrical beam irradiation method. This result is expected to be sufficient for fluorescence emission. The light power of the mirror was increased by approximately four times.
Collapse
Affiliation(s)
- Minki Ju
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Republic of Korea; (M.J.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science & Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Kicheol Yoon
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Republic of Korea; (M.J.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science & Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Sangyun Lee
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Republic of Korea; (M.J.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science & Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Kwang Gi Kim
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Republic of Korea; (M.J.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science & Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, 38-13, 3 Dokjom-ro, Namdong-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
13
|
Jiang J, Wang S, Wang S, Yang Y, Zhang X, Wang W, Zhu X, Fang M, Xu Y. In vivo bioimaging and detection of endogenous hypochlorous acid in lysosome using a near-infrared fluorescent probe. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3188-3195. [PMID: 37340797 DOI: 10.1039/d3ay00338h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The phagocyte's lysosome is the primary site of hypochlorous acid (HOCl) synthesis, and HOCl can be used as a biomarker for osteoarthritis diagnosis and treatment evaluation. Accurate detection of HOCl with high sensitivity and selectivity is required to understand its activities in healthy bio-systems and diseases. By integrating acceptable design principles and dye screening methodologies, we proposed and developed a novel near-infrared fluorescent HOCl sensing probe (FNIR-HOCl). The FNIR-HOCl probe has a quick reaction rate, high sensitivity (LOD = 70 nM), and excellent selectivity toward HOCl over other metal ions and reactive oxygen species. It has been successfully implemented to detect endogenous HOCl produced by RAW264.7 cells, as well as in vivo imaging towards mice with osteoarthritis. As a result, the probe FNIR-HOCl is extremely promising as a biological tool for revealing the roles of HOCl in various physiological and pathological contexts.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shaocai Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, P. R. China.
| | - Sai Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P. R. China.
| | - Yinshuang Yang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, P. R. China.
| | - Xiuli Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, P. R. China.
| | - Wenjun Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, P. R. China.
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P. R. China.
| | - Mingxi Fang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, P. R. China.
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
14
|
Cui Q, Zhong Y, Shang W, Deng F, Wang B, Wu J, Wang P, Wan L, Wang K, Fang L, Dai R, Zhang H, Ledesma-Amaro R, Zhang Y, Huang J. Fluorescent Probe Combined with Photoelectric Analysis Technology for Detection of Escherichia coli. BIOSENSORS 2023; 13:150. [PMID: 36831916 PMCID: PMC9953772 DOI: 10.3390/bios13020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Food safety is facing great challenges in preventing foodborne diseases caused by pathogenic pollution, especially in resource-limited areas. The rapid detection technique of microorganisms, such as immunological methods and molecular biological methods, plays a crucial key in timely bioanalysis and disease treatment strategies. However, it is difficult for these methods to simultaneously meet the criteria of simple operation, high specificity, and sensitivity, as well as low cost. Coconut water is known as the "water of life" in Hainan. It is a refreshing and nutritious beverage which is widely consumed due to its beneficial properties to health. Coconut water processing is an important pillar industry in Hainan. The detection of pathogenic microorganisms, such as Escherichia coli, in coconut water has become an important factor which has restricted the upgrading and development of this industry. Based on the needs of industrial development, we developed a microbial photoelectric detection system which was composed of a fluorescent probe detection reagent and a photoelectric sensor detection device. This system combined microbial enzyme targets, selective fluorescent substrate metabolism characteristics, and a photoelectric sensor signal transduction mechanism, which produce a strong signal with a high signal-to-noise ratio. The microbial detection system developed here has a simple structure, simple and convenient operation, short detecting time (≥2 h), and high sensitivity (1 CFU/mL). This system may also enable early warning and monitoring programs for other pathogenic microorganisms in order to promote the overall competitiveness of the Hainan coconut water industry.
