1
|
Yuan F, Xie Z, Li Z, Lian P, Wei C. Screening of reference genes for gene expression study in different tissues from the transcriptome data of the vector leafhopper Psammotettix striatus. Gene 2024; 927:148696. [PMID: 38878986 DOI: 10.1016/j.gene.2024.148696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/25/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Selecting appropriate reference genes is crucial for ensuring the accuracy and reliability of gene expression study using reverse transcription-quantitative PCR (RT-qPCR). To screen the optimal reference genes for analyzing gene expression in different tissues of the vector leafhopper Psammotettix striatus which causes extensive damage to a wide range of crops by vectoring multiple plant pathogenic microorganisms, the transcriptome data from Malpighian tubules (MTs) of P. striatus were mined. Twenty alternative candidate reference genes were initially selected for screening, among which seven genes with diverse Gene Ontology (GO) annotations were choosed as candidate reference genes, i.e., ribosomal protein L7A (RPL7A), ribosomal protein S28 (RPS28), ribosomal protein L22 (RPL22), ribosomal protein LP2 (RPLP2), H3 histone family 3A (H3F3A), elongation factor 1γ (EF-1γ), and elongation factor 1α (EF-1α). Gene expression levels in different tissues of P. striatus adults were examined using RT-qPCR, and their expression stability was analyzed using multiple reference gene screening software. This study revealed EF-1α as the most abundantly expressed gene, while RPL22 exhibited the lowest expression levels. EF-1α showed the most stable expression, whereas RPS28 showed the least stability. Various software tools confirmed EF-1α as the most stable single reference gene, and EF-1α and RPLP2 an optimal combination. This study provides a foundation for future investigation of the transmission of pathogenic microorganisms mediated by the vector leafhoppers, the function of the MTs, the biosynthesis of brochosomes, the coevolutionary processes and nutritional interactions of symbionts and host insects, and the gene expression study of other sap-sucking insects.
Collapse
Affiliation(s)
- Feimin Yuan
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhen Xie
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zi Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengcheng Lian
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Wu W, Lei JN, Mao Q, Tian YZ, Shan HW, Chen JP. Insights into Brochosome Distribution, Synthesis, and Novel Rapid-Release Mechanism in Maiestas dorsalis (Hemiptera: Cicadellidae). INSECTS 2023; 14:734. [PMID: 37754701 PMCID: PMC10531587 DOI: 10.3390/insects14090734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
The leafhopper family Cicadellidae, comprising over 22,000 species, exhibits a unique behavior of anointing their bodies with excretions containing brochosomes. Brochosomes are synthesized in the distal segment of the Malpighian tubules and serve various functions, including hydrophobic protection and defense against pathogens and predators. In this study, we investigated the distribution, synthesis, and release mechanisms of brochosomes in the rice pest leafhopper Maiestas dorsalis. Using SEM and TEM, we observed brochosomes' consistent coverage on the integument throughout the insect's life cycle. Moreover, we identified four distinct developmental stages of brochosome synthesis within the distal segment of the Malpighian tubules, originating from the Golgi region. Most importantly, our research revealed a novel and highly efficient release mechanism involving the fusion of brochosome-containing vesicles, leading to a rapid and substantial release of brochosomes into the tubule lumen after molting. These findings shed light on the intricate processes of brochosome synthesis and release in leafhoppers, offering valuable insights into their functional significance and ecological role in these fascinating insects.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | | | | | | | | | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Yuan F, Su M, Li T, Zhang Y, Dietrich CH, Webb MD, Wei C. Functional and evolutionary implications of protein and metal content of leafhopper brochosomes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103962. [PMID: 37178742 DOI: 10.1016/j.ibmb.2023.103962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Brochosomes derived from the specialized glandular segments of the Malpighian tubules (MTs) form superhydrophobic coatings for insects of Membracoidea, and have multiple hypothetical functions. However, the constituents, biosynthesis and evolutionary origin of brochosomes remain poorly understood. We investigated general chemical and physical characteristics of the integumental brochosomes (IBs) of the leafhopper Psammotettix striatus, determined the constituents of IBs, identified the unigenes involved in brochosomal protein synthesis, and investigated the potential associations among brochosomal protein synthesis, amino acid composition of food source, and the possible roles of endosymbionts in brochosome production. The results show that IBs are mainly composed of glycine- and tyrosine-rich proteins and some metal elements, which contain both essential and non-essential amino acids (EAAs and NEAAs) for insects, including EAAs deficient in the sole food source. All 12 unigenes involved in synthesizing the 12 brochosomal proteins (BPs) with high confidence are exclusively highly expressed in the glandular segment of MTs, confirming that brochosomes are synthesized by this segment. The synthesis of BPs is one of the key synapomorphies of Membracoidea but may be lost secondarily in a few lineages. The synthesis of BPs might be related to the symbiosis of leafhoppers/treehoppers with endosymbionts that provide these insects with EAAs, including those are deficient in the sole diet (i.e., plant sap) and could only be made available by the symbionts. We hypothesize that the functional modification of MTs have combined with the application of BPs enabling Membracoidea to colonize and adapt to novel ecological niches, and evolve to the dramatic diversification of this hemipteran group (in particular the family Cicadellidae). This study highlights the importance of evolutionary plasticity and multiple functions of MTs in driving the adaptations and evolution of sap-sucking insects of Hemiptera.
