1
|
Chiku Y, Hirano T, Hoshiyama K, Iesato Y, Murata T. Assessment of Retinal Volume in Individuals Without Ocular Disorders Based on Wide-Field Swept-Source OCT. OPHTHALMOLOGY SCIENCE 2024; 4:100569. [PMID: 39253553 PMCID: PMC11381870 DOI: 10.1016/j.xops.2024.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 09/11/2024]
Abstract
Purpose To evaluate retinal volume (RV) in eyes without retinal disease using wide-field swept-source OCT (SS-OCT). Design Observational, cross-sectional design. Participants A total of 332 eyes of 166 healthy participants. Methods The eyes were imaged with OCT-S1 (Canon) using a protocol centered on the fovea cube scans (20 × 23 mm) of SS-OCT images. Retinal volume (6-mm circle, 6-20-mm ring) and various parameters were evaluated in a multivariate analysis using a generalized estimating equation model. Each quadrant of the macula except for the fovea (1-6 mm in diameter) and peripheral ring (6-20 mm in diameter) was also evaluated. Main Outcome Measures Retinal volume. Results In the multivariate analysis, older age and longer axial length were associated with smaller macular RV, whereas older age and left eye were associated with smaller peripheral RV. The temporal area was significantly smaller than all other areas in the macula (1-6 mm), whereas the inferior area was significantly smaller than all other areas in the peripheral retina (6-20 mm). Conclusions In wide-field SS-OCT images, age and left eye are negatively correlated with peripheral RV. The thinnest part of the retinal quadrant differs between the macular and peripheral retinas. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Yoshiaki Chiku
- Department of Ophthalmology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takao Hirano
- Department of Ophthalmology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Ken Hoshiyama
- Department of Ophthalmology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yasuhiro Iesato
- Department of Ophthalmology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Toshinori Murata
- Department of Ophthalmology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
2
|
Tang H, Luo N, Zhang X, Huang J, Yang Q, Lin H, Zhang X. Association between biological aging and diabetic retinopathy. Sci Rep 2024; 14:10123. [PMID: 38698194 PMCID: PMC11065862 DOI: 10.1038/s41598-024-60913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
The impact of aging on diabetic retinopathy (DR) remains underestimated. The current study aimed to investigate the association between biological aging and DR, in contrast to chronological age (CA). Using the National Health and Nutrition Survey data from 2005 to 2008. Biological aging was evaluated through the biological age (BA) and phenotypic age (PA), which were calculated from clinical markers. DR was identified in participants with diabetes mellitus (DM) when they exhibited one or more retinal microaneurysms or retinal blot hemorrhages under retinal imaging, with or without the presence of more severe lesions. Survey-weighted multivariable logistic regression was performed, and the regression model was further fitted using restricted cubic splines. The discriminatory capability and clinical utility of the model were evaluated using receiver operating characteristic (ROC) curves and decision curve analysis (DCA). Based on weighted analyses, of the 3100 participants included in this study, of which 162 had DR. In the adjusted model, BA (odds ratio [OR] = 1.12, 95% CI, 1.06-1.18) and PA (OR = 1.11, 95% CI, 1.07-1.14) were associated with DR, while CA was not significantly (OR = 1.01, 95% CI, 0.99-1.03). Narrowing the analysis to DM participants and adjusting for factors like insulin showed similar results. ROC and DCA analyses indicate that BA/PA predicted DR better than CA and offer greater clinical utility. The positive association between BA/PA and DR was consistent across subgroups despite potential interactions. Biological aging heightens DR risk, with BA/PA showing a stronger association than CA. Our findings underscored the importance of timely anti-aging interventions for preventing DR.
Collapse
Affiliation(s)
- Haoxian Tang
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Nan Luo
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Psychiatry, Shantou University Mental Health Center, Shantou, Guangdong, China
| | - Xuan Zhang
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jingtao Huang
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qinglong Yang
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Urology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hanyuan Lin
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Urology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xinyi Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
3
|
Oganov AC, Seddon I, Zein M, Yazdanpanah G, Fonoudi H, Jabbehdari S. Composition of the gut microbiome, role of diet, lifestyle, and antioxidant therapies in diabetes mellitus and diabetic retinopathy. Eur J Ophthalmol 2024; 34:367-383. [PMID: 37150930 DOI: 10.1177/11206721231174490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The gut microbiome is a complex ecosystem in the gastrointestinal tract composed of trillions of bacteria, viruses, fungi, and protozoa. Disruption of this delicate ecosystem, formally called "dysbiosis", has been linked to a variety of metabolic and inflammatory pathologies. Several studies have focused on abnormal microbiome composition and correlated these findings with the development of type 2 diabetes mellitus (T2DM) and diabetic retinopathy (DR). However, given the complexity of this ecosystem, the current studies are narrow in design and present variable findings. Composition of the gut microbiome in patients with DR significantly differs from patients with diabetes without retinopathy as well as from healthy controls. Additionally, the gut microbiome has been shown to modify effects of medication, diet, exercise, and antioxidant use on the development and progression of DR. In this paper, we present a comprehensive review of literature on the effect of oxidative stress, antioxidant therapies, and dysbiosis on DR.
Collapse
Affiliation(s)
- Anthony C Oganov
- Department of Ophthalmology, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Ian Seddon
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Mike Zein
- Department of Ophthalmology, Cook County Health, Chicago, IL, USA
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Hossein Fonoudi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Sayena Jabbehdari
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
4
|
Nag TC. Müller cell vulnerability in aging human retina: Implications on photoreceptor cell survival. Exp Eye Res 2023; 235:109645. [PMID: 37683797 DOI: 10.1016/j.exer.2023.109645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Müller glial cells (MC) support various metabolic functions of the retinal neurons, and maintain the homeostasis. Oxidative stress is intensified with aging, and in human retina, MC and photoreceptors undergo lipid peroxidation and protein nitration. Information on how MC respond to oxidative stress is vital to understand the fate of aging retinal neurons. This study examined age-related changes in MC of donor human retina (age: 35-98 years; N = 18 donors). Ultrastructural and immunohistochemical observations indicate that MC undergo gliosis and increased lipid peroxidation, and show osmotic changes with advanced aging (>80 years). Photoreceptor cells also undergo oxidative-nitrosative stress with aging, and their synapses also show clear osmotic swelling. MC respond to oxidative stress via proliferation of smooth endoplasmic reticulum in their processes, and increased expression of aquaporin-4 in endfeet and outer retina. In advanced aged retinas (81-98 years), they showed mitochondrial disorganisation, accumulation of lipids and autophagosomes, lipofuscin granules and axonal remnants in phagolysosomes in their inner processes, suggesting a reduced phagocytotic potential in them with aging. Glutamine synthetase expression does not alter until advanced aging, when the retinas show its increased expression in endfeet and Henle fiber layer. It is evident that MC are vulnerable with normal aging and this could be a reason for photoreceptor cell abnormalities reported with aging of the human retina.
Collapse
Affiliation(s)
- Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
5
|
Shrestha AP, Rameshkumar N, Boff JM, Rajmanna R, Chandrasegaran T, Frederick CE, Zenisek D, Vaithianathan T. The Effects of Aging on Rod Bipolar Cell Ribbon Synapses. Cells 2023; 12:2385. [PMID: 37830599 PMCID: PMC10572008 DOI: 10.3390/cells12192385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
The global health concern posed by age-related visual impairment highlights the need for further research focused on the visual changes that occur during the process of aging. To date, multiple sensory alterations related to aging have been identified, including morphological and functional changes in inner hair cochlear cells, photoreceptors, and retinal ganglion cells. While some age-related morphological changes are known to occur in rod bipolar cells in the retina, their effects on these cells and on their connection to other cells via ribbon synapses remain elusive. To investigate the effects of aging on rod bipolar cells and their ribbon synapses, we compared synaptic calcium currents, calcium dynamics, and exocytosis in zebrafish (Danio rerio) that were middle-aged (MA,18 months) or old-aged (OA, 36 months). The bipolar cell terminal in OA zebrafish exhibited a two-fold reduction in number of synaptic ribbons, an increased ribbon length, and a decrease in local Ca2+ signals at the tested ribbon location, with little change in the overall magnitude of the calcium current or exocytosis in response to brief pulses. Staining of the synaptic ribbons with antibodies specific for PKCa revealed shortening of the inner nuclear and plexiform layers (INL and IPL). These findings shed light on age-related changes in the retina that are related to synaptic ribbons and calcium signals.
