1
|
Schulze M, Rogge M, Stark RW. Atomic force microscopy measurements probing the mechanical properties of single collagen fibrils under the influence of UV light in situ. J Mech Behav Biomed Mater 2018; 88:415-421. [PMID: 30216931 DOI: 10.1016/j.jmbbm.2018.08.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 06/06/2018] [Accepted: 08/27/2018] [Indexed: 11/27/2022]
Abstract
Collagen plays a decisive role as a functional substrate in tissue engineering. In particular, the rigidity of the collagen influences the behaviour of the attached cells. Thus, modification and controlled adjustment of collagen's characteristics are essential. To this end, controlled exposure to ultraviolet (UV) light is a promising process because it can be temporally and spatially well defined. In this study, we investigated the effect of UV exposure on surface supported single collagen fibrils in situ. This procedure allowed for a direct comparison between the untreated and modified states of type I collagen. Atomic force microscopy was used to map the mechanical properties. Exposure to UV light was used to influence the mechanical properties of the fibrils in varied liquid environments (deionized water and phosphate-buffered saline (PBS)). The results led to the assumption that combined UV/thermal treatment in deionized water continuously lowers the elastic modulus. In contrast, experiments performed in PBS-based solutions in combination with UV-B and UV-C light or thermal treatment up to 45 °C suggested an increase in the modulus within the first 30-40 min that subsequently decreased again. Thus, the wavelength, exposure, temperature, and chemical environment are relevant parameters that need to be controlled when modifying collagen using UV light.
Collapse
Affiliation(s)
- Marcus Schulze
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt, Germany; Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt, Germany
| | - Melanie Rogge
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt, Germany; Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt, Germany
| | - Robert W Stark
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt, Germany; Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt, Germany.
| |
Collapse
|
2
|
Uhlig MR, Magerle R. Unraveling capillary interaction and viscoelastic response in atomic force microscopy of hydrated collagen fibrils. NANOSCALE 2017; 9:1244-1256. [PMID: 28054696 DOI: 10.1039/c6nr07697a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The mechanical properties of collagen fibrils depend on the amount and the distribution of water molecules within the fibrils. Here, we use atomic force microscopy (AFM) to study the effect of hydration on the viscoelastic properties of reconstituted type I collagen fibrils in air with controlled relative humidity. With the same AFM tip, we investigate the same area of a collagen fibril with two different force spectroscopy methods: force-distance (FD) and amplitude-phase-distance (APD) measurements. This allows us to separate the contributions of the fibril's viscoelastic response and the capillary force to the tip-sample interaction. A water bridge forms between the tip apex and the surface, causing an attractive capillary force, which is the main contribution to the energy dissipated from the tip to the specimen in dynamic AFM. The force hysteresis in the FD measurements and the tip indentation of only 2 nm in the APD measurements show that the hydrated collagen fibril is a viscoelastic solid. The mechanical properties of the gap regions and the overlap regions in the fibril's D-band pattern differ only in the top 2 nm but not in the fibril's bulk. We attribute this to the reduced number of intermolecular crosslinks in the reconstituted collagen fibril. The presented methodology allows the mechanical surface properties of hydrated collagenous tissues and biomaterials to be studied with unprecedented detail on the nanometer scale.
Collapse
Affiliation(s)
- Manuel R Uhlig
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany.
| | - Robert Magerle
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany.
