1
|
Kumar D, Sachdeva K, Tanwar R, Devi S. Review on novel targeted enzyme drug delivery systems: enzymosomes. SOFT MATTER 2024; 20:4524-4543. [PMID: 38738579 DOI: 10.1039/d4sm00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The goal of this review is to present enzymosomes as an innovative means for site-specific drug delivery. Enzymosomes make use of an enzyme's special characteristics, such as its capacity to accelerate the reaction rate and bind to a particular substrate at a regulated rate. Enzymosomes are created when an enzyme forms a covalent linkage with a liposome or lipid vesicle surface. To construct enzymosomes with specialized activities, enzymes are linked using acylation, direct conjugation, physical adsorption, and encapsulation techniques. By reducing the negative side effects of earlier treatment techniques and exhibiting efficient medication release, these cutting-edge drug delivery systems improve long-term sickness treatments. They could be a good substitute for antiplatelet medication, gout treatment, and other traditional medicines. Recently developed supramolecular vesicular delivery systems called enzymosomes have the potential to improve drug targeting, physicochemical characteristics, and ultimately bioavailability in the pharmaceutical industry. Enzymosomes have advantages over narrow-therapeutic index pharmaceuticals as focusing on their site of action enhances both their pharmacodynamic and pharmacokinetic profiles. Additionally, it reduces changes in normal enzymatic activity, which enhances the half-life of an enzyme and accomplishes enzyme activity on specific locations.
Collapse
Affiliation(s)
- Dinesh Kumar
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| | - Komal Sachdeva
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| | - Rajni Tanwar
- Department of Pharmaceutical Sciences, Starex University, Gurugram, India
| | - Sunita Devi
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| |
Collapse
|
2
|
Sivadasan D, Sultan MH, Alqahtani SS, Javed S. Cubosomes in Drug Delivery-A Comprehensive Review on Its Structural Components, Preparation Techniques and Therapeutic Applications. Biomedicines 2023; 11:biomedicines11041114. [PMID: 37189732 DOI: 10.3390/biomedicines11041114] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Cubosomes are lipid vesicles that are comparable to vesicular systems like liposomes. Cubosomes are created with certain amphiphilic lipids in the presence of a suitable stabiliser. Since its discovery and designation, self-assembled cubosomes as active drug delivery vehicles have drawn much attention and interest. Oral, ocular, transdermal, and chemotherapeutic are just a few of the drug delivery methods in which they are used. Cubosomes show tremendous potential in drug nanoformulations for cancer therapeutics because of their prospective advantages, which include high drug dispersal due to the structure of the cubic, large surface area, a relatively simple manufacturing process, biodegradability, ability to encapsulate hydrophobic, hydrophilic, and amphiphilic compounds, targeted and controlled release of bioactive agents, and biodegradability of lipids. The most typical technique of preparation is the simple emulsification of a monoglyceride with a polymer, followed by sonication and homogenisation. Top-down and bottom-up are two different sorts of preparation techniques. This review will critically analyse the composition, preparation techniques, drug encapsulation approaches, drug loading, release mechanism and applications relevant to cubosomes. Furthermore, the challenges faced in optimising various parameters to enhance the loading capacities and future potentialities are also addressed.