Collapse
Affiliation(s)
- Feimin Yuan
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Minjing Su
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tiantian Li
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, 61820, USA
| | - Michael D Webb
- Department of Science (Insects), The Natural History Museum, Cromwell Road, South Kensington, SW7 5BD, London, UK
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Yuan F, Wei C. Gene expression profiles in Malpighian tubules of the vector leafhopper Psammotettix striatus (L.) revealed regional functional diversity and heterogeneity. BMC Genomics 2022; 23:67. [PMID: 35057738 PMCID: PMC8781387 DOI: 10.1186/s12864-022-08300-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Many leafhoppers are known as pests and disease vectors of economically important plants. Previous studies of the physiological functions of vector leafhoppers have mainly focused on the salivary glands and the alimentary tract that are deemed to be associated with digestion, host defense and phytoplasma and/or virus transmission. By contrast, the significance of Malpighian tubules (MTs) is less studied. To clarify the physiological function of MTs of the vector leafhopper Psammotettix striatus that transmits phytoplasma triggering the wheat blue dwarf disease, we performed a transcriptome study on P. striatus MTs and compared gene expression profiles among different anatomical regions in the tubules (i.e., MT1+2, the anterior segment together with the sub-anterior segment; MT3, the inflated segment; and MT4, the distal segment). Results Transcriptome of P. striatus MTs generate a total of 42,815 high-quality unigenes, among which highly expressed unigenes are mainly involved in organic solute transport, detoxification and immunity in addition to osmoregulation. Region-specific comparative analyses reveal that all these MT regions have functions in osmoregulation, organic solute transport and detoxification, but each region targets different substrates. Differential expression and regional enrichment of immunity-related effector activities and molecules involved in phagocytosis and the biosynthesis of antimicrobial peptides among different regions indicate that MT1+2 and MT4 have the ability to eliminate the invading pathogens. However, in MT3 which secrets brochosomes to the integument and eggs as physical barriers, disulfide-isomerase, acidic ribosomal protein P and many other unigenes were highly expressed, which can be attractive candidate genes for future studies of the biosynthesis and the origin of brochosomes. Conclusions Psammotettix striatus MTs perform multiple physiological functions as versatile organs than just excretory organs with osmoregulatory function. Heterogeneity of physiological functions among different MT regions is related to organic solute transport, detoxification, immunity and brochosome biosynthesis in addition to osmoregulation, and each region targets different substrates. These functions may be helpful for P. striatus to resist pathogens from habitats and to utilize a wider range of host plants, which may assist the transmission and spread of phytoplasmas. The results provide potential molecular targets for the exploit of chemical and/or gene-silencing insecticides. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08300-6.