| |
Collapse
|
3
|
Cauble MA, Muckley MJ, Fang M, Fessler JA, Welch K, Rothman ED, Orr BG, Duong LT, Holl MMB. Estrogen depletion and drug treatment alter the microstructure of type I collagen in bone. Bone Rep 2016; 5:243-251. [PMID: 28580393 PMCID: PMC5440968 DOI: 10.1016/j.bonr.2016.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/15/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022] Open
Abstract
The impact of estrogen depletion and drug treatment on type I collagen fibril nanomorphology and collagen fibril packing (microstructure) was evaluated by atomic force microscopy (AFM) using an ovariectomized (OVX) rabbit model of estrogen deficiency induced bone loss. Nine month-old New Zealand white female rabbits were treated as follows: sham-operated (Sham; n = 11), OVX + vehicle (OVX + Veh; n = 12), OVX + alendronate (ALN, 600 μg/kg/wk., s.c.; n = 12), and OVX + cathepsin-K inhibitor L-235 (CatKI, 10 mg/kg, daily, p.o.; n = 13) in prevention mode for 27 weeks. Samples from the cortical femur and trabecular lumbar vertebrae were polished, demineralized, and imaged using AFM. Auto-correlation of image patches was used to generate a vector field for each image that mathematically approximated the collagen fibril alignment. This vector field was used to compute an information-theoretic entropy that was employed as a quantitative fibril alignment parameter (FAP) to allow image-to-image and sample-to-sample comparison. For all samples, no change was observed in the average FAP values; however significant differences in the distribution of FAP values were observed. In particular, OVX + Veh lumbar vertebrae samples contained a tail of lower FAP values representing regions of greater fibril alignment. OVX + ALN treatment resulted in a FAP distribution with a tail indicating greater alignment for cortical femur and less alignment for trabecular lumbar vertebrae. OVX + CatKI treatment gave a distribution of FAP values with a tail indicating less alignment for cortical femur and no change for trabecular lumbar vertebrae. Fibril alignment was also evaluated by considering when a fibril was part of discrete bundles or sheets (classified as parallel) or not (classified as oblique). For this analysis, the percentage of parallel fibrils in cortical femur for the OVX group was 17% lower than the Sham group. OVX + ALN treatment partially prevented the proportion of parallel fibrils from decreasing and OVX + CatKI treatment completely prevented a change. In trabecular lumbar vertebrae, there was no difference in the percentage of parallel fibrils between Sham and any of the other treatment groups.
Collapse
Affiliation(s)
- Meagan A. Cauble
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Matthew J. Muckley
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ming Fang
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey A. Fessler
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Kathleen Welch
- Center for Statistical Consultation and Research (CSCAR), University of Michigan, Ann Arbor, MI, USA
| | - Edward D. Rothman
- Center for Statistical Consultation and Research (CSCAR), University of Michigan, Ann Arbor, MI, USA
- Department of Statistics, University of Michigan, Ann Arbor, MI, USA
| | - Bradford G. Orr
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Le T. Duong
- Bone Biology Group, Merck Research Laboratories, West Point, PA, USA
| | - Mark M. Banaszak Holl
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Hua WD, Chen PP, Xu MQ, Ao Z, Liu Y, Han D, He F. Quantitative description of collagen fibre network on trabecular bone surfaces based on AFM imaging. J Microsc 2015; 262:112-22. [PMID: 26583563 DOI: 10.1111/jmi.12351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 10/16/2015] [Indexed: 11/30/2022]
Abstract
The collagen fibre network is an important part of extracellular matrix (ECM) on trabecular bone surface. The geometry features of the network can provide us insights into its physical and physiological properties. However, previous researches have not focused on the geometry and the quantitative description of the collagen fibre network on trabecular bone surface. In this study,we developed a procedure to quantitatively describe the network and verified the validity of the procedure. The experiment proceeds as follow. Atomic force microscopy (AFM) was used to acquire submicron resolution images of the trabecular surface. Then, an image analysing procedure was built to extract important parameters, including, fibre orientation, fibre density, fibre width, fibre crossing numbers, the number of holes formed by fibre s, and the area of holes from AFM images. In order to verify the validity of the parameters extracted by image analysing methods, we adopted two other methods, which are statistical geometry model and computer simulation, to calculate those same parameters and check the consistency of the three methods' results. Statistical tests indicate that there is no significant difference between three groups. We conclude that, (a) the ECM on trabecular surface mainly consists of random collagen fibre network with oriented fibres; (b) our method based on image analysing can be used to characterize quantitative geometry features of the collagen fibre network effectively. This method may provide a basis for quantitative investigating the architecture and function of collagen fibre network.