Collapse
Affiliation(s)
- Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nirujan Rameshkumar
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johane M. Boff
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rhea Rajmanna
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Courtney E. Frederick
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA (D.Z.)
| | - David Zenisek
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA (D.Z.)
| | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
6
|
Goździewska E, Wichrowska M, Kocięcki J. Early Optical Coherence Tomography Biomarkers for Selected Retinal Diseases-A Review. Diagnostics (Basel) 2023; 13:2444. [PMID: 37510188 PMCID: PMC10378475 DOI: 10.3390/diagnostics13142444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Optical coherence tomography (OCT) is a non-invasive, easily accessible imaging technique that enables diagnosing several retinal diseases at various stages of development. This review discusses early OCT findings as non-invasive imaging biomarkers for predicting the future development of selected retinal diseases, with emphasis on age-related macular degeneration, macular telangiectasia, and drug-induced maculopathies. Practitioners, by being able to predict the development of many conditions and start treatment at the earliest stage, may thus achieve better treatment outcomes.
Collapse
Affiliation(s)
- Ewa Goździewska
- Department of Ophthalmology, Poznan University of Medical Sciences, 60-569 Poznań, Poland
| | - Małgorzata Wichrowska
- Department of Ophthalmology, Poznan University of Medical Sciences, 60-569 Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jarosław Kocięcki
- Department of Ophthalmology, Poznan University of Medical Sciences, 60-569 Poznań, Poland
| |
Collapse
|
7
|
Logvinov SV, Mustafina LR, Kurbatov BK, Naryzhnaya NV, Varakuta EY, Potapov AV. Effects of a high-fat, high-carbohydrate diet on the retina of young and old rats. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-98-104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aim. To study the effect of a high-fat, high-carbohydrate diet on retinal morphology of young and old rats in the experiment.Materials and methods. The study was carried out on male Wistar rats aged 60 and 450 days at the beginning of the experiment. The animals were divided into 4 groups: group 1 (n = 14) included intact rats aged 150 days at the end of the experiment; group 2 (n = 14) encompassed rats (60 days old) fed with a high-fat, high-carbohydrate diet (HFHCD) for 90 days; group 3 (n = 14) included intact rats (450 days old) receiving a standard diet for 90 days; group 4 (n = 14) included rats (450 days old) fed with HFHCD for 90 days. Immunoassay and histology were used in the work.Results. HFHCD resulted in an increase in glucose concentration in animals of both age groups. In old animals, it caused a pronounced increase in the content of insulin, TGFβ, and fibronectin in the blood serum, neovascularization of outer retinal layers, as well as karyopyknosis and death of neurosensory cells, leading to destruction of photoreceptors and drastic thinning of the outer nuclear and outer plexiform layers. In young rats fed with HFHCD, no pronounced histologic disorders of the retina were noted.Conclusion. HFHCD enhances age-related retinal changes in old (450-day-old) rats.
Collapse
Affiliation(s)
| | | | - B. K. Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
| | - N. V. Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
| | | | | |
Collapse
|
8
|
Bloch F, Dinot V, Goetz C, Zevering Y, Lhuillier L, Perone JM. Ability of routinely collected clinical factors to predict good visual results after primary Descemet membrane endothelial keratoplasty: a cohort study. BMC Ophthalmol 2022; 22:350. [PMID: 35999622 PMCID: PMC9400293 DOI: 10.1186/s12886-022-02574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 07/26/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND A comprehensive analysis of routinely collected pre/perioperative demographic/clinical factors that could predict final visual acuity after primary Descemet membrane endothelial keratoplasty (DMEK) has not been conducted previously. METHODS A retrospective monocenter cohort study was performed with consecutive patients with Fuchs endothelial corneal dystrophy (FECD) who underwent DMEK or triple-DMEK (DMEK combined with cataract surgery) in 2016-2020 in a French tertiary-care hospital. DMEK-only patients were pseudophakic. Patients were followed for 12 months. Surgery was considered successful when 12-month best-corrected visual acuity (BCVA) was ≤0.1 logMAR (≥0.8). Exploratory multivariate analysis was conducted with the following routinely collected variables to determine their ability to predict 12-month BCVA: patient age and sex; graft donor age; triple DMEK; preoperative values of BCVA, endothelial cell density (ECD), central corneal thickness (CCT), and mean anterior keratometry; and rebubbling. RESULTS Of 100 eyes (100 patients; mean age, 72 years; 61% female), 81 achieved a 12-month BCVA of ≤0.1 logMAR. Logistic regression analysis showed that older age was a significant prognosticator for 12-month BCVA > 0.1 logMAR (Odds Ratio = 0.914, 95% confidence intervals = 0.846-0.987; p = 0.02). CONCLUSIONS An older age associated with worse visual acuity outcomes after DMEK. This was confirmed by our analysis of the literature and supports the notion that DMEK should be conducted without delay once symptoms appear. Patient sex, donor age, triple-DMEK, and anterior keratometry also did not predict final BCVA in the literature. Preoperative CCT, ECD, and BCVA, and rebubbling occasionally appear in the literature as BCVA predictors, possibly reflecting an underlying ECD-BCVA axis.
Collapse
Affiliation(s)
- Florian Bloch
- Department of Ophthalmology, Metz-Thionville Regional Hospital Center, Mercy Hospital, 1 Allée du Château, CS 45001, 57085, Metz-Cedex 03, France
| | - Vincent Dinot
- Clinical Research Support Unit, Metz-Thionville Regional Hospital Center, Mercy Hospital, Metz, France
| | - Christophe Goetz
- Clinical Research Support Unit, Metz-Thionville Regional Hospital Center, Mercy Hospital, Metz, France
| | - Yinka Zevering
- Department of Ophthalmology, Metz-Thionville Regional Hospital Center, Mercy Hospital, 1 Allée du Château, CS 45001, 57085, Metz-Cedex 03, France
| | - Louis Lhuillier
- Department of Ophthalmology, Metz-Thionville Regional Hospital Center, Mercy Hospital, 1 Allée du Château, CS 45001, 57085, Metz-Cedex 03, France
| | - Jean-Marc Perone
- Department of Ophthalmology, Metz-Thionville Regional Hospital Center, Mercy Hospital, 1 Allée du Château, CS 45001, 57085, Metz-Cedex 03, France.
| |
Collapse
|
9
|
Zouache MA. Variability in Retinal Neuron Populations and Associated Variations in Mass Transport Systems of the Retina in Health and Aging. Front Aging Neurosci 2022; 14:778404. [PMID: 35283756 PMCID: PMC8914054 DOI: 10.3389/fnagi.2022.778404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is associated with a broad range of visual impairments that can have dramatic consequences on the quality of life of those impacted. These changes are driven by a complex series of alterations affecting interactions between multiple cellular and extracellular elements. The resilience of many of these interactions may be key to minimal loss of visual function in aging; yet many of them remain poorly understood. In this review, we focus on the relation between retinal neurons and their respective mass transport systems. These metabolite delivery systems include the retinal vasculature, which lies within the inner portion of the retina, and the choroidal vasculature located externally to the retinal tissue. A framework for investigation is proposed and applied to identify the structures and processes determining retinal mass transport at the cellular and tissue levels. Spatial variability in the structure of the retina and changes observed in aging are then harnessed to explore the relation between variations in neuron populations and those seen among retinal metabolite delivery systems. Existing data demonstrate that the relation between inner retinal neurons and their mass transport systems is different in nature from that observed between the outer retina and choroid. The most prominent structural changes observed across the eye and in aging are seen in Bruch's membrane, which forms a selective barrier to mass transfers at the interface between the choroidal vasculature and the outer retina.
Collapse
Affiliation(s)
- Moussa A. Zouache
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
10
|
De Rossi G, Da Vitoria Lobo ME, Greenwood J, Moss SE. LRG1 as a novel therapeutic target in eye disease. Eye (Lond) 2022; 36:328-340. [PMID: 34987199 PMCID: PMC8807626 DOI: 10.1038/s41433-021-01807-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023] Open
Abstract
Retinal and choroidal diseases are major causes of blindness and visual impairment in the developed world and on the rise due to an ageing population and diabetes epidemic. Standard of care is centred around blockade of vascular endothelial growth factor (VEGF), but despite having halved the number of patients losing sight, a high rate of patient non-response and loss of efficacy over time are key challenges. Dysregulation of vascular homoeostasis, coupled with fibrosis and inflammation, are major culprits driving sight-threatening eye diseases. Improving our knowledge of these pathological processes should inform the development of new drugs to address the current clinical challenges for patients. Leucine-rich α-2 glycoprotein 1 (LRG1) is an emerging key player in vascular dysfunction, inflammation and fibrosis. Under physiological conditions, LRG1 is constitutively expressed by the liver and granulocytes, but little is known about its normal biological function. In pathological scenarios, such as diabetic retinopathy (DR) and neovascular age-related macular degeneration (nvAMD), its expression is ectopically upregulated and it acquires a much better understood pathogenic role. Context-dependent modulation of the transforming growth-factor β (TGFβ) pathway is one of the main activities of LRG1, but additional roles have recently been emerging. This review aims to highlight the clinical and pre-clinical evidence for the pathogenic contribution of LRG1 to vascular retinopathies, as well as extrapolate from other diseases, functions which may be relevant to eye disease. Finally, we will provide a current update on the development of anti-LRG1 therapies for the treatment of nvAMD.