Collapse
Affiliation(s)
- Durgaramani Sivadasan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Muhammad H Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saad S Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
3
|
Salimi A, Mohammad Soleymani H, Mohammad Soleymani S. Altered Skin Permeation of Finasteride Using Clove Oil, Urea, and Lyophilized Powder of Grape Seed Extract. Adv Pharm Bull 2023; 13:96-103. [PMID: 36721808 PMCID: PMC9871283 DOI: 10.34172/apb.2023.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 10/04/2021] [Accepted: 12/31/2021] [Indexed: 02/03/2023] Open
Abstract
Purpose: Finasteride is a 5-alpha reductase inhibitor used to treat hair loss and acne. The skin permeation of finasteride is one of the main challenges associated with dermal drug delivery. One way to overcome the skin barrier is to use penetration enhancers. The purpose of this study was to investigate the effect of some penetration enhancers on finasteride permeability on the skin, as well as the effect of pretreatment time on their efficacy. Methods: In order to determine the effect of penetration enhancers on the skin permeability of finasteride, the skin was exposed to clove oil, urea, and lyophilized powder of grape seed extract (LPGSE) at different pretreatment times (2, 4 h), and then the permeability parameters were determined by passing the drug through the skin. Results: The results of this study showed that clove oil, urea, and LPGSE increased the transfer of finasteride from the skin. The highest rate of permeation was observed with clove oil (4 h), and the least permeability was observed with urea (4 h). Conclusion: Increasing the pretreatment time with clove oil and LPGSE increases the permeability of finasteride. Meanwhile, the increase in pretreatment time with urea reduces the penetration of finasteride from the skin due to reversible effects.
Collapse
Affiliation(s)
- Anayatollah Salimi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran.,Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Hamid Mohammad Soleymani
- Petroleum Research Laboratory, School of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Saeed Mohammad Soleymani
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding Author: Saeed Mohammad Soleymani,
| |
Collapse
|
4
|
Preparation, Optimization, and Investigation of Naringenin-Loaded Microemulsion for Topical Application. IRANIAN BIOMEDICAL JOURNAL 2022; 26:366-73. [PMID: 36403103 PMCID: PMC9763875 DOI: 10.52547/ibj.3722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Flavonoids are a large group of phenolic compounds possessing anti-inflammatory and antioxidant effects. NAR is a flavonoid with various pharmacological properties. Using pharmaceutical compounds on skin is one of the routes of administration to achieve local and systemic effects. The aim of this study was to develop a topical formulation of NAR by the preparation of a NAR ME, which was further tested its skin permeability in rats. Methods Eight 0.5% NAR MEs were prepared by mixing appropriate amounts of surfactant (Tween 80 and Labrasol), cosurfactant (Capryol 90) and the oil phase (oleic acid-Transcutol P in a ratio of 1:10). The drug was dissolved in the oil phase. The physicochemical properties of MEs such as droplet size, viscosity, release, and skin permeability were assessed using Franz Cells diffusion. Results Based on the results, the droplet size of MEs ranged between 5.07 and 35.15 nm, and their viscosity was 164-291 cps. Independent factors exhibited a strong relationship with both permeability and drop size. The permeability findings revealed that the diffusion coefficient of NAR by the ME carrier increased compared to the drug saturation solution. Conclusion The most validated results were obtained for Jss and particle size. Optimal formulations containing MEs with Jss and particle sizes varying between minimum and maximum amounts are suitable for topical formulations of NAR.