Collapse
Affiliation(s)
- W-D Hua
- Department of Orthopedics, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - P-P Chen
- National center for Nanoscience and Technology of China (NCNST), Chinese Academy of Science (CAS), Beijing, China
| | - M-Q Xu
- Department of Orthopedics, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Z Ao
- National center for Nanoscience and Technology of China (NCNST), Chinese Academy of Science (CAS), Beijing, China
| | - Y Liu
- Department of Orthopedics, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - D Han
- National center for Nanoscience and Technology of China (NCNST), Chinese Academy of Science (CAS), Beijing, China
| | - F He
- Department of Orthopedics, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Spitzner EC, Röper S, Zerson M, Bernstein A, Magerle R. Nanoscale Swelling Heterogeneities in Type I Collagen Fibrils. ACS NANO 2015; 9:5683-5694. [PMID: 25961780 DOI: 10.1021/nn503637q] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The distribution of water within the supramolecular structure of collagen fibrils is important for understanding their mechanical properties as well as the biomineralization processes in collagen-based tissues. We study the influence of water on the shape and the mechanical properties of reconstituted fibrils of type I collagen on the nanometer scale. Fibrils adsorbed on a silicon substrate were imaged with multiset point intermittent contact (MUSIC)-mode atomic force microscopy (AFM) in air at 28% relative humidity (RH) and in a hydrated state at 78% RH. Our data reveal the differences in the water uptake between the gap and overlap regions during swelling. This provides direct evidence for different amounts of bound and free water within the gap and overlap regions. In the dry state, the characteristic D-band pattern visible in AFM images is due to height corrugations along a fibril's axis. In the hydrated state, the fibril's surface is smooth and the D-band pattern reflects the different mechanical properties of the gap and overlap regions.
Collapse
Affiliation(s)
- Eike-Christian Spitzner
- †Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Stephanie Röper
- †Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Mario Zerson
- †Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Anke Bernstein
- ‡Orthopädie und Traumatologie, Universitätsklinikum Freiburg, D-79095 Freiburg, Germany
| | - Robert Magerle
- †Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| |
Collapse
|
6
|
Gao J, Gong H, Zhang R, Zhu D. Age-related regional deterioration patterns and changes in nanoscale characterizations of trabeculae in the femoral head. Exp Gerontol 2015; 62:63-72. [PMID: 25582596 DOI: 10.1016/j.exger.2015.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/03/2014] [Accepted: 01/08/2015] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate the mechanical properties and features of bone materials at the nanoscale level in different regions of the femoral head in elderly patients with femoral neck fracture. Ten femoral heads from female patients with femoral neck fractures were extracted during surgery (five for the Aged group, aged 65-66 years; five for the Advanced aged group, aged 85-95 years). The femoral head was divided into three equal layers (anterior, central, and posterior) in the coronal view, and each layer was segmented into five regions (superior, central, inferior, medial, and lateral). Nanoindentation testing and atomic force microscopy imaging were used to study the mechanical properties and surface morphology of the specimens. No statistical differences in grain size were found between age groups, which suggested that the nanostructure of trabeculae in the femoral heads of postmenopausal women cannot be used to predict age-related bone loss and fracture risk. Mechanical properties in the longitudinal direction deteriorated more quickly than those in the transverse direction for the whole femoral head. Comparisons between layers showed a higher deterioration rate with aging in the anterior layer than in other layers. In different regions, mechanical properties of the medial and lateral regions deteriorated more quickly than those in the three other regions, and deterioration in the longitudinal direction was more serious than that in the transverse direction. The regional deterioration patterns and material properties with aging observed in this study contribute to an understanding of the age-related fracture mechanism and provide a basis for predicting age-related fracture risk and decreasing early fixation failure in the proximal femur.
Collapse
Affiliation(s)
- Jiazi Gao
- Department of Engineering Mechanics, Jilin University, Changchun 130022, People's Republic of China
| | - He Gong
- Department of Engineering Mechanics, Jilin University, Changchun 130022, People's Republic of China.
| | - Rui Zhang
- Department of Engineering Mechanics, Jilin University, Changchun 130022, People's Republic of China
| | - Dong Zhu
- Traumatic Orthopedics, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
7
|
Hu S, Li J, Liu L, Dai R, Sheng Z, Wu X, Feng X, Yao X, Liao E, Keller E, Jiang Y. Micro/Nanostructures and Mechanical Properties of Trabecular Bone in Ovariectomized Rats. Int J Endocrinol 2015; 2015:252503. [PMID: 26273294 PMCID: PMC4530249 DOI: 10.1155/2015/252503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 01/08/2023] Open
Abstract
Bone mechanical properties encompass both geometric and material factors, while the effects of estrogen deficiency on the material and structural characteristics of bone at micro- to nanoscales are still obscure. We performed a series of combined methodological experiments, including nanoindentation assessment of intrinsic material properties, atomic force microscopy (AFM) characterization of trabecular (Tb) nanostructure, and Tb microarchitecture and 2D BMD. At 15 weeks after surgery, we found significantly less Tb bone mineral density (BMD) at organ (-27%) and at tissue level (-12%), Tb bone volume fraction (-29%), Tb thickness (-14%), and Tb number (-17%) in ovariectomy (OVX) rats than in sham operated (SHAM) rats, while the structure model index (+91%) and Tb separation (+19%) became significantly greater. AFM images showed lower roughness Tb surfaces with loosely packed large nodular structures and less compacted interfibrillar space in OVX than in SHAM. However, no statistically significant changes were in the Tb intrinsic material properties-nanoindentation hardness, elastic modulus, and plastic deformation-nanoindentation depths, and residual areas. Therefore, estrogen deprivation results in a dramatic deterioration in Tb micro/nanoarchitectures, 3D volumetric BMD at both organ and tissue levels, and 2D BMD, but not in the nanomechanical properties of the trabeculae per se.