Collapse
|
5
|
Wang XQ, Guo JS, Li DT, Yu Y, Hagoort J, Moussian B, Zhang CX. Three-dimensional reconstruction of a whole insect reveals its phloem sap-sucking mechanism at nano-resolution. eLife 2021; 10:62875. [PMID: 33620311 PMCID: PMC8016479 DOI: 10.7554/elife.62875] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/22/2021] [Indexed: 01/04/2023] Open
Abstract
Using serial block-face scanning electron microscopy, we report on the internal 3D structures of the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) at nanometer resolution for the first time. Within the reconstructed organs and tissues, we found many novel and fascinating internal structures in the planthopper such as naturally occurring three four-way rings connecting adjacent spiracles to facilitate efficient gas exchange, and fungal endosymbionts in a single huge insect cell occupying 22% of the abdomen volume to enable the insect to live on plant sap. To understand the muscle and stylet movement during phloem sap-sucking, the cephalic skeleton and muscles were reconstructed in feeding nymphs. The results revealed an unexpected contraction of the protractors of the stylets and suggested a novel feeding model for the phloem sap-sucking. Since the 19th century, scientists have been investigating how the organs of insects are shaped and arranged. However, classic microscopy methods have struggled to image these small, delicate structures. Understanding how the organs of insects are configured could help to identify new methods for controlling pests, such as chemicals that target the mouthparts that some insects use to feed on plants. Most insects that feed on the sap of plants suck out the nutrient via their stylet bundle – a thin, straw-like structure surrounded by a sheath called the labium. As well as drying out the plant and damaging its tissues, the stylet bundle also allows the insect to transmit viruses that cause further harm. To investigate these mouthparts in more detail, Wang, Guo et al. used a method called SBF-SEM to determine the three-dimensional structure of one of the most destructive pests of rice crops, the brown planthopper. In this technique, a picture of the planthopper was taken every time a thin slice of its body was removed. This continuous slicing and re-imaging generated thousands of images that were compiled into a three-dimensional model of the brown planthopper’s whole body and internal organs. Previously unknown features emerged from the reconstruction, including a huge cell in the planthopper’s abdomen which is full of fungi that provide the nutrients absent in plants. Next, Wang, Guo et al. used this technique to see how the muscles in the labium and surrounding the stylet move by imaging planthoppers that were frozen at different stages of the feeding process. This revealed that when brown planthoppers bow their heads to eat, the labium compresses and pushes out the stylet, allowing it to pierce deeper into the plant. This is the first time that the body of such a small insect has been reconstructed three-dimensionally using SBF-SEM. Furthermore, these findings help explain how brown planthoppers and other sap-feeding insects insert their stylet and damage plants, potentially providing a stepping stone towards identifying new strategies to stop these pests from destroying millions of crops.
Collapse
Affiliation(s)
- Xin-Qiu Wang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Jian-Sheng Guo
- Department of Pathology of Sir Run Run Shaw Hospital, and Center of Cryo-Electron Microscopy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan-Ting Li
- Institute of Insect Science, Zhejiang University, Hangzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yang Yu
- Carl Zeiss (Shanghai) Co., Ltd.60 Meiyue Road, China (Shanghai) Pilot Free Trade Zone, Shanghai, China
| | - Jaco Hagoort
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Bernard Moussian
- Université Côte d'Azur, CNRS, Université Côte d'Azur, Institute of Biology Valrose, Parc Valrose, Inserm, France
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Gao P, Liao X, Wu G, Li L, Lan M, Hussain M, Chen B, Tang G, Xie Y, Gao X. Gross morphology and ultrastructure of the salivary glands of the stink bug predator Eocanthecona furcellata (Wolff). Microsc Res Tech 2020; 84:246-252. [PMID: 32893922 DOI: 10.1002/jemt.23581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 11/11/2022]
Abstract
Eocanthecona furcellata Wolff (Hemiptera: Pentatomidae) is a native generalist predator which attacks and kills its prey by first inserting its stylet into the prey's body and then injecting saliva into it. Here, we describe the histology and ultrastructure of its salivary glands. The study showed that the salivary glands were made up of pairs of principal and tubular accessory salivary glands. The principal salivary glands were bilobed and consisted of a smaller anterior lobe and a larger elongated posterior lobe. The ducts of the principal and accessory salivary glands were located in a narrow region between the anterior and posterior lobe known as the hilum. The principal salivary gland was lined with a single-layered epithelium. The cells cytoplasm was enriched with rough endoplasmic reticulum and secretory, and the nucleus showed a higher level of uncondensed chromatin. The basal region of the cell had plasma membrane infoldings. The cytoplasm of the accessory gland was rich in rough endoplasmic reticulum and many large cavities. The ducts of the principal salivary gland were made up of a single layer of flattened cells which had a thin cuticle lining the apical portion. Variation in the lumen content of the different lobes, which made up the principal gland suggested that their chemical products also varied. These results indicate that these two salivary glands produce the proteins found in the saliva.