Collapse
|
5
|
Hong-In P, Chaiyana W. Potential cosmeceutical lamellar liquid crystals containing black longan (Dimocarpus longan Lour.) seed extract for MMP-1 and hyaluronidase inhibition. Sci Rep 2022; 12:7683. [PMID: 35538179 PMCID: PMC9091220 DOI: 10.1038/s41598-022-11554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
The aims of this study were to evaluate the biological activities of black Dimocarpus longan Lour. seed extracts and develop a lamellar liquid crystal (LLC). Different solvents, including petroleum ether, ethyl acetate, and 95% v/v ethanol, were used in the maceration of black D. longan seeds. The inhibitory activities on matrix metalloproteinase-1 (MMP-1) and hyaluronidase were evaluated. The irritating potency of D. longan seed extracts was determined using the hen's egg chorioallantoic membrane test. The extract with the strongest anti-ageing activities and no irritant impact was examined for its chemical contents using high-performance liquid chromatography and incorporated into the LLC. Various factors affecting the LLC formulations, including surfactant types and amounts, thickening agent types and amounts, and various oil types, were investigated. The results demonstrated that the ethyl acetate extract (EtOAc) was the most potent inhibitor of MMP-1 (IC50 = 21.7 ± 5.4 µg/mL) and hyaluronidase (oleanolic acid equivalent = 0.44 ± 0.03 g per g extract). Interestingly, its MMP-1 inhibition was equivalent to that of oleanolic acid, corilagin, and gallic acid. Furthermore, its hyaluronidase inhibition was equivalent to that of gallic acid and ellagic acid. Gallic acid, which was the most abundant compound (15.6% ± 0.06% w/w) was suggested as the compound responsible for the biological activities of EtOAc extract. Considering its potential anti-skin ageing properties with no irritation of EtOAc extract, it was incorporated into the most suitable LLC, which was composed of 5% w/w Lexfeel® D5 oil, 0.5% w/w Carbopol® U21, 2% w/w Liquid Crystal Cream Maker, and 92.5% w/w DI water. The LLC containing EtOAc extract presented birefringence under a polarizing light microscope, indicating its crystallinity. The formulation had good stability after heating-cooling cycles in terms of external appearance, crystallinity, viscosity, and pH (5.5). As a result, it is recommended as a potential cosmeceutical formulation for anti-skin wrinkling. It is proposed that more research be conducted on the safety and efficacy of the treatment on human volunteers.
Collapse
Affiliation(s)
- Preaploy Hong-In
- Master's Degree Program in Cosmetic Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
6
|
Advances of microemulsion and its applications for improved oil recovery. Adv Colloid Interface Sci 2022; 299:102527. [PMID: 34607652 DOI: 10.1016/j.cis.2021.102527] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022]
Abstract
Microemulsion, because of its excellent interfacial tension reduction and solubilization properties, has wide range of applications in the petroleum industry, especially in improved oil recovery (IOR). Herein, the concept, types and formation mechanism of microemulsion were primarily introduced. Then, the preparation and characterization methods were illustrated. Additionally, several effect factors were elaborated specifically based on the composition of microemulsion. Finally, the application of microemulsion in IOR was addressed, including IOR mechanism analysis based on sweep efficiency and displacement efficiency, injection method (microemulsion flooding, in-situ microemulsion formation) and field tests. Furthermore, the current challenges and prospects of microemulsion on IOR were analyzed.
Collapse
|
7
|
Grover A, Sinha R, Jyoti D, Faggio C. Imperative role of electron microscopy in toxicity assessment: A review. Microsc Res Tech 2021; 85:1976-1989. [PMID: 34904321 DOI: 10.1002/jemt.24029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Electron microscope (EM) was developed in 1931 and since then microscopical examination of both the biological and non-biological samples has been revolutionized. Modifications in electron microscopy techniques, such as scanning EM and transmission EM, have widened their applicability in the various sectors such as understanding of drug toxicity, development of mechanism, criminal site investigation, and characterization of the nano-molecule. The present review summarizes its role in important aspects such as toxicity assessment and disease diagnosis in special reference to SARS-COV2. In the biological system, EM studies have elucidated the impact of toxicants at the ultra-structural level in various tissue in conformity to physiological alterations. Thus, EM can be concluded as an important tool in toxicity assessment and disease prognosis.