Collapse
Affiliation(s)
- Shidi Hu
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jin Li
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Lu Liu
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ruchun Dai
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- *Ruchun Dai:
| | - Zhifeng Sheng
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xianping Wu
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiqiao Feng
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xuefeng Yao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Eryuan Liao
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Evan Keller
- Comprehensive Cancer Center and Urology, University of Michigan, E Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Yebin Jiang
- Comprehensive Cancer Center and Urology, University of Michigan, E Medical Center Drive, Ann Arbor, MI 48109, USA
- Research & Development and Radiology, VA Southern Nevada Healthcare System, 6900 N. Pecos Road, North Las Vegas, NV 89086, USA
| |
Collapse
|
8
|
Abdalrahman T, Scheiner S, Hellmich C. Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory. J Theor Biol 2014; 365:433-44. [PMID: 25452137 DOI: 10.1016/j.jtbi.2014.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/28/2014] [Accepted: 10/09/2014] [Indexed: 12/29/2022]
Abstract
It is generally agreed on that trabecular bone permeability, a physiologically important quantity, is governed by the material׳s (vascular or intertrabecular) porosity as well as by the viscosity of the pore-filling fluids. Still, there is less agreement on how these two key factors govern bone permeability. In order to shed more light onto this somewhat open issue, we here develop a random homogenization scheme for upscaling Poiseuille flow in the vascular porosity, up to Darcy-type permeability of the overall porous medium "trabecular bone". The underlying representative volume element of the macroscopic bone material contains two types of phases: a spherical, impermeable extracellular bone matrix phase interacts with interpenetrating cylindrical pore channel phases that are oriented in all different space directions. This type of interaction is modeled by means of a self-consistent homogenization scheme. While the permeability of the bone matrix equals to zero, the permeability of the pore phase is found through expressing the classical Hagen-Poiseuille law for laminar flow in the format of a "micro-Darcy law". The upscaling scheme contains pore size and porosity as geometrical input variables; however, they can be related to each other, based on well-known relations between porosity and specific bone surface. As two key results, validated through comprehensive experimental data, it appears (i) that the famous Kozeny-Carman constant (which relates bone permeability to the cube of the porosity, the square of the specific surface, as well as to the bone fluid viscosity) needs to be replaced by an again porosity-dependent rational function, and (ii) that the overall bone permeability is strongly affected by the pore fluid viscosity, which, in case of polarized fluids, is strongly increased due to the presence of electrically charged pore walls.
Collapse
Affiliation(s)
- T Abdalrahman
- Institute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), 1040 Vienna, Austria.
| | - S Scheiner
- Institute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), 1040 Vienna, Austria.
| | - C Hellmich
- Institute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), 1040 Vienna, Austria.