Collapse
Affiliation(s)
- Ping Gao
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xianbin Liao
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Guoxing Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Lifang Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Mingxian Lan
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Mehboob Hussain
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Bin Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Guowen Tang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yonghui Xie
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming, China
| | - Xi Gao
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Han X, Wang H, Wu N, Liu W, Cao M, Wang X. Leafhopper Psammotettix alienus hosts chuviruses with different genomic structures. Virus Res 2020; 285:197992. [PMID: 32371097 DOI: 10.1016/j.virusres.2020.197992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 10/24/2022]
Abstract
The leafhopper Psammotettix alienus causes serious economic losses by directly sucking the plant sap and by transmitting plant viruses. Here, we obtained the full-genomic sequence of a novel chuvirus, Hancheng leafhopper mivirus (HCLeV), using RNA sequencing (RNA-seq) and rapid amplification of cDNA ends (RACE). The full genome of HCLeV comprises 9,852 nucleotides (nt) and includes two open reading frames (ORFs), which encode nucleocapsid and large polymerase protein, respectively. Its genomic features are similar to that of Tacheng tick virus 5, a member of chuviruses. However, HCLeV had only 36.6-44.4% identities in amino acid sequence for polymerase and 27.1-44.2% identities for nucleocapsid protein with chuviruses and other viruses in the order Mononegavirales and Jingchuvirales. Interestingly, we found this leafhopper can host two chuvirus species with different genomic structures. The discovery of this new virus potentially adds a new species to the family Chuviridae, and its new genomic structural form indicates broader genomic diversity among the chuviruses.
Collapse
Affiliation(s)
- Xue Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengji Cao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Dai L, Yang B, Wang J, Zhang Z, Yang R, Zhang T, Ren Z, Lin C. The Anatomy and Ultrastructure of the Digestive Tract and Salivary Glands of Hishimonus lamellatus (Hemiptera: Cicadellidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5527870. [PMID: 31268547 PMCID: PMC6607961 DOI: 10.1093/jisesa/iez061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Indexed: 05/13/2023]
Abstract
In recent years, we found that Hishimonus lamellatus Cai et Kuoh is a potential vector of jujube witches'-broom phytoplasma. However, little is known about the anatomy and histology of this leafhopper. Here, we examined histology and ultrastructure of the digestive system of H. lamellatus, both by dissecting and by semi- and ultrathin sectioning techniques. We found that the H. lamellatus digestive tract consists of an esophagus, a filter chamber, a conical midgut and midgut loop, Malpighian tubules, an ileum, and a rectum. Furthermore, both the basal region of the filter chamber epithelium and the apical surface of the midgut epithelium have developed microvilli. We also identify the perimicrovillar membrane, which ensheaths the microvilli of midgut loop enterocyte, and the flame-like luminal membrane, which covers the microvilli of the conical midgut epithelium. In addition, H. lamellatus has the principal and accessory salivary glands. Our observations also showed that the endoplasmic reticulum, mitochondria, and secretory granules were all highly abundant in the secretory cells of the principal salivary glands, while the accessory glands consist of only one ovate or elbow-like acinus. We also briefly contrast the structure of the gut of H. lamellatus with those of other leafhopper species. These results intend to offer help for the future study on the histological and subcellular levels of phytopathogen-leafhopper relationships, including transmission barriers and the binding sites of pathogens and other microorganisms within their leafhopper vectors.
Collapse
Affiliation(s)
- Lizhen Dai
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Baodong Yang
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jinzhong Wang
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Corresponding author, e-mail:
| | - Zhiyong Zhang
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Rui Yang
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Tieqiang Zhang
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Zhengguang Ren
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Caili Lin
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
9
|
Li K, Zhang JH, Yang YJ, Han W, Yin H. Morphology and fine organization of the midgut of Gampsocleis gratiosa (Orthoptera: Tettigoniidae). PLoS One 2018; 13:e0200405. [PMID: 29985965 PMCID: PMC6037380 DOI: 10.1371/journal.pone.0200405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/26/2018] [Indexed: 11/18/2022] Open
Abstract
The morphology and ultrastructure of the midgut of Gampsocleis gratiosa (Orthoptera: Tettigoniidae) was examined by light and electron microscopy. The midgut consists of two bulbous gastric caeca and a tubular ventriculus. The general organization of the gastric caeca is similar to that of the ventriculus. They are composed of a peritrophic membrane, an epithelium, a basal lamina and muscle layer from the inside to outside. Three types of cells were identified: regenerative, principal, and endocrine. Regenerative cells occur in groups (called nidi) at the base of principal cells. Principal cells grow from regenerative cells. Rare endocrine cells are scattered throughout the epithelium. Principal cells exhibit intense secretory activity, and regional differences in their ultrastructure were observed along the entire midgut. The microvilli are longer than those in any other region in the posterior region of the midgut. Lysosomes, multivesicular bodies (MVBs), autophagosomes, abundant Golgi apparatuses and lipid droplets primarily occur in the gastric caeca. Three pathways of secretion (merocrine, apocrine and holocrine) occur within the midgut epithelium, and a distinctive type of apocrine bleb was found in the gastric caeca. Therefore, these gastric caeca may be evolving toward a special type of gland.