Collapse
Affiliation(s)
- Aseem Grover
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, India
| | - Reshma Sinha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, India
| | - Divya Jyoti
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
8
|
Scomoroscenco C, Teodorescu M, Raducan A, Stan M, Voicu SN, Trica B, Ninciuleanu CM, Nistor CL, Mihaescu CI, Petcu C, Cinteza LO. Novel Gel Microemulsion as Topical Drug Delivery System for Curcumin in Dermatocosmetics. Pharmaceutics 2021; 13:pharmaceutics13040505. [PMID: 33916981 PMCID: PMC8067601 DOI: 10.3390/pharmaceutics13040505] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Gel microemulsion combines the advantages of the microemulsion, which can encapsulate, protect and deliver large quantities of active ingredients, and the gel, which is so appreciated in the cosmetic industry. This study aimed to develop and characterize new gel microemulsions suitable for topical cosmetic applications, using grape seed oil as the oily phase, which is often employed in pharmaceuticals, especially in cosmetics. The optimized microemulsion was formulated using Tween 80 and Plurol® Diisostearique CG as a surfactant mix and ethanol as a co-solvent. Three different water-soluble polymers were selected in order to increase the viscosity of the microemulsion: Carbopol® 980 NF, chitosan, and sodium hyaluronate salt. All used ingredients are safe, biocompatible and biodegradable. Curcumin was chosen as a model drug. The obtained systems were physico-chemically characterized by means of electrical conductivity, dynamic light scattering, polarized microscopy and rheometric measurements. Evaluation of the cytotoxicity was accomplished by MTT assay. In the final phase of the study, the release behavior of Curcumin from the optimized microemulsion and two gel microemulsions was evaluated. Additionally, mathematical models were applied to establish the kinetic release mechanism. The obtained gel microemulsions could be effective systems for incorporation and controlled release of the hydrophobic active ingredients.
Collapse
Affiliation(s)
- Cristina Scomoroscenco
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (B.T.); (C.M.N.); (C.L.N.); (C.I.M.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 010737 Bucharest, Romania;
| | - Mircea Teodorescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 010737 Bucharest, Romania;
| | - Adina Raducan
- Physical Chemistry Department, University of Bucharest, 030018 Bucharest, Romania;
| | - Miruna Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, ICUB-Research Institute of the University of Bucharest, University of Bucharest, 050095 Bucharest, Romania; (M.S.); (S.N.V.)
| | - Sorina Nicoleta Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, ICUB-Research Institute of the University of Bucharest, University of Bucharest, 050095 Bucharest, Romania; (M.S.); (S.N.V.)
| | - Bodgan Trica
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (B.T.); (C.M.N.); (C.L.N.); (C.I.M.)
| | - Claudia Mihaela Ninciuleanu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (B.T.); (C.M.N.); (C.L.N.); (C.I.M.)
| | - Cristina Lavinia Nistor
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (B.T.); (C.M.N.); (C.L.N.); (C.I.M.)
| | - Catalin Ionut Mihaescu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (B.T.); (C.M.N.); (C.L.N.); (C.I.M.)
| | - Cristian Petcu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (B.T.); (C.M.N.); (C.L.N.); (C.I.M.)
- Correspondence: (C.P.); (L.O.C.)
| | - Ludmila Otilia Cinteza
- Physical Chemistry Department, University of Bucharest, 030018 Bucharest, Romania;
- Correspondence: (C.P.); (L.O.C.)
| |
Collapse
|
9
|
Aswathanarayan JB, Vittal RR. Nanoemulsions and Their Potential Applications in Food Industry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00095] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Mohammad Soleymani S, Salimi A. Enhancement of Dermal Delivery of Finasteride Using Microemulsion Systems. Adv Pharm Bull 2019; 9:584-592. [PMID: 31857962 PMCID: PMC6912190 DOI: 10.15171/apb.2019.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/04/2022] Open
Abstract
Purpose: Finasteride is a pharmaceutical agent that treats hair loss and acne with hormonal patterns. Due to its poor water solubility, and the smaller surface area in comparison to total skin surface area, penetration of the drug into hair follicles and skin is low. The aim of this research was to formulate, characterize and evaluate in vitro skin permeability of finasteride microemulsions (MEs). Methods: Finasteride MEs were prepared using a pseudo-ternary phase diagram method with an appropriate ratio of oil mixture, surfactant-co-surfactant mixture and water. MEs containing 1% finasteride were prepared with a suitable amount of oily phase and surfactant and cosurfactant. The physicochemical properties of these MEs and in vitro skin permeability of MEs were evaluated. Results: The results showed that the mean droplet size range of ME samples was 5-17 nm and pH was 5.1-5.7. The viscosity of MEs ranged from 86.4-209.6 cps. The drug release profile showed that 49.510% of the drug was released (ME-F-6) over the 24 hours of the experiment. The kinetics of drug release from all selected MEs were approximately described by Higuchi and first-order modeling. All ME formulations with different compositions and properties significantly increased flux and permeability coefficient from rat skin. The selected MEs exhibit 99.9% finasteride after six months of storage. Conclusion: This study showed that any change in the content and composition of MEs could change the physical and chemical properties in addition to ME permeability parameters. The MEs increased permeability of the skin to finasteride.