| |
Collapse
|
9
|
Zhang R, Gong H, Zhu D, Gao J, Fang J, Fan Y. Seven day insertion rest in whole body vibration improves multi-level bone quality in tail suspension rats. PLoS One 2014; 9:e92312. [PMID: 24637608 PMCID: PMC3956900 DOI: 10.1371/journal.pone.0092312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
Objective This study aimed to investigate the effects of low-magnitude, high-frequency vibration with rest days on bone quality at multiple levels. Methods Forty-nine three-month-old male Wistar rats were randomly divided into seven groups, namely, vibrational loading for X day followed by X day rest (VLXR, X = 1, 3, 5, 7), vibrational loading every day (VLNR), tail suspension (SPD), and baseline control (BCL). One week after tail suspension, rats were loaded by vibrational loading (35 Hz, 0.25 g, 15 min/day) except SPD and BCL. Fluorescence markers were used in all rats. Eight weeks later, femora were harvested to investigate macromechanical properties, and micro-computed tomography scanning and fluorescence test were used to evaluate microarchitecture and bone growth rate. Atomic force microscopy analyses and nanoindentation test were used to analyze the nanostructure and mechanical properties of bone material, respectively. Inductively coupled plasma optical emission spectroscopy was used for quantitative chemical analyses. Results Microarchitecture, mineral apposition rate and bone formation rate and macromechanical properties were improved in VL7R. Grain size and roughness were significantly different among all groups. No statistical difference was found for the mechanical properties of the bone material, and the chemical composition of all groups was almost similar. Conclusions Low-magnitude, high-frequency vibration with rest days altered bone microarchitecture and macro-biomechanical properties, and VL7R was more efficacious in improving bone loss caused by mechanical disuse, which provided theoretical basis and explored the mechanisms of vibration for improving bone quality in clinics.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, People’s Republic of China
| | - He Gong
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, People’s Republic of China
- * E-mail: (HG); (DZ)
| | - Dong Zhu
- Department of Orthopedic Surgery, No. 1 Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
- * E-mail: (HG); (DZ)
| | - Jiazi Gao
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Juan Fang
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Milovanovic P, Rakocevic Z, Djonic D, Zivkovic V, Hahn M, Nikolic S, Amling M, Busse B, Djuric M. Nano-structural, compositional and micro-architectural signs of cortical bone fragility at the superolateral femoral neck in elderly hip fracture patients vs. healthy aged controls. Exp Gerontol 2014; 55:19-28. [PMID: 24614625 DOI: 10.1016/j.exger.2014.03.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 02/18/2014] [Accepted: 03/02/2014] [Indexed: 12/13/2022]
Abstract
To unravel the origins of decreased bone strength in the superolateral femoral neck, we assessed bone structural features across multiple length scales at this cortical fracture initiating region in postmenopausal women with hip fracture and in aged-matched controls. Our combined methodological approach encompassed atomic force microscopy (AFM) characterization of cortical bone nano-structure, assessment of mineral content/distribution via quantitative backscattered electron imaging (qBEI), measurement of bone material properties by reference point indentation, as well as evaluation of cortical micro-architecture and osteocyte lacunar density. Our findings revealed a wide range of differences between the fracture group and the controls, suggesting a number of detrimental changes at various levels of cortical bone hierarchical organization that may render bone fragile. Namely, mineral crystals at external cortical bone surfaces of the fracture group were larger (65.22nm±41.21nm vs. 36.75nm±18.49nm, p<0.001), and a shift to a higher mineral content and more homogenous mineralization profile as revealed via qBEI were found in the bone matrix of the fracture group. Fracture cases showed nearly 35% higher cortical porosity and showed significantly reduced osteocyte lacunar density compared to controls (226±27 vs. 247±32#/mm(2), p=0.05). Along with increased crystal size, a shift towards higher mineralization and a tendency to increased cortical porosity and reduced osteocyte lacunar number delineate that cortical bone of the superolateral femoral neck bears distinct signs of fragility at various levels of its structural organization. These results contribute to the understanding of hierarchical bone structure changes in age-related fragility.
Collapse
Affiliation(s)
- Petar Milovanovic
- Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, 4/2 Dr Subotica, 11000 Belgrade, Serbia; Department of Osteology & Biomechanics, University Medical Center Hamburg-Eppendorf, 59 Lottestr., D-22529 Hamburg, Germany.
| | - Zlatko Rakocevic
- Laboratory for Atomic Physics, Institute of Nuclear Sciences Vinca, University of Belgrade, 11001 Belgrade, Serbia.
| | - Danijela Djonic
- Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, 4/2 Dr Subotica, 11000 Belgrade, Serbia.
| | - Vladimir Zivkovic
- Institute of Forensic Medicine, School of Medicine, University of Belgrade, 31a Deligradska, 11000 Belgrade, Serbia.
| | - Michael Hahn
- Department of Osteology & Biomechanics, University Medical Center Hamburg-Eppendorf, 59 Lottestr., D-22529 Hamburg, Germany.
| | - Slobodan Nikolic
- Institute of Forensic Medicine, School of Medicine, University of Belgrade, 31a Deligradska, 11000 Belgrade, Serbia.
| | - Michael Amling
- Department of Osteology & Biomechanics, University Medical Center Hamburg-Eppendorf, 59 Lottestr., D-22529 Hamburg, Germany.