Collapse
Affiliation(s)
- Ke Li
- College of Life Sciences, Shanxi Normal University, Linfen, Shanxi, China
- Modern College of Humanities and Sciences, Shanxi Normal University, Linfen, Shanxi, China
| | - Jin-Hui Zhang
- College of Life Sciences, Shanxi Normal University, Linfen, Shanxi, China
| | - Yu-Jing Yang
- College of Life Sciences, Shanxi Normal University, Linfen, Shanxi, China
| | - Wei Han
- Modern College of Humanities and Sciences, Shanxi Normal University, Linfen, Shanxi, China
| | - Huan Yin
- College of Life Sciences, Shanxi Normal University, Linfen, Shanxi, China
- * E-mail:
| |
Collapse
|
10
|
Abt I, Derlink M, Mabon R, Virant-Doberlet M, Jacquot E. Integrating multiple criteria for the characterization of Psammotettix populations in European cereal fields. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:185-202. [PMID: 28747234 DOI: 10.1017/s0007485317000669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The wheat dwarf disease is among the most damaging diseases in cereals. Its aetiological agent is the Wheat dwarf virus (WDV), which is exclusively transmitted from plant to plant by leafhoppers from the genus Psammotettix (Hemiptera, Cicadellidae). The parameters linked to the WDV/Psammotettix pathosystem are still poorly understood. We studied Psammotettix individuals collected in wheat and barley fields in France and, as a comparison, from grassland at agroecological interface in West Slovenia. Species identity of males and females has been determined using multiple criteria. In the first step, the characterization of the collected individuals included recordings of vibrational signals used in mating behaviour and morphometric analyses. In addition, a 442 nt sequence of the mitochondrial cytochrome oxydase I (COI) gene was obtained for some individuals and compared to COI sequences of the Psammotettix leafhoppers available in public databases. In the cereal fields in France, P sammotettix alienus was the most numerous species; however, it sometimes occurred together with Psammotettix confinis, while in the grasslands in Slovenia, the third syntopic species in Psammotettix community was Psammotettix helvolus. The temporal parameters of the P. alienus male calling song that were measured in this study were very similar to those measured in a previous study. The local biotic and/or abiotic parameters most likely influence the life history of Psammotettix leafhoppers, and the proportion of viruliferous individuals collected in cereal fields was 14.9%, while leafhoppers collected in Slovenia were virus-free. Taken together, results show that more detailed information on population structure of Psammotettix leafhoppers is crucial for providing an insight into the epidemiology of wheat dwarf disease.
Collapse
Affiliation(s)
- I Abt
- INRA-Cirad-SupAgro Montpellier,UMR 385 BGPI,Cirad TA A-54K,Campus international de Baillarguet,F-34398 Montpellier,France
| | - M Derlink
- Department of Organisms and Ecosystems Research,National Institute of Biology (NIB),Večna Pot 111,1000 Ljubljana,Slovenia
| | - R Mabon
- INRA-Cirad-SupAgro Montpellier,UMR 385 BGPI,Cirad TA A-54K,Campus international de Baillarguet,F-34398 Montpellier,France
| | - M Virant-Doberlet
- Department of Organisms and Ecosystems Research,National Institute of Biology (NIB),Večna Pot 111,1000 Ljubljana,Slovenia
| | - E Jacquot
- INRA-Cirad-SupAgro Montpellier,UMR 385 BGPI,Cirad TA A-54K,Campus international de Baillarguet,F-34398 Montpellier,France
| |
Collapse
|
11
|
Abstract
Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses.