Collapse
Affiliation(s)
- Giulia De Rossi
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | | - John Greenwood
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| |
Collapse
|
11
|
Ptito M, Bleau M, Bouskila J. The Retina: A Window into the Brain. Cells 2021; 10:cells10123269. [PMID: 34943777 PMCID: PMC8699497 DOI: 10.3390/cells10123269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Maurice Ptito
- School of Optometry, University of Montreal, Montreal, QC H3T 1P1, Canada; (M.B.); (J.B.)
- Department of Neuroscience, Copenhagen University, 2200 Copenhagen, Denmark
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Correspondence:
| | - Maxime Bleau
- School of Optometry, University of Montreal, Montreal, QC H3T 1P1, Canada; (M.B.); (J.B.)
| | - Joseph Bouskila
- School of Optometry, University of Montreal, Montreal, QC H3T 1P1, Canada; (M.B.); (J.B.)
| |
Collapse
|
12
|
Nag TC, Gorla S, Kumari C, Roy TS. Aging of the human choriocapillaris: Evidence that early pericyte damage can trigger endothelial changes. Exp Eye Res 2021; 212:108771. [PMID: 34624336 DOI: 10.1016/j.exer.2021.108771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/15/2021] [Accepted: 09/17/2021] [Indexed: 01/25/2023]
Abstract
The choriocapillaris (CC), the capillary bed in the choroid, essentially nourishes the photoreceptor cells. Its damage in aging and age-related diseases significantly influences the survival of the photoreceptor cells. Earlier reports implicated endothelial loss in aged and diseased CC; however, age-related pericyte changes and their contribution in CC death remain unknown. We examined human donor eyes (age: 56-94 years; N = 24), and found that CC pericyte damage preceded endothelial changes. With aging (>70 years), the sub-macular choroid accumulated debris in Bruch's membrane (BM). Of the debris content, the long-spaced collagens had a tendency to settle over the capillary basal lamina (BL), and this often resulted in endothelial projection into capillary lumen. Between 75 and 83 years, pericytes contained dark mitochondria, and their processes facing the BM debris showed partial loss of BL and intermediate filaments (IFs), when the endothelium remained unaltered. The endothelial changes appeared beyond 83 years, the abundance of IFs and autophagy reinforced their survival until late aging. TUNEL+ pericytes, and immunoreactivity to carboxymethyl lysine and 4-hydroxy 2-nonenal, but no nitro-tyrosine, was detected in aged CC walls. Iba-1+ dystrophic microglia were present in the vicinity of the CC. Our data indicate that (1) BM debris exerts pressure on the CC, leading to the damage of the capillary BL and pericyte processes (2) loss of IFs results in early pericyte destabilization (3) capillary wall undergoes lipid peroxidative and glycative damage, and (4) pericyte damage leads to late endothelial changes and ultimately CC loss. Future research should explore the normal ways of pericyte maintenance in the aging nervous system.
Collapse
Affiliation(s)
- Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Shilpa Gorla
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Chiman Kumari
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
13
|
Campello L, Singh N, Advani J, Mondal AK, Corso-Díaz X, Swaroop A. Aging of the Retina: Molecular and Metabolic Turbulences and Potential Interventions. Annu Rev Vis Sci 2021; 7:633-664. [PMID: 34061570 PMCID: PMC11375453 DOI: 10.1146/annurev-vision-100419-114940] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multifaceted and divergent manifestations across tissues and cell types have curtailed advances in deciphering the cellular events that accompany advanced age and contribute to morbidities and mortalities. Increase in human lifespan during the past century has heightened awareness of the need to prevent age-associated frailty of neuronal and sensory systems to allow a healthy and productive life. In this review, we discuss molecular and physiological attributes of aging of the retina, with a goal of understanding age-related impairment of visual function. We highlight the epigenome-metabolism nexus and proteostasis as key contributors to retinal aging and discuss lifestyle changes as potential modulators of retinal function. Finally, we deliberate promising intervention strategies for promoting healthy aging of the retina for improved vision.
Collapse
Affiliation(s)
- Laura Campello
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Nivedita Singh
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Anupam K Mondal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Ximena Corso-Díaz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
14
|
Keilhoff G, Titze M, Ebmeyer U. Immuno-histological detection of resistant columnar units and vulnerable networks in the rat retina after asphyxia-induced transient cardiac arrest. Restor Neurol Neurosci 2021; 39:267-289. [PMID: 34334436 DOI: 10.3233/rnn-211174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Stroke-related loss of vision is one of the residual impairments, restricting the quality of life. However, studies of the ocular manifestations of asphyxia cardiac arrest/resuscitation (ACA/R) have reported very heterogeneous results. OBJECTIVE We aimed to evaluate the ACA/R-induced degeneration pattern of the different retinal cell populations in rats using different immuno-histological stainings. METHODS The staining pattern of toluidine blue and the ganglion cell markers β-III-tubulin and NeuN; the calcium-binding protein parvalbumin, indicating ganglion, amacrine, and horizontal cells; calretinin D28k, indicating ganglion and amacrine cells; calbindin, indicating horizontal cells; Chx 10, indicating cone bipolar cells; PKCα, indicating ON-type rod bipolar cells; arrestin, indicating cones; and rhodopsin, a marker of rods, as well as the glial cell markers GFAP (indicating astroglia and Müller cells) and IBA1 (indicating microglia), were evaluated after survival times of 7 and 21 days in an ACA/R rat model. Moreover, quantitative morphological analysis of the optic nerve was performed. The ACA/R specimens were compared with those from sham-operated and completely naïve rats. RESULTS ACA/R-induced effects were: (i) a significant reduction of retinal thickness after long-term survival; (ii) ganglion cell degeneration, including their fiber network in the inner plexiform layer; (iii) degeneration of amacrine and cone bipolar cells; (iv) degeneration of cone photoreceptors; (v) enhanced resistance to ACA/R by rod photoreceptors, ON-type rod bipolar and horizontal cells, possibly caused by the strong upregulation of the calcium-binding proteins calretinin, parvalbumin, and calbindin, counteracting the detrimental calcium overload; (vi) significant activation of Müller cells as further element of retinal anti-stress self-defense mechanisms; and (vii) morphological alterations of the optic nerve in form of deformed fibers. CONCLUSIONS Regardless of the many defects, the surviving neuronal structures seemed to be able to maintain retinal functionality, which can be additionally improved by regenerative processes true to the "use it or lose it" dogma.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| | - Maximilian Titze
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| | - Uwe Ebmeyer
- Department of Anesthesiology, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
15
|
Leley SP, Ciulla TA, Bhatwadekar AD. Diabetic Retinopathy in the Aging Population: A Perspective of Pathogenesis and Treatment. Clin Interv Aging 2021; 16:1367-1378. [PMID: 34290499 PMCID: PMC8289197 DOI: 10.2147/cia.s297494] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022] Open
Abstract
The elderly population in the United States is projected to almost double by the year 2050. In addition, the numbers of diabetics are rising, along with its most common complication, diabetic retinopathy (DR). To effectively treat DR within the elderly population, it is essential first to consider the retinal changes that occur due to aging, such as decreased blood flow, retinal thinning, and microglial changes, and understand that these changes can render the retina more vulnerable to oxidative and ischemic damage. Given these considerations, as well as the pathogenesis of DR, specific pathways could play a heightened role in DR progression in elderly patients, such as the polyol pathway and the vascular endothelial growth factor (VEGF) axis. Current ocular treatments include intravitreal corticosteroids, intravitreal anti-VEGF agents, laser photocoagulation and surgical interventions, in addition to better control of underlying diabetes with an expanding range of systemic treatments. While using therapeutics, it is also essential to consider how pharmacokinetics and pharmacodynamics change with aging; oral drug absorption can decrease, and ocular drug metabolism might affect the dosing and delivery methods. Also, elderly patients may more likely be nonadherent to their medication regimen or appointments than younger patients, and undertreatment with anti-VEGF drugs often leads to suboptimal outcomes. With a rising number of elderly DR patients, understanding how aging affects disease progression, pharmacological metabolism, and adherence are crucial to ensuring that this population receives adequate care.