| | - Bjoern Busse
- Department of Osteology & Biomechanics, University Medical Center Hamburg-Eppendorf, 59 Lottestr., D-22529 Hamburg, Germany.
| | - Marija Djuric
- Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, 4/2 Dr Subotica, 11000 Belgrade, Serbia.
| |
Collapse
|
11
|
Milovanovic P, Djuric M, Neskovic O, Djonic D, Potocnik J, Nikolic S, Stoiljkovic M, Zivkovic V, Rakocevic Z. Atomic force microscopy characterization of the external cortical bone surface in young and elderly women: potential nanostructural traces of periosteal bone apposition during aging. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1341-1349. [PMID: 23764147 DOI: 10.1017/s1431927613001761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
On the basis of the suggestion that bone nanostructure bears “tissue age” information and may reflect surface deposition/modification processes, we performed nanoscale characterization of the external cortical bone surface at the femoral neck in women using atomic force microscopy (AFM). The specific aims were to assess age-related differences in bone nanostructure and explore the existence of nanostructural traces of potential bone apposition at this surface. Our findings revealed that the external cortical surface represents a continuous phase composed of densely packed mineral grains. Although the grains varied in size and shape, there was a domination of small grains indicative of freshly deposited bone (mean grain size: young, 35 nm; old, 37 nm; p > 0.05). Advanced quantitative analysis of surface morphological patterns revealed comparable roughness and complexity of the surface, suggesting a similar rate of mineral particle deposition at the surface in both groups. Calcium/phosphorus ratio, a measure of bone tissue age, was within the same range in both groups. In summary, our AFM analyses showed consistent nanostructural and compositional bone features, suggesting existence of new bone at the periosteal bone surface in both young and elderly women. Considering observed age-related increase in the neck diameter, AFM findings may support the theory of continuous bone apposition at the periosteal surface.
Collapse
Affiliation(s)
- Petar Milovanovic
- University of Belgrade, School of Medicine, Institute of Anatomy, Laboratory for Anthropology, 4/2 Dr Subotica, 11 000 Belgrade, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Milovanovic P, Djuric M, Rakocevic Z. Age-dependence of power spectral density and fractal dimension of bone mineralized matrix in atomic force microscope topography images: potential correlates of bone tissue age and bone fragility in female femoral neck trabeculae. J Anat 2012; 221:427-33. [PMID: 22946475 DOI: 10.1111/j.1469-7580.2012.01556.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2012] [Indexed: 11/28/2022] Open
Abstract
There is an increasing interest in bone nano-structure, the ultimate goal being to reveal the basis of age-related bone fragility. In this study, power spectral density (PSD) data and fractal dimensions of the mineralized bone matrix were extracted from atomic force microscope topography images of the femoral neck trabeculae. The aim was to evaluate age-dependent differences in the mineralized matrix of human bone and to consider whether these advanced nano-descriptors might be linked to decreased bone remodeling observed by some authors and age-related decline in bone mechanical competence. The investigated bone specimens belonged to a group of young adult women (n = 5, age: 20-40 years) and a group of elderly women (n = 5, age: 70-95 years) without bone diseases. PSD graphs showed the roughness density distribution in relation to spatial frequency. In all cases, there was a fairly linear decrease in magnitude of the power spectra with increasing spatial frequencies. The PSD slope was steeper in elderly individuals (-2.374 vs. -2.066), suggesting the dominance of larger surface morphological features. Fractal dimension of the mineralized bone matrix showed a significant negative trend with advanced age, declining from 2.467 in young individuals to 2.313 in the elderly (r = 0.65, P = 0.04). Higher fractal dimension in young women reflects domination of smaller mineral grains, which is compatible with the more freshly remodeled structure. In contrast, the surface patterns in elderly individuals were indicative of older tissue age. Lower roughness and reduced structural complexity (decreased fractal dimension) of the interfibrillar bone matrix in the elderly suggest a decline in bone toughness, which explains why aged bone is more brittle and prone to fractures.