Collapse
Affiliation(s)
- Saeed Mohammad Soleymani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmaceutics, Faculty of pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Anayatollah Salimi
- Department of Pharmaceutics, Faculty of pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Kopanichuk IV, Vedenchuk EA, Koneva AS, Vanin AA. Structural Properties of Span 80/Tween 80 Reverse Micelles by Molecular Dynamics Simulations. J Phys Chem B 2018; 122:8047-8055. [DOI: 10.1021/acs.jpcb.8b03945] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ilia V. Kopanichuk
- Institute of Chemistry, St. Petersburg State University, 7-9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Ekaterina A. Vedenchuk
- Institute of Chemistry, St. Petersburg State University, 7-9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alina S. Koneva
- Institute of Chemistry, St. Petersburg State University, 7-9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Aleksandr A. Vanin
- Institute of Chemistry, St. Petersburg State University, 7-9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
12
|
|
13
|
Todosijević MN, Cekić ND, Savić MM, Gašperlin M, Ranđelović DV, Savić SD. Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: formulation approach using D-optimal mixture design. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3351-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Pereira P, Morgado D, Crepet A, David L, Gama FM. Glycol Chitosan-Based Nanogel as a Potential Targetable Carrier for siRNA. Macromol Biosci 2013; 13:1369-78. [DOI: 10.1002/mabi.201300123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/24/2013] [Indexed: 02/03/2023]
Affiliation(s)
- Paula Pereira
- Institute for Biotechnology and Bioengineering (IBB); Centre for Biological Engineering; Campus de Gualtar University of Minho Braga Portugal
| | - Daniela Morgado
- Université de Lyon, Université Claude Bernard Lyon 1; Ingéniérie des Matériaux Polymères; (IMP@Lyon1), CNRS UMR 5223, 15 Bd Latarjet 69622 Villeurbanne Cedex France
| | - Agnès Crepet
- Université de Lyon, Université Claude Bernard Lyon 1; Ingéniérie des Matériaux Polymères; (IMP@Lyon1), CNRS UMR 5223, 15 Bd Latarjet 69622 Villeurbanne Cedex France
| | - Laurent David
- Université de Lyon, Université Claude Bernard Lyon 1; Ingéniérie des Matériaux Polymères; (IMP@Lyon1), CNRS UMR 5223, 15 Bd Latarjet 69622 Villeurbanne Cedex France
| | - Francisco M. Gama
- Institute for Biotechnology and Bioengineering (IBB); Centre for Biological Engineering; Campus de Gualtar University of Minho Braga Portugal
| |
Collapse
|
15
|
Characterization and in vitro permeation study of microemulsions and liquid crystalline systems containing the anticholinesterase alkaloidal extract from Tabernaemontana divaricata. Int J Pharm 2013; 452:201-10. [DOI: 10.1016/j.ijpharm.2013.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/30/2013] [Accepted: 05/02/2013] [Indexed: 11/24/2022]
|
16
|
Klang V, Valenta C, Matsko NB. Electron microscopy of pharmaceutical systems. Micron 2013; 44:45-74. [DOI: 10.1016/j.micron.2012.07.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 11/27/2022]
|
17
|
|
18
|
|
19
|
Characterization of a nanoparticulate drug delivery system using scanning ion occlusion sensing. Pharm Res 2012; 29:2578-86. [PMID: 22638870 DOI: 10.1007/s11095-012-0788-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/15/2012] [Indexed: 12/29/2022]
Abstract