Collapse
Affiliation(s)
- Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China;
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China;
| |
Collapse
|
12
|
Li Q, Zhong H, Zhang Y, Wei C. Comparative morphology of the distal segments of Malpighian tubules in cicadas and spittlebugs, with reference to their functions and evolutionary indications to Cicadomorpha (Hemiptera: Auchenorrhyncha). ZOOL ANZ 2015. [DOI: 10.1016/j.jcz.2015.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Zhong H, Zhang Y, Wei C. Morphology and ultrastructure of the Malpighian tubules in Kolla paulula (Hemiptera: Cicadellidae). ZOOL ANZ 2015. [DOI: 10.1016/j.jcz.2015.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Zhong H, Zhang Y, Wei C. Morphology and ultrastructure of the salivary glands of the spittlebug Lepyronia coleopterata (L.) (Hemiptera: Aphrophoridae). Zoolog Sci 2014; 31:213-22. [PMID: 24694223 DOI: 10.2108/zs130215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated the salivary glands in Lepyronia coleopterata (L.), and found that the salivary glands are paired structures and consist of principal and accessory glands. Each principal gland contains an anterior lobe and a posterior lobe. Three types of acini (I, II, III) are observed in the anterior lobe, whereas the posterior lobe contains only one type of acini (IV). Rhabdus emerges from the middle portion of the acini III and IV. The oval-shaped accessory gland connects with the principal gland via a long duct. The long duct consists of a slightly coiled basal segment and a highly convoluted distal segment, with the terminal end of the latter constricted and connected with the accessory gland. A slightly convoluted transparent tube connects with the accessory gland at the former's distal end. The accessory gland, accessory salivary duct and the accessory salivary tube are observed for the first time in spittlebugs. Ultrastructurally, each type of acinus is made up of one type of secretory cells, but the rhabdus comprises two types of cells. Secretory granules in different type of cells are different in size, shape and electron density, which indicate either different materials are synthesized or these materials undergo a process of maturation. The rhabdus is empty in structure and contains several channels, with the lumen filled with abundant fine granular materials. Fine dark granules existed in the periphery of some secretory granules are probably virus particles. Microorganisms are observed in the cells of the acini I, III and rhabdus.
Collapse
Affiliation(s)
- Haiying Zhong
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | |
Collapse
|
15
|
Salivary glands in Cicadidae (Hemiptera: Cicadoidea): comparative morphology, ultrastructure, and their phylogenetic significance. ZOOMORPHOLOGY 2013. [DOI: 10.1007/s00435-013-0197-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Gross morphology and ultrastructure of salivary glands of the mute cicada Karenia caelatata Distant (Hemiptera: Cicadoidea). Micron 2013; 45:83-91. [PMID: 23245811 DOI: 10.1016/j.micron.2012.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 11/24/2022]
Abstract
Salivary glands of the cicada Karenia caelatata Distant were investigated using light microscopy and transmission electron microscopy. The salivary glands are paired structures and consist of principal glands and accessory glands. The principal gland is subdivided into anterior lobe and posterior lobe; the former contains about 34-39 long digitate lobules, while the latter contains approximately 30-33 long digitate lobules and 13-22 short digitate lobules. These short digitate lobules, about one fifth or sixth as long as the long digitate lobules, locate at the base of the long digitate lobules of posterior lobe. All of these digitate lobules vary in size, disposition, length and shape. The anterior lobe and the posterior lobe are connected by an anterior-posterior duct. Two efferent salivary ducts, which connect with the posterior lobe, fuse to form a common duct. The accessory gland is composed of three parts: a greatly tortuous and folded accessory salivary tube, a circlet of gular gland constituting of several acini of the same size, and a non-collapsible accessory salivary duct. The digitate lobules and gular glands possess secretory cells containing abundant secretory granules vary in size, shape, and electron density, as might indicate different materials are synthesized in different secretory regions. The anterior-posterior duct lines with a player of cuticular lining, and cells beneath the cuticular lining lack of basal infoldings, as suggests the duct serves just to transport secretions. The accessory salivary duct is lined with cuticular lining; cells of the duct have well developed basal infoldings associated with abundant mitochondria, as probably suggests the duct is a reabsorptive region of ions. The cells of the accessory salivary tube possess deep basal infoldings and well developed apical dense microvilli, indicating the cells of the tube are secretory in function. Concentric lamellar structures and a peculiar structure with abundant membrane-bound vesicles and secretory granules are observed for the first time, but their derivation and function remain unclear. The morphology and ultrastructure differences observed in the principal glands and accessory gland of the salivary glands of K. caelatata indicate that the sheath saliva was secreted by the principal glands, and the watery saliva was secreted by the accessory salivary glands. Rod-shaped microorganisms are found in the salivary glands (i.e., accessory salivary duct, gular gland, and long digitate lobule of salivary glands) for the first time, and their identity, function, and relationship to microorganisms residing in the salivary glands and/or other parts of alimentary canal of other cicadas need to be investigated further.
Collapse
|