Collapse
Affiliation(s)
- Petar Milovanovic
- Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | |
Collapse
|
14
|
Eberhardsteiner L, Hellmich C, Scheiner S. Layered water in crystal interfaces as source for bone viscoelasticity: arguments from a multiscale approach. Comput Methods Biomech Biomed Engin 2012; 17:48-63. [PMID: 22563708 PMCID: PMC3877913 DOI: 10.1080/10255842.2012.670227] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/23/2012] [Indexed: 12/01/2022]
Abstract
Extracellular bone material can be characterised as a nanocomposite where, in a liquid environment, nanometre-sized hydroxyapatite crystals precipitate within as well as between long fibre-like collagen fibrils (with diameters in the 100 nm range), as evidenced from neutron diffraction and transmission electron microscopy. Accordingly, these crystals are referred to as 'interfibrillar mineral' and 'extrafibrillar mineral', respectively. From a topological viewpoint, it is probable that the mineralisations start on the surfaces of the collagen fibrils ('mineral-encrusted fibrils'), from where the crystals grow both into the fibril and into the extrafibrillar space. Since the mineral concentration depends on the pore spaces within the fibrils and between the fibrils (there is more space between them), the majority of the crystals (but clearly not all of them) typically lie in the extrafibrillar space. There, larger crystal agglomerations or clusters, spanning tens to hundreds of nanometers, develop in the course of mineralisation, and the micromechanics community has identified the pivotal role, which this extrafibrillar mineral plays for tissue elasticity. In such extrafibrillar crystal agglomerates, single crystals are stuck together, their surfaces being covered with very thin water layers. Recently, the latter have caught our interest regarding strength properties (Fritsch et al. 2009 J Theor Biol. 260(2): 230-252) - we have identified these water layers as weak interfaces in the extrafibrillar mineral of bone. Rate-independent gliding effects of crystals along the aforementioned interfaces, once an elastic threshold is surpassed, can be related to overall elastoplastic material behaviour of the hierarchical material 'bone'. Extending this idea, the present paper is devoted to viscous gliding along these interfaces, expressing itself, at the macroscale, in the well-known experimentally evidenced phenomenon of bone viscoelasticity. In this context, a multiscale homogenisation scheme is extended to viscoelasticity, mineral-cluster-specific creep parameters are identified from three-point bending tests on hydrated bone samples, and the model is validated by statistically and physically independent experiments on partially dried samples. We expect this model to be relevant when it comes to prediction of time-dependent phenomena, e.g. in the context of bone remodelling.
Collapse
Affiliation(s)
- Lukas Eberhardsteiner
- Institute for Transportation Science, Research Center for Road Engineering, Vienna University of Technology, Vienna, Austria
| | - Christian Hellmich
- Institute for Mechanics of Material and Structures, Vienna University of Technology, Vienna, Austria
| | - Stefan Scheiner
- Institute for Mechanics of Material and Structures, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
15
|
Milovanovic P, Potocnik J, Djonic D, Nikolic S, Zivkovic V, Djuric M, Rakocevic Z. Age-related deterioration in trabecular bone mechanical properties at material level: Nanoindentation study of the femoral neck in women by using AFM. Exp Gerontol 2012; 47:154-9. [DOI: 10.1016/j.exger.2011.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/12/2011] [Accepted: 11/27/2011] [Indexed: 01/22/2023]
|
16
|
Milovanovic P, Potocnik J, Stoiljkovic M, Djonic D, Nikolic S, Neskovic O, Djuric M, Rakocevic Z. Nanostructure and mineral composition of trabecular bone in the lateral femoral neck: implications for bone fragility in elderly women. Acta Biomater 2011; 7:3446-51. [PMID: 21658479 DOI: 10.1016/j.actbio.2011.05.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/16/2011] [Accepted: 05/22/2011] [Indexed: 11/17/2022]
Abstract
Despite interest in investigating age-related hip fractures, the determinants of decreased bone strength in advanced age are not clear enough. Hitherto it has been obscure how the aging process affects the femoral neck nanostructure and composition, particularly in the lateral subregion of the femoral neck, which is considered as a fracture-initiating site. The femoral bone samples used in this study were obtained at autopsy in 10 women without skeletal disease (five younger: aged 20-40 years, and five elderly: aged 73-94 years). Atomic force microscopy (AFM) was applied to explore the mineral grain size in situ in young vs. old trabecular bone samples from the lateral femoral neck. The chemical compositions of the samples were determined using inductively coupled plasma optical emission spectroscopy and direct current argon arc plasma optical emission spectrometry. Our AFM study revealed differences in trabecular bone nanostructure between young and elderly women. The mineral grain size in the trabeculae of the old women was larger than that in the young (median: 95 vs. 59nm), with a particular bimodal distribution: 45% were small grains (similar to the young) and the rest were larger. Since chemical analyses showed that levels of calcium and phosphorus were unchanged with age, our study suggests that during aging the existing bone mineral is reorganized and forms larger aggregates. Given the mechanical disadvantage of large-grained structures (decreased material strength), the observed nanostructural differences contribute to our understanding of the increased fragility of the lateral femoral neck in aged females. Moreover, increasing data on mineral grains in natural bone is essential for advancing calcium-phosphate ceramics for bone tissue replacement.