Collapse
Affiliation(s)
- Qian Cui
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yongjie Zhong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Wenkai Shang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Fuming Deng
- Coconut Research Center, Coconut Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Haikou 570228, China
| | - Buhua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jiajia Wu
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Peng Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Liudang Wan
- Insititue of Biotechnology, ViewKr, Haikou 570228, China
| | - Keling Wang
- Insititue of Biotechnology, ViewKr, Haikou 570228, China
| | - Lingchen Fang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Rui Dai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Han Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Yunuo Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jiaomei Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
15
|
A new sulfonamide-based chemosensor for potential fluorescent detection of Cu2+ and Zn2+ ions. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Crawford H, Dimitriadi M, Bassin J, Cook MT, Abelha TF, Calvo‐Castro J. Mitochondrial Targeting and Imaging with Small Organic Conjugated Fluorophores: A Review. Chemistry 2022; 28:e202202366. [PMID: 36121738 PMCID: PMC10092527 DOI: 10.1002/chem.202202366] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 12/30/2022]
Abstract
The last decade has seen an increasingly large number of studies reporting on the development of novel small organic conjugated systems for mitochondrial imaging exploiting optical signal transduction pathways. Mitochondria are known to play a critical role in a number of key biological processes, including cellular metabolism. Importantly, irregularities on their working function are nowadays understood to be intimately linked to a range of clinical conditions, highlighting the importance of targeting mitochondria for therapeutic benefits. In this work we carry out an in-depth evaluation on the progress to date in the field to pave the way for the realization of superior alternatives to those currently existing. The manuscript is structured by commonly used chemical scaffolds and comprehensively covers key aspects factored in design strategies such as synthetic approaches as well as photophysical and biological characterization, to foster collaborative work among organic and physical chemists as well as cell biologists.
Collapse
Affiliation(s)
- Hannah Crawford
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Maria Dimitriadi
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Jatinder Bassin
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Michael T. Cook
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Thais Fedatto Abelha
- Department of Pharmacology, Toxicology and Therapeutic ChemistryFaculty of Pharmacy and Food ScienceUniversity of Barcelona08028BarcelonaSpain
- Institute of Nanoscience and NanotechnologyUniversity of Barcelona (IN2UB)08028BarcelonaSpain
| | - Jesus Calvo‐Castro
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| |
Collapse
|
17
|
Bie BJ, Zhao XR, Yan JR, Ke XJ, Liu F, Yan GP. Dextran Fluorescent Probes Containing Sulfadiazine and Rhodamine B Groups. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196747. [PMID: 36235281 PMCID: PMC9571416 DOI: 10.3390/molecules27196747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022]
Abstract
Fluorescent imaging has been expanded, as a non-invasive diagnostic modality for cancers, in recent years. Fluorescent probes in the near-infrared window can provide high sensitivity, resolution, and signal-to-noise ratio, without the use of ionizing radiation. Some fluorescent compounds with low molecular weight, such as rhodamine B (RhB) and indocyanine green (ICG), have been used in fluorescent imaging to improve imaging contrast and sensitivity; however, since these probes are excreted from the body quickly, they possess significant restrictions for imaging. To find a potential solution to this, this work investigated the synthesis and properties of novel macromolecular fluorescent compounds. Herein, water-soluble dextran fluorescent compounds (SD-Dextran-RhB) were prepared by the attachment of RhB and sulfadiazine (SD) derivatives to dextran carrier. These fluorescent compounds were then characterized through IR, 1H NMR, 13C NMR, UV, GPC, and other methods. Assays of their cellular uptake and cell cytotoxicity and fluorescent imaging were also performed. Through this study, it was found that SD-Dextran-RhB is sensitive to acidic conditions and possesses low cell cytotoxicities compared to normal 293 cells and HepG2 and HeLa tumor cells. Moreover, SD-Dextran-RhB demonstrated good fluorescent imaging in HepG2 and HeLa cells. Therefore, SD-Dextran-RhB is suitable to be potentially applied as a probe in the fluorescent imaging of tumors.
Collapse
Affiliation(s)
- Bi-Jie Bie
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiao-Rui Zhao
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jia-Rui Yan
- Faculty of Science, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Xi-Jun Ke
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fan Liu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (F.L.); (G.-P.Y.); Tel./Fax: +86-27-6552-0576 (F.L.)
| | - Guo-Ping Yan
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (F.L.); (G.-P.Y.); Tel./Fax: +86-27-6552-0576 (F.L.)
| |
Collapse
|
18
|
Liu J, Chen Y, Yao B, Cai S, Li X, Leng Y, Cai X. A novel fluorescent probe based on cyanoacetyl indole derivative for highly selective and sensitive detection of HPO42−. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|