Collapse
Affiliation(s)
- Sameer P Leley
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas A Ciulla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, USA
- Clearside Biomedical, Inc., Alpharetta, GA, USA
- Midwest Eye Institute, Indianapolis, IN, USA
| | - Ashay D Bhatwadekar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
16
|
Pathogenic mechanisms contributing to the vulnerability of aging human photoreceptor cells. Eye (Lond) 2021; 35:2917-2929. [PMID: 34079093 DOI: 10.1038/s41433-021-01602-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 01/04/2023] Open
Abstract
In human retina, photoreceptor cell death (PCD) is a slow but conspicuous event, which continues with aging. Rods die earlier than cones, the latter continue to alter in a subtle manner until advanced aging. This review summarizes the existing information on age-related changes in photoreceptor cells, especially cones and analyses the possible associated factors. Oxidative and nitrosative stress are involved in photoreceptor alterations, which may stem from light and iron toxicity and other sources. Lipid peroxidation in macular photoreceptor outer segments and mitochondrial aberrations are prominent in aging. It is important to understand how those changes ultimately trigger PCD. The redistribution of calbindin D-28K and long/middle-wavelength-sensitive opsin in the parafoveal and perifoveal cones, anomalies in their somata and axons are strong predictors of their increasing vulnerability with aging. Signs of reduced autophagy, with autophagosomes containing organelle remnants are seen in aging photoreceptor cells. Currently, mechanisms that lead to human PCD are unknown; some observations favour apoptosis as a pathway. Since cones appear to change slowly, there is an opportunity to reverse those changes before they die. Therefore, a full understanding of how cones alter and the molecular pathways they utilize for survival must be the future research goal. Recent approaches to prevent PCD in aging and diseases are highlighted.
Collapse
|
17
|
Histopathology of Age-Related Macular Degeneration and Implications for Pathogenesis and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33847998 DOI: 10.1007/978-3-030-66014-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Aging is associated with a number of histological changes in the choroid, Bruch's membrane, RPE, and neuroretina. Outside of the normal physiologic aging spectrum of changes, abnormal deposits such as basal laminar deposits, basal linear deposits, and soft drusen are known to be associated with AMD. Progression of AMD to advanced stages involving geographic atrophy, choroidal neovascularization, and/or disciform scars can result in debilitating vision loss. Knowledge of the angiogenic pathway and its components that stimulate neovascularization has led to the development of a new paradigm of intravitreal anti-VEGF pharmacotherapy in the management of neovascular AMD. Currently however, there are no available treatments for the modification of disease progression in non-neovascular AMD, or for the treatment of geographic atrophy. Further understanding of the histopathology of AMD and the molecular mechanisms that contribute to pathogenesis of the disease may reveal additional therapeutic targets.
Collapse
|
18
|
Hermenean A, Trotta MC, Gharbia S, Hermenean AG, Peteu VE, Balta C, Cotoraci C, Gesualdo C, Rossi S, Gherghiceanu M, D'Amico M. Changes in Retinal Structure and Ultrastructure in the Aged Mice Correlate With Differences in the Expression of Selected Retinal miRNAs. Front Pharmacol 2021; 11:593514. [PMID: 33519453 PMCID: PMC7838525 DOI: 10.3389/fphar.2020.593514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Age and gender are two important factors that may influence the function and structure of the retina and its susceptibility to retinal diseases. The aim of this study was to delineate the influence that biological sex and age exert on the retinal structural and ultrastructural changes in mice and to identify the age-related miRNA dysregulation profiles in the retina by gender. Experiments were undertaken on male and female Balb/c aged 24 months (approximately 75–85 years in humans) compared to the control (3 months). The retinas were analyzed by histology, transmission electron microscopy, and age-related miRNA expression profile analysis. Retinas of both sexes showed a steady decline in retinal thickness as follows: photoreceptor (PS) and outer layers (p < 0.01 for the aged male vs. control; p < 0.05 for the aged female vs. control); the inner retinal layers were significantly affected by the aging process in the males (p < 0.01) but not in the aged females. Electron microscopy revealed more abnormalities which involve the retinal pigment epithelium (RPE) and Bruch’s membrane, outer and inner layers, vascular changes, deposits of amorphous materials, and accumulation of lipids or lipofuscins. Age-related miRNAs, miR-27a-3p (p < 0.01), miR-27b-3p (p < 0.05), and miR-20a-5p (p < 0.05) were significantly up-regulated in aged male mice compared to the controls, whereas miR-20b-5p was significantly down-regulated in aged male (p < 0.05) and female mice (p < 0.05) compared to the respective controls. miR-27a-3p (5.00 fold; p < 0.01) and miR-27b (7.58 fold; p < 0.01) were significantly up-regulated in aged male mice vs. aged female mice, whereas miR-20b-5p (−2.10 fold; p < 0.05) was significantly down-regulated in aged male mice vs. aged female mice. Interestingly, miR-27a-3p, miR-27b-3p, miR-20a-5p, and miR-20b-5p expressions significantly correlated with the thickness of the retinal PS layer (p < 0.01), retinal outer layers (p < 0.01), and Bruch’s membrane (p < 0.01). Our results showed that biological sex can influence the structure and function of the retina upon aging, suggesting that this difference may be underlined by the dysregulation of age-related mi-RNAs.
Collapse
Affiliation(s)
- Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania.,Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Maria Consiglia Trotta
- Section of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sami Gharbia
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania.,Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | | | | | - Cornel Balta
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Coralia Cotoraci
- Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| | - Carlo Gesualdo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mihaela Gherghiceanu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Michele D'Amico
- Section of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
19
|
The Retinal Inner Plexiform Synaptic Layer Mirrors Grey Matter Thickness of Primary Visual Cortex with Increased Amyloid β Load in Early Alzheimer's Disease. Neural Plast 2020; 2020:8826087. [PMID: 33014034 PMCID: PMC7525303 DOI: 10.1155/2020/8826087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
The retina may serve as putative window into neuropathology of synaptic loss in Alzheimer's disease (AD). Here, we investigated synapse-rich layers versus layers composed by nuclei/cell bodies in an early stage of AD. In addition, we examined the associations between retinal changes and molecular and structural markers of cortical damage. We recruited 20 AD patients and 17 healthy controls (HC). Combining optical coherence tomography (OCT), magnetic resonance (MR), and positron emission tomography (PET) imaging, we measured retinal and primary visual cortex (V1) thicknesses, along with V1 amyloid β (Aβ) retention ([11C]-PiB PET tracer) and neuroinflammation ([11C]-PK11195 PET tracer). We found that V1 showed increased amyloid-binding potential, in the absence of neuroinflammation. Although thickness changes were still absent, we identified a positive association between the synapse-rich inner plexiform layer (IPL) and V1 in AD. This retinocortical interplay might reflect changes in synaptic function resulting from Aβ deposition, contributing to early visual loss.
Collapse
|
20
|
de Figueiredo CS, Raony Í, Giestal-de-Araujo E. SARS-CoV-2 Targeting the Retina: Host-virus Interaction and Possible Mechanisms of Viral Tropism. Ocul Immunol Inflamm 2020; 28:1301-1304. [PMID: 32946292 DOI: 10.1080/09273948.2020.1799037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background: Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 10 (SARS-CoV-2). Recent studies demonstrated not only retinal impairments but also detected SARS-CoV-2 in the retina of patients with COVID-19. Purpose: This letter discusses the retinal tropism of SARS-CoV-2, describing possible routes for this coronavirus to reach the retina and cellular mechanisms involved in the retinal cell infection. Conclusions: Determining how SARS-CoV-2 can affect the retinal tissue is essential for the development of new therapeutic strategies and preventive measures, as well as for understanding the possible relationship between COVID-19 damage to the retina and to the brain.
Collapse
Affiliation(s)
| | - Ícaro Raony
- Department of Neurobiology, Program of Neurosciences, Federal Fluminense University , Niterói, Brazil.,School of Medicine, Federal Fluminense University , Niterói, Brazil
| | - Elizabeth Giestal-de-Araujo
- Department of Neurobiology, Program of Neurosciences, Federal Fluminense University , Niterói, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation - INCT NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
22
|
Nag TC, Kathpalia P, Wadhwa S. Microtubule alterations may destabilize photoreceptor integrity: Age-related microtubule changes and pattern of expression of MAP-2, Tau and hyperphosphorylated Tau in aging human photoreceptor cells. Exp Eye Res 2020; 198:108153. [PMID: 32710889 DOI: 10.1016/j.exer.2020.108153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/15/2020] [Accepted: 07/15/2020] [Indexed: 11/28/2022]
Abstract
Photoreceptor cells undergo changes with aging. It is unknown if their microtubules are stable or not with aging. This study examined photoreceptor cell ultrastructure from 18 human donor retinas (32 eyes; age: 45-94 years) and quantified the photoreceptors with altered microtubules over six to ninth decades in four defined retinal regions. In addition, immunoreactivity (IR) to microtubule-associated protein-2 (MAP-2), tau and hyperphophorylated tau was performed in retinal sections from companion eyes. In young donor retinas below 75 years of age, microtubules appeared straight in photoreceptor inner segments and axons. With age, they appeared bent or misaligned in macular and mid-peripheral photoreceptors. In addition, dense granular materials were present in photoreceptor axons and synaptic terminals in advanced ages. In all decades, rod microtubules were affected more than their cone counterparts (28% vs 15%, p < 0.005). Both rods and cones were significantly affected in mid-peripheral retina (5-8 mm outside the macular border) in eighth decade, compared to other decades or retinal regions (parafoveal, perifoveal and nasal) examined (p < 0.005). IR showed a steady expression of MAP-2 in inner segments, and tau in inner segments to axons below 75 years of age, but was absent for both markers in scattered macular and mid-peripheral photoreceptors in advanced ages (>75 years). IR to hyperphosphorylated tau was present mainly in inner retina and increased with aging. Markers of oxidative stress, e.g., lipid peroxidation (4-hydroxy 2-nonenal) and nitrosative stress (nitrotyrosine) were immunopositive in aged photoreceptors. The sporadic loss of MAP-2 and tau-IR in photoreceptors may be due to microtubule changes; all these changes may affect intracellular transport and be partly responsible for photoreceptor death in aged human retina.
Collapse
Affiliation(s)
- Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| | - Poorti Kathpalia
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Shashi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
23
|
Abstract
OBJECTIVE Initiation of antihypertensive drug treatment in low-risk individuals with grade 1 hypertension is under debate. The aim of this study was to examine the impact of mildly elevated blood pressure (BP) on early neurodegenerative processes independent of ageing. METHODS Sixty-two individuals were included in this study: 25 young (aged <40 years) and 37 older (aged ≥40 years) individuals at low cardiovascular risk and grade 1 hypertension at most. Macular retinal layer volumes of both eyes were determined by SD-OCT. Total retinal volume but also each inner retinal layer volume separately including retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), and GCL-IPL were measured in each individual. RESULTS Retinal layer volumes were lower among older individuals compared with young individuals (RNFL right eye: P = 0.037/left eye: P = 0.021; GCL and GCL-IPL: both eyes P < 0.001; IPL right eye: P = 0.005/left eye: P = 0.002; total retinal volume: both eyes P = 0.002) and there was an inverse correlation between retinal layer volumes and age. Partial correlation analysis, excluding age as a cofactor, revealed an inverse association between retinal layer volumes and DBP. In multiple regression analysis, DBP was identified as a determinant of retinal neurodegenerative processes. CONCLUSION In the current study, we observed an inverse association between retinal neurodegenerative processes and DBP, suggesting that BP-lowering therapy by early antihypertensive drug-treatment might be beneficial to avoid early neurodegeneration.
Collapse
|
24
|
Nagai N, Minami S, Suzuki M, Shinoda H, Kurihara T, Sonobe H, Watanabe K, Uchida A, Ban N, Tsubota K, Ozawa Y. Macular Pigment Optical Density and Photoreceptor Outer Segment Length as Predisease Biomarkers for Age-Related Macular Degeneration. J Clin Med 2020; 9:jcm9051347. [PMID: 32380638 PMCID: PMC7290696 DOI: 10.3390/jcm9051347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 11/18/2022] Open
Abstract
To explore predisease biomarkers, which may help screen for the risk of age-related macular degeneration (AMD) at very early stages, macular pigment optical density (MPOD) and photoreceptor outer segment (PROS) length were analyzed. Thirty late AMD fellow eyes, which are at high risk and represent the predisease condition of AMD, were evaluated and compared with 30 age-matched control eyes without retinal diseases; there was no early AMD involvement in the AMD fellow eyes. MPOD was measured using MPS2® (M.E. Technica Co. Ltd., Tokyo, Japan), and PROS length was measured based on optical coherence tomography images. MPOD levels and PROS length in the AMD fellow eyes were significantly lower and shorter, respectively, than in control eyes. MPOD and PROS length were positively correlated in control eyes (R = 0.386; p = 0.035) but not in AMD fellow eyes. Twenty (67%) AMD fellow eyes met the criteria of MPOD < 0.65 and/or PROS length < 35 μm, while only five (17%) control eyes did. After adjusting for age and sex, AMD fellow eyes more frequently satisfied the definition (p < 0.001; 95% confidence interval, 3.50–60.4; odds ratio, 14.6). The combination of MPOD and PROS length may be a useful biomarker for screening predisease AMD patients, although further studies are required in this regard.
Collapse
Affiliation(s)
- Norihiro Nagai
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.S.)
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Sakiko Minami
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Misa Suzuki
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.S.)
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Hajime Shinoda
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Hideki Sonobe
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Kazuhiro Watanabe
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Atsuro Uchida
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Norimitsu Ban
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.S.)
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
- Department of Ophthalmology, St. Luke’s International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo 104-8560, Japan
- St. Luke’s International University, 9-1 Akashi-cho, Chuo-ku, Tokyo 104-8560, Japan
- Correspondence: or ; Tel.: +81-3-3353-1211
| |
Collapse
|
25
|
Gupta CL, Nag TC, Jha KA, Kathpalia P, Maurya M, Kumar P, Gupta S, Roy TS. Changes in the Inner Retinal Cells after Intense and Constant Light Exposure in Sprague-Dawley Rats. Photochem Photobiol 2020; 96:1061-1073. [PMID: 32112401 DOI: 10.1111/php.13244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Light insult causes photoreceptor death. Few studies reported that continuous exposure to light affects horizontal, Müller and ganglion cells. We aimed to see the effect of constant light exposure on bipolar and amacrine cells. Adult Sprague-Dawley rats were exposed to 300 or 3000 lux for 7 days in 12-h light: 12-h dark cycles (12L:12D). The latter group was then exposed to 24L:0D for 48 h to induce significant damage. The same animals were reverted to 300 lux and reared for 15 days in 12L:12D cycles. They were sacrificed on different days to find the degree of retinal recovery, if any, from light injury. Besides photoreceptor death, continuous light for 48 h resulted in downregulation of parvalbumin in amacrine cells and recoverin in cone bipolar cells (CBC). Rod bipolar cells (RBC) maintained an unaltered pattern of PKC-α expression. Upon reversal, there were increased expressions of parvalbumin in amacrine cells and recoverin in CBC, while RBC showed an increasing trend of PKC-α expression. The data show that damage in bipolar and amacrine cells after exposure to intense, continuous light can be ameliorated upon reversal to normal LD cycles to which the animals were initially acclimated to.
Collapse
Affiliation(s)
- Chandan L Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Kumar Abhiram Jha
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Poorti Kathpalia
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Meenakshi Maurya
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Sneha Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tara S Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
26
|
Jorge L, Canário N, Quental H, Bernardes R, Castelo-Branco M. Is the Retina a Mirror of the Aging Brain? Aging of Neural Retina Layers and Primary Visual Cortex Across the Lifespan. Front Aging Neurosci 2020; 11:360. [PMID: 31998115 PMCID: PMC6961569 DOI: 10.3389/fnagi.2019.00360] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/10/2019] [Indexed: 01/13/2023] Open
Abstract
How aging concomitantly modulates the structural integrity of the brain and retina in healthy individuals remains an outstanding question. Given the strong bottom-up retinocortical connectivity, it is important to study how these structures co-evolve during healthy aging in order to unravel mechanisms that may affect the physiological integrity of both structures. For the 56 participants in the study, primary visual cortex (BA17), as well as frontal, parietal and temporal regions thicknesses were measured in T1-weighted magnetic resonance imaging (MRI), and retinal macular thickness (10 neuroretinal layers) was measured by optical coherence tomography (OCT) imaging. We investigated the statistical association of these measures and their age dependence. We found an age-related decay of primary visual cortical thickness that was significantly correlated with a decrease in global and multiple layer retinal thicknesses. The atrophy of both structures might jointly account for the decline of various visual capacities that accompany the aging process. Furthermore, associations with other cortical regions suggest that retinal status may index cortical integrity in general.
Collapse
Affiliation(s)
- Lília Jorge
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Hugo Quental
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Rui Bernardes
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
27
|
Prokopiou E, Kolovos P, Georgiou C, Kalogerou M, Potamiti L, Sokratous K, Kyriacou K, Georgiou T. Omega-3 fatty acids supplementation protects the retina from age-associated degeneration in aged C57BL/6J mice. BMJ Open Ophthalmol 2019; 4:e000326. [PMID: 31799410 PMCID: PMC6861077 DOI: 10.1136/bmjophth-2019-000326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/28/2019] [Accepted: 09/22/2019] [Indexed: 11/03/2022] Open
Abstract
Objective To evaluate the therapeutic effects of omega-3 (ω3) fatty acids in the retina of aged mice when the blood arachidonic acid (AA)/eicosapentaenoic acid (EPA) ratio is maintained between 1.0 and 1.5. Methods and analysis Aged (24-month-old) wild-type C57BL/6J mice were allocated to two groups: ω3 treated and untreated. Treatment with ω3 was by daily gavage administration of EPA and docosahexaenoic acid for 60 days. Gas chromatography was used to identify and quantify fatty acids in the blood and retina. To count lipofuscin granules and measure the photoreceptor layer, eyecups were examined histologically using transmission electron microscopy and light microscopy. We also analysed eyecups using mass spectrometry-based proteomics. Results AA levels were lower, and EPA levels were higher, in the blood and retinas of the ω3-treated group than in the untreated group, resulting in a lower AA/EPA ratio. The ω3-treated group also showed significantly fewer lipofuscin granules and a thicker outer nuclear layer than the untreated group. Proteomic analysis revealed significantly greater expression of myelin basic protein, myelin regulatory factor-like protein, myelin proteolipid protein and glial fibrillar acidic protein in the ω3-treated group than in the untreated group. Three different pathways were significantly affected by ω3 treatment: fatty acid elongation, biosynthesis of unsaturated fatty acids and metabolic pathways. Conclusion Two months of ω3 supplementation (when the blood AA/EPA~1.0-1.5) in aged mice reduced lipofuscin granule formation in the retina and protected the photoreceptor layer, suggesting that ω3 supplementation slows normal age-related retinal degeneration.
Collapse
Affiliation(s)
- Ekatherine Prokopiou
- Ophthalmos Research and Educational Institute, Nicosia, Cyprus.,University of Nicosia Medical School, Nicosia, Cyprus
| | | | | | - Maria Kalogerou
- Ophthalmos Research and Educational Institute, Nicosia, Cyprus
| | - Louiza Potamiti
- Department of Electron Microscopy/Molecular Pathology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kleitos Sokratous
- Department of Electron Microscopy/Molecular Pathology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Bioinformatics Group, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Tassos Georgiou
- Ophthalmos Research and Educational Institute, Nicosia, Cyprus
| |
Collapse
|
28
|
Ben M’Barek K, Habeler W, Regent F, Monville C. Developing Cell-Based Therapies for RPE-Associated Degenerative Eye Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1186:55-97. [DOI: 10.1007/978-3-030-28471-8_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Kamal Abdellatif M, Abdelmaguid Mohamed Elzankalony Y, Abdelmonsef Abdelhamid Ebeid A, Mohamed Ebeid W. Outer Retinal Layers' Thickness Changes in relation to Age and Choroidal Thickness in Normal Eyes. J Ophthalmol 2019; 2019:1698967. [PMID: 31467690 PMCID: PMC6701356 DOI: 10.1155/2019/1698967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/22/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To identify and correlate age-related changes in outer retinal layers' thickness and choroidal thickness (CT) in the normal eyes using spectral-domain optical coherence tomography (SD-OCT) and to investigate factors affecting these changes. STUDY DESIGN Observational cross-sectional study. SUBJECTS AND METHODS We studied 125 healthy Egyptians between 20 and 79 years old. Patients were divided into 3 groups: group 1 (20-40 years), group 2 (40-60 years), and group 3 (>60 years). All patients had full ophthalmic examination. SD-OCT was done to measure the 9 ETDRS macular grid sectors of retinal pigment epithelium and photoreceptor outer segment (RPE-OS), outer nuclear layer and photoreceptor inner segment (ONL-IS), and choroidal thickness (CT) (by enhanced depth imaging). RESULTS RPE-OS was significantly thinner in group 3 than in the other 2 groups (central: P < 0.001). Moreover, the 3 groups were significantly different from each other regarding the CT (central: P < 0.001); significant thinning was noticed in the choroid with age. The 3 groups did not show significant difference concerning the ONL-IS thickness. RPE-OS and CT showed statistically significant negative correlation with age (central RPE-OS: r = -0 C.345, P < 0.001, and central CT: r = -0.725, P < 0.001) while ONL-IS showed statistically nonsignificant correlation with age (central ONL-IS: r = -0.08, P=0.376). Multiple regression analysis revealed that the most important determinant of central 1 mm RPE-OS thickness in this study was age (β = -0.087, P=0.010) rather than choroidal thinning (β = 0.001, P=0.879). CONCLUSION RPE-OS layer thickness shows significant thinning with increasing age, and with decrease in CT, however, age is the most determinant factor of this thinning.
Collapse
Affiliation(s)
- Mona Kamal Abdellatif
- Department of Ophthalmology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Weam Mohamed Ebeid
- Department of Ophthalmology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
30
|
Nag TC, Maurya M, Roy TS. Age-related changes of the human retinal vessels: Possible involvement of lipid peroxidation. Ann Anat 2019; 226:35-47. [PMID: 31330304 DOI: 10.1016/j.aanat.2019.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Aging of the human retina is accompanied by oxidative stress that exerts profound changes in the retinal neurons. It is unknown if oxidative stress influences the cellular components of the retinal vessels in some ways. METHODS We examined changes in retinal vessels in human donor eyes (age: 35-94 years; N=18) by light and transmission electron microscopy, TUNEL and immunohistochemistry for biomarkers of vascular smooth muscle cells (SMC; actin), oxidative stress (4-hydroxy 2-nonenal [HNE] and nitrotyrosine), microglia (Iba-1) and vessels (isolectin B4). RESULTS The earliest changes in the endothelium and pericytes of capillaries are apparent from the seventh decade. With aging, there is clear loss of organelles and cytoplasmic filaments, and a progressive thickening of the endothelial and pericyte basal lamina. Loss of filaments, accumulation of lipofuscin and autophagic vacuoles are significant events in aging pericytes and SMC. Actin immunolabelling reveals discontinuity in arterial SMC layers during eighth decade, indicating partial degeneration of SMC. This is followed by hyalinization, with degeneration of the endothelium and SMC in arteries and arterioles of the nerve fibre layer (NFL) and ganglion cell layer in ninth decade. Iba-1 positive microglia were in close contact with the damaged vessels in inner retina, and their cytoplasm was rich in lysosomes. HNE immunoreactivity, but not of nitrotyrosine, was detected in aged vessels from seventh decade onwards, suggesting that lipid peroxidation is a major problem of aged vessels. However, TUNEL positivity seen during this period was limited to few arteries and venules of NFL. CONCLUSION This study shows prominent age-related alterations of the pericytes and SMC of retinal vessels. These changes may limit the energy supply to the neurons and be responsible for age-related loss of neurons of the inner retina.
Collapse
Affiliation(s)
- Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Meenakshi Maurya
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
31
|
Zhang X, Zhu J, Chen X, Jie-Qiong Z, Li X, Luo L, Huang H, Liu W, Zhou X, Yan J, Lin S, Ye J. Interferon Regulatory Factor 3 Deficiency Induces Age-Related Alterations of the Retina in Young and Old Mice. Front Cell Neurosci 2019; 13:272. [PMID: 31281243 PMCID: PMC6596281 DOI: 10.3389/fncel.2019.00272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022] Open
Abstract
Age-related changes in visual function and retina structure are very common in aged animals, but the underlying mechanisms of these changes remain unclear. Here we report that the expression of interferon regulatory factor 3 (IRF3), a critical immune regulatory factor, is dramatically down-regulated in mouse retinas during aging. To address the role of IRF3 in the retina, we examined the structure and function of retinas in young (3–4 months) and old (22–24 months) Irf3-/- mice in comparison to age-matched wildtype (WT) mice. We found that IRF3 deletion resulted in impaired electroretinogram (ERG) responses and decreased retinal thickness in both young and old mice. In addition, numerous synapses of the outer plexiform layer (OPL) were found obviously extending into outer nuclear layer (ONL) in Irf3-/- mice, along with a reduction of the average synapse density in the OPL. These changes suggest that IRF3 deletion may accelerate retinal senescence. In support of this hypothesis, a number of classic senescence-associated markers were found in remarkably elevated level in Irf3-/- retina, including p53, p16INK4a, inositol-requiring enzyme 1α (IREα), p-H2A.X and promyelocytic leukemia protein (PML). Overall, our results indicate that maintenance normal IRF3 levels is necessary for retinal structure and function and suggest that IRF3 is an important regulator of retinal senescence.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Ophthalmology, Institute of Surgery Research, Army Medical Center of PLA (Daping Hospital), Army Medical University, Chongqing, China
| | - Jingyi Zhu
- Department of Ophthalmology, Institute of Surgery Research, Army Medical Center of PLA (Daping Hospital), Army Medical University, Chongqing, China
| | - Xianjun Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, China
| | - Zhang Jie-Qiong
- Department of Ophthalmology, Institute of Surgery Research, Army Medical Center of PLA (Daping Hospital), Army Medical University, Chongqing, China
| | - Xue Li
- Department of Ophthalmology, Institute of Surgery Research, Army Medical Center of PLA (Daping Hospital), Army Medical University, Chongqing, China
| | - Linlin Luo
- Department of Ophthalmology, Institute of Surgery Research, Army Medical Center of PLA (Daping Hospital), Army Medical University, Chongqing, China
| | - Huang Huang
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Wenyi Liu
- Department of Ophthalmology, Institute of Surgery Research, Army Medical Center of PLA (Daping Hospital), Army Medical University, Chongqing, China
| | - Xinyuan Zhou
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Jun Yan
- Department of Ophthalmology, Institute of Surgery Research, Army Medical Center of PLA (Daping Hospital), Army Medical University, Chongqing, China
| | - Sen Lin
- Department of Ophthalmology, Institute of Surgery Research, Army Medical Center of PLA (Daping Hospital), Army Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Institute of Surgery Research, Army Medical Center of PLA (Daping Hospital), Army Medical University, Chongqing, China
| |
Collapse
|
32
|
Eynard AR, Repossi G. Role of ω3 polyunsaturated fatty acids in diabetic retinopathy: a morphological and metabolically cross talk among blood retina barriers damage, autoimmunity and chronic inflammation. Lipids Health Dis 2019; 18:114. [PMID: 31092270 PMCID: PMC6521493 DOI: 10.1186/s12944-019-1049-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Vision disorders are one of the most serious complications of diabetes mellitus (DM) affecting the quality of life of patients and eventually cause blindness. The ocular lesions in diabetes mellitus are located mainly in the blood vessels and retina layers. Different retina lesions could be grouped under the umbrella term of diabetic retinopathies (DMRP). We propose that one of the main causes in the etiopathogenesis of the DMRP consists of a progressive loss of the selective permeability of blood retinal barriers (BRB). The loss of selective permeability of blood retinal barriers will cause a progressive autoimmune process. Prolonged autoimmune injures in the retinal territory will triggers and maintains a low-grade chronic inflammation process, microvascular alterations, glial proliferation and subsequent fibrosis and worse, progressive apoptosis of the photoreceptor neurons. Patients with long-standing DM disturbances in retinal BRBs suffer of alterations in the enzymatic pathways of polyunsaturated fatty acids (PUFAs), increase release of free radicals and pro-inflammatory molecules and subsequently incremented levels of vascular endothelial growth factor. These facts can produce retinal edema and photoreceptor apoptosis. Experimental, clinical and epidemiological evidences showing that adequate metabolic and alimentary controls and constant practices of healthy life may avoid, retard or make less severe the appearance of DMRP. Considering the high demand for PUFAs ω3 by photoreceptor complexes of the retina, it seems advisable to take fish oil supplements (2 g per day). The cellular, subcellular and molecular basis of the propositions exposed above is developed in this article. Synthesizer drawings the most relevant findings of the ultrastructural pathology, as well as the main metabolic pathways of the PUFAs involved in balance and disbalanced conditions are provided.
Collapse
Affiliation(s)
- Aldo R Eynard
- Instituto de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina.
| | - Gaston Repossi
- Instituto de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina.
| |
Collapse
|
33
|
Andrade Romo JS, Linderman RE, Pinhas A, Carroll J, Rosen RB, Chui TYP. Novel Development of Parafoveal Capillary Density Deviation Mapping using an Age-Group and Eccentricity Matched Normative OCT Angiography Database. Transl Vis Sci Technol 2019; 8:1. [PMID: 31106029 PMCID: PMC6496970 DOI: 10.1167/tvst.8.3.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/22/2019] [Indexed: 12/29/2022] Open
Abstract
PURPOSE We evaluate the impact of age and signal strength index (SSI) on foveal avascular zone (FAZ) metrics and parafoveal capillary density measured using optical coherence tomography angiography (OCT-A), and propose a deviation mapping approach that accounts for age-group, SSI, eccentricity, and variation in FAZ size. METHODS Parafoveal OCT-A with full vascular layer was obtained for 261 controls and four patients with retinal abnormalities. Parafoveal capillary densities were measured within eight consecutive 200-μm wide annuli from the FAZ border. In controls, the impacts of age and SSI on FAZ metrics and parafoveal capillary density were evaluated. Deviation maps highlighting regions with density at the lower and upper tails of the age-group and eccentricity matched distribution were generated. RESULTS Linear regressions showed significant correlations between age, SSI, and mean parafoveal capillary density. There was a significant difference in FAZ metrics and parafoveal capillary densities with different age groups after controlling for SSI using univariate analysis. However, the effect of age on parafoveal capillary density disappeared after controlling for SSI using multivariate linear regression analysis. Our deviation mapping approach was able to identify regions with abnormal density in four patients. CONCLUSIONS Our findings suggest that the relationship between parafoveal capillary density and age is confounded by SSI. Parafoveal capillary density is SSI- and eccentricity-dependent. An age-group and eccentricity matched normative database was used as the basis for a parafoveal capillary density deviation mapping technique, providing an intuitive way to assess the status of parafoveal capillary density in individual eyes. TRANSLATIONAL RELEVANCE Understanding the impact of age and SSI on parafoveal capillary density is critical for providing accurate interpretation of OCT-A. We demonstrate an age-group and eccentricity matched deviation mapping technique for an intuitive assessment of retinal regions with abnormal density.
Collapse
Affiliation(s)
| | - Rachel E. Linderman
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alexander Pinhas
- Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
- Ophthalmology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Joseph Carroll
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard B. Rosen
- Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Toco Y. P. Chui
- Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
34
|
Oh A, Foster ML, Williams JG, Zheng C, Ru H, Lunn KF, Mowat FM. Diagnostic utility of clinical and laboratory test parameters for differentiating between sudden acquired retinal degeneration syndrome and pituitary-dependent hyperadrenocorticism in dogs. Vet Ophthalmol 2019; 22:842-858. [PMID: 30864251 DOI: 10.1111/vop.12661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To identify discriminating factors, using clinical ophthalmic examination findings and routine laboratory testing, that differentiate dogs with early sudden acquired retinal degeneration (SARDS; vision loss <6 weeks' duration), age- and breed-matched control dogs, and dogs with pituitary-dependent hyperadrenocorticism (PDH). ANIMALS Client-owned dogs: 15 with SARDS with <6 weeks duration of vision loss, 14 age- and breed-matched control dogs, and 13 dogs with confirmed PDH. PROCEDURES Dogs underwent ophthalmic examination, electroretinography (ERG) fundus photography, and spectral-domain optical coherence tomography (SD-OCT) in addition to physical examination, urinalysis, serum biochemistry, complete blood count, and adrenocorticotrophic hormone (ACTH) stimulation testing. Statistical analysis was performed using receiver operating curve area under the curve analysis, principal component analysis with sparse partial least squares analysis, and one-way ANOVA. RESULTS Dogs with SARDS all had absent vision and ERG a- and b-waves. SD-OCT demonstrated that dogs with SARDS had significantly thicker inner retina, thinner outer nuclear layer, and thicker photoreceptor inner/outer segment measurements than either controls or dogs with PDH. Discriminating laboratory parameters between dogs with SARDS and PDH with high specificity included post-ACTH serum cortisol (<19.3 μg/dL), AST:ALT ratio (>0.343), and urine specific gravity (>1.030). CONCLUSIONS AND CLINICAL RELEVANCE We have identified significant discriminators between SARDS and PDH. This work provides the basis for future studies that could identify and examine dogs with SARDS prior to vision loss, which may extend the potential therapeutic window for SARDS.
Collapse
Affiliation(s)
- Annie Oh
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Melanie L Foster
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Jonathan G Williams
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Chaowen Zheng
- Department of Statistics, North Carolina State University, Raleigh, North Carolina
| | - Hongyu Ru
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Katharine F Lunn
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Freya M Mowat
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
35
|
Nag TC, Kathpalia P, Gorla S, Wadhwa S. Localization of nitro-tyrosine immunoreactivity in human retina. Ann Anat 2019; 223:8-18. [PMID: 30716468 DOI: 10.1016/j.aanat.2019.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/15/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022]
Abstract
Oxidative stress (OS) is associated with retinal aging and age-related macular degeneration (AMD). In both cases there are reports for the presence of markers of lipid peroxidation in retinal cells. We investigated if nitrosative stress also occurs in the human retina with aging. We examined the cellular localization of nitro-tyrosine, a biomarker of protein tyrosine nitration, in human donor retina (17-91 years; N = 15) by immunohistochemistry. Immunoreactivity (IR) to nitro-tyrosine was present in ten retinas and absent in five retinas. It was predominant in photoreceptor inner segments, cell bodies and axons. In six retinas, IR was present in abnormal, swollen axons of macular and peripheral cones. In the inner retina, weak immunoreactivity was detected in the outer and inner plexiform layer. Transmission electron microscopy revealed a variable degree of microtubule disorganization, abnormal outgrowth from the swollen macular axons (as the fibers of Henle) and few dead axons. The present study adds further evidence to the presence of aberrant photoreceptor axonal changes in the human retina and that nitro-tyrosine immunoreactivity is associated with the photoreceptor cells in select human retina.
Collapse
Affiliation(s)
- Tapas C Nag
- Department of Anatomy, Neurobiology Laboratory, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Poorti Kathpalia
- Department of Anatomy, Neurobiology Laboratory, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shilpa Gorla
- Department of Anatomy, Neurobiology Laboratory, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shashi Wadhwa
- Department of Anatomy, Neurobiology Laboratory, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
36
|
Tumahai P, Moureaux C, Meillat M, Debellemanière G, Flores M, Delbosc B, Saleh M. High-resolution imaging of photoreceptors in healthy human eyes using an adaptive optics retinal camera. Eye (Lond) 2018; 32:1723-1730. [PMID: 29993035 DOI: 10.1038/s41433-018-0140-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 01/21/2018] [Accepted: 02/19/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To determine the effects of age on perifoveal cone density in healthy subjects using adaptive optics. METHODS Healthy subjects of various ages were imaged using an adaptive optics retinal camera (RTX-1® Imagine Eyes, Orsay, France). All patients underwent a comprehensive ophthalmologic examination and retinal imaging using spectral-domain optical coherence tomography (Spectralis®, Heidelberg Engineering, Heidelberg, Germany). Cone density together with cone spacing and cone mosaic packing were measured in the nasal and temporal area 450 µm from the fovea. A multivariate analysis was performed to determine which of the following parameters were related to a decrease in cone density: age, axial length, central macular thickness, and retrofoveal choroidal thickness. RESULTS One hundred and sixty-seven eyes of 101 subjects aged 6-78 years were studied. Perifoveal cone density significantly decreased with age (R2 = 0.17, p<0.01). Inversely, cone spacing increased with age (R2=0.18, p<0.01). There was no change in the cone packing mosaic (p>0.05). The mean coefficient of variation between fellow eyes was 3.9%. Age and axial length were related to a cone density decrease, while choroidal and retinal thicknesses did not affect cone metrics in healthy subjects. CONCLUSIONS A moderate perifoveal cone loss occurs with age. The precise consequences of these findings on visual function should be investigated. In addition to a better understanding of normal retinal anatomy, these results could act as a comparative database for further studies on normal and diseased retinas.
Collapse
Affiliation(s)
- P Tumahai
- Ophthalmology Department, University Hospital of Besançon, Besançon, Franche-Comté, France.
| | - C Moureaux
- Ophthalmology Department, University Hospital of Besançon, Besançon, Franche-Comté, France
| | - M Meillat
- Ophthalmology Department, University Hospital of Besançon, Besançon, Franche-Comté, France
| | - G Debellemanière
- Ophthalmology Department, University Hospital of Besançon, Besançon, Franche-Comté, France
| | - M Flores
- Ophthalmology Department, University Hospital of Besançon, Besançon, Franche-Comté, France
| | - B Delbosc
- Ophthalmology Department, University Hospital of Besançon, Besançon, Franche-Comté, France
| | - M Saleh
- Ophthalmology Department, University Hospital of Besançon, Besançon, Franche-Comté, France
| |
Collapse
|
37
|
Gupta RK, Kaur I, Nag TC, Chhablani J. Diagnostic Electron Microscopy of Retina. Semin Ophthalmol 2018; 33:700-710. [PMID: 29388866 DOI: 10.1080/08820538.2017.1416415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The electron microscopy techniques were used in various fields as an analytical technique under in vitro conditions, which provides the sufficient resolution for better visualization and interpretation. This review gives a brief overview of the analytical application of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques and critical findings in different retinal pathologies. This review article aims to improvise understanding of retinal microstructures for clinicians which will help to improve the interpretation of the current advanced imaging techniques.
Collapse
Affiliation(s)
- Rishikesh Kumar Gupta
- a Kallam Anji Reddy Molecular Genetics Laboratory, Brien Holden Eye Research Centre , L V Prasad Eye Institute (KAR Campus) , Hyderabad , Telangana , India
| | - Inderjeet Kaur
- a Kallam Anji Reddy Molecular Genetics Laboratory, Brien Holden Eye Research Centre , L V Prasad Eye Institute (KAR Campus) , Hyderabad , Telangana , India
| | - Tapas C Nag
- c All India Institute of Medical Sciences , Department of Anatomy , New Delhi , India
| | - Jay Chhablani
- b Smt. Kanuri Santhamma Centre for Vitreo-Retinal Diseases , L V Prasad Eye Institute (KAR Campus) , Hyderabad , Telangana , India
| |
Collapse
|
38
|
Nag TC, Kumar P, Wadhwa S. Age related distribution of 4-hydroxy 2-nonenal immunoreactivity in human retina. Exp Eye Res 2017; 165:125-135. [PMID: 28986146 DOI: 10.1016/j.exer.2017.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/26/2017] [Accepted: 09/28/2017] [Indexed: 12/21/2022]
Abstract
The retina is prone to be damaged by oxidative stress (OS), owing to its constant exposure to light, high rate of oxygen consumption and high membrane lipid content. Lipid peroxidation in aging human retina has been shown by biochemical means. However, information on the cellular sites of OS and antioxidant responses in aging human retina remains limited. Here, we show distribution of immunoreactivity (IR) to a marker of lipid peroxidation (4-hydroxy 2-nonenal [HNE] and antioxidant enzymes involved in counteracting lipid peroxidation (glutathione S-transferase-π1 and glutarexoxin-1) in donor human retinas at different ages (35-91 years; N = 24). Initially, HNE-IR was present in few macular cone outer segments (COS, sixth decade). With aging, IR appeared in many COS and peaked at ninth decade (14 vs 62 per 3850 μm2 area between 6 and 9 decade; p < 0.001) in the parafovea then seen elsewhere (perifoveal, mid-peripheral and nasal). IR was seen in the parafovea of all retinas, whereas it was present in 8/24 of perifoveal and 6/24 of mid-peripheral retinas, indicating that the parafovea is susceptible to undergo lipid peroxidation. Foveolar COS were immunonegative until 81 years, which developed IR later (>83 years). IR to glutathione S-transferase-π1 was moderate until eight decade and then showed a decrease in photoreceptor cells between ninth and tenth decade, while glutaredoxin-1 maintained a steady expression with aging. Damaged COS were present in aged retinas, and inner segments and photoreceptor nuclei also showed some degree of alterations. Although there was increased lipid peroxidation with aging, cone death was minimal in those retinas. The two antioxidant enzymes studied here, may play a role in protecting photoreceptors against OS with advanced aging.
Collapse
Affiliation(s)
- Tapas C Nag
- Department of Anatomy, Neurobiology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Pankaj Kumar
- Department of Anatomy, Neurobiology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Shashi Wadhwa
- Department of Anatomy, Neurobiology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
39
|
Prokopiou E, Kolovos P, Kalogerou M, Neokleous A, Papagregoriou G, Deltas C, Malas S, Georgiou T. Therapeutic potential of omega-3 fatty acids supplementation in a mouse model of dry macular degeneration. BMJ Open Ophthalmol 2017; 1:e000056. [PMID: 29354704 PMCID: PMC5721630 DOI: 10.1136/bmjophth-2016-000056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/13/2017] [Accepted: 05/07/2017] [Indexed: 01/27/2023] Open
Abstract
Purpose To evaluate the therapeutic effects of omega-3 (ω-3) and omega-6 (ω-6) fatty acids in the CCL2-/- model of dry age-related macular degeneration (AMD). The blood level of eicosapentaenoic acid (EPA) and arachidonic acid (AA) served to adjust the treatment dosage (AA/EPA=1-1.5). Methods Nine-month-old animals were allocated to different groups: (A) C57BL/6 untreated , (B) CCL2-/- untreated, (C) CCL2-/- treated with ω-3+ω-6, and (D) CCL2-/- treated with ω-3. Treatment was daily administered by gavage for 3 months. Fatty acids analysis was performed and retinas were histologically examined. Three-month-old wild type mice were used for comparison purposes. Real-time PCR and Western blot were performed for retinal inflammatory mediators. Results Increased EPA and decreased AA levels were observed in both blood and retinas in the treatment groups. The outer nuclear layer thickness was increased in groups C (90.0±7.8 μm) and D (125.6±9.8 μm) [corrected] compared with groups B (65.6±3.0 μm) and A (71.1±4.2 μm), and in young mice, it was 98.0±3.9 μm. A decrease in NF-κB expression was noted in the treatment groups. Interleukin (IL) 18 protein levels demonstrated a significant reduction in the ω-3-treated group only. Conclusion Supplementation with ω-3+ω-6 or ω-3 alone (AA/EPA=1-1.5) suggests a protective