Collapse
|
17
|
Thurner PJ. Atomic force microscopy and indentation force measurement of bone. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2009; 1:624-49. [DOI: 10.1002/wnan.56] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Suvorova EI, Petrenko PP, Buffat PA. Scanning and transmission electron microscopy for evaluation of order/disorder in bone structure. SCANNING 2007; 29:162-70. [PMID: 17598178 DOI: 10.1002/sca.20058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A comparative characterization of the structure of normal and abnormal (osteoporotic) human lumbar and thoracic vertebrae samples was carried out to reveal the type of possible disorder. Samples from the bone fragments extracted during the surgery due to vertebra fractures were examined by scanning electron microscopy (SEM), conventional and high resolution transmission electron microscopy (TEM and HRTEM), and X-ray energy dispersive spectroscopy (EDS). Contrary to what might be expected in accordance with possible processes of dissolution, formation and remineralization of hard tissues, no changes in phase composition of mineral part, crystal sizes (length, width, and thickness), and arrangement of crystals on collagen fibers were detected in abnormal bones compared to the normal ones. The following sizes were determined by HRTEM for all bone samples: <or= 20 nm in length, 3-15 nm in width, and 0.8 nm in thickness (the height of hexagonal HAP unit cell along the [2110] direction. Significant overgrowth of organic fibers filled up the former paths for blood vessels and nerves together with organic films covering the mineral part was revealed by SEM only in osteoporotic bones. EDS showed that this organic tissue was not mineralized. Penetration of such organic fibers inside bones can result in bone dilatation and lower the mineral density, deteriorating the mechanical properties and finally terminating in fracture.
Collapse
Affiliation(s)
- Elena I Suvorova
- Institute of Crystallography Russian Academy of Sciences, Moscow, Russia.
| | | | | |
Collapse
|
19
|
Hassenkam T, Jørgensen HL, Lauritzen JB. Mapping the imprint of bone remodeling by atomic force microscopy. ACTA ACUST UNITED AC 2006; 288:1087-94. [PMID: 16952172 DOI: 10.1002/ar.a.20376] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Understanding bone remodeling is essential for understanding bone as a whole. Bone remodeling takes place through a stepwise cellular process, with osteoclasts carving small cavities, also known as resorption pits, into the surface of trabecular bone, followed by osteoblasts, which refill the pits with new soft bone collagen matrix tissue (osteoid). The detailed structure of the surface in the frontier of a resorption pit before, during, and after the osteoid is being laid down is not well known. We present detailed atomic force microscope (AFM) images from the edge, the front end, and the bottom of a resorption pit in a human trabecular bone sample that showed signs of incomplete remodeling. The images reveal a scalloped surface left behind by the osteoclasts and the surface morphology of preexisting bone tissue and new bone tissue. In addition, we display the bone formation front in the pit showing the anchor points between the new bone and the existing bone. We also found evidence of microcracking in the front end of the pit, suggesting that microcracking was the initiator of this particular resorption pit. We anticipate that AFM may initiate a more detailed understanding of the influence of the remodeling process on the structure of bone, as well as a better understanding of the surface on which new bone tissue can be anchored.
Collapse
Affiliation(s)
- Tue Hassenkam
- Nano-Science Center, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
20
|
Abstract
The resistance of bone to fracture is determined by its geometric and material properties. The geometry and density can be determined by radiographic methods, but material properties such as collagen structure, mineral composition, and crystal structure currently require analysis by invasive techniques. Backscatter electron imaging provides quantitative information on the distribution of the mineral within tissue sections, and infrared and other vibrational spectroscopic methods can supplement these data, providing site-specific information on mineral content as well as information on collagen maturity and distributions of crystal size and composition. This information contributes to the knowledge of "bone quality."
Collapse
Affiliation(s)
- Adele L Boskey
- Hospital for Special Surgery, 535 E. 70th Street, New York, NY 10021, USA.
| |
Collapse
|