PURPOSE To explore the application of scanning ion occlusion sensing (SIOS) as a novel technology for characterization of nanoparticles. METHODS Liposomes were employed as model nanoparticles. The size distribution of the liposomes was measured by both SIOS and dynamic light scattering (DLS). Particle number concentration was determined based on particle translocation rate. The ability of SIOS and DLS to resolve bimodal samples was evaluated by measuring a mixture of 217 and 355 nm standard nanoparticles. Opsonization of liposomes by plasma was also studied using SIOS. RESULTS SIOS was shown to measure the size of different liposomes with higher sensitivity than DLS and it requires a smaller sample volume than DLS. With appropriate calibration, SIOS could be used to determine particle number concentrations. In comparison, SIOS analysis of the mixture showed accurate resolution of the population as a bimodal distribution over a wide range of number ratios of the particles. SIOS could detect plasma opsonization of liposomes by demonstrating a increase in particle size and also changes in the particle translocation rate. CONCLUSION SIOS is a useful technology for nanoparticle characterization. It shows some advantages over DLS and is clearly a useful tool for the study of nanoparticle drug delivery systems.
Collapse
|
20
|
Madani M, Sharifi-Sanjani N, Faridi-Majidi R. Magnetic polystyrene nanocapsules with core-shell morphology obtained by emulsifier-free miniemulsion polymerization. POLYMER SCIENCE SERIES A 2011. [DOI: 10.1134/s0965545x11020088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Ferreira SA, Coutinho PJG, Gama FM. Self-assembled nanogel made of mannan: synthesis and characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:11413-11420. [PMID: 20518563 DOI: 10.1021/la100903j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Amphiphilic mannan (mannan-C(16)) was synthesized by the Michael addition of hydrophobic 1-hexadecanethiol (C(16)) to hydroxyethyl methacrylated mannan (mannan-HEMA). Mannan-C(16) formed nanosized aggregates in water by self-assembly via the hydrophobic interaction among C(16) molecules as confirmed by hydrogen nuclear magnetic resonance ((1)H NMR), fluorescence spectroscopy, cryo-field emission scanning electron microscopy (cryo-FESEM), and dynamic light scattering (DLS). The mannan-C(16) critical aggregation concentration (cac), calculated by fluorescence spectroscopy with Nile red and pyrene, ranged between 0.04 and 0.02 mg/mL depending on the polymer degree of substitution of C(16) relative to methacrylated groups. Cryo-FESEM micrographs revealed that mannan-C(16) formed irregular spherical macromolecular micelles, in this work designated as nanogels, with diameters ranging between 100 and 500 nm. The influence of the polymer degree of substitution, DS(HEMA) and DS(C(16)), on the nanogel size and zeta potential was studied by DLS at different pH values and ionic strength and as a function of mannan-C(16) and urea concentrations. Under all tested conditions, the nanogel was negatively charged with a zeta potential close to zero. Mannan-C(16) with higher DS(HEMA) and DS(C(16)) values formed larger nanogels and were also less stable over a 6 month storage period and at concentrations close to the cac. When exposed to solutions of different pH and aggressive conditions of ionic strength and urea concentration, the size of mannan-C(16) varied to some extent but was always in the nanoscale range.
Collapse
Affiliation(s)
- Sílvia A Ferreira
- Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | | | | |
Collapse
|
22
|
Fanun M, Makharza S, Sowwan M. UV-Visible and AFM Studies of Nonionic Microemulsions. J DISPER SCI TECHNOL 2010. [DOI: 10.1080/01932690903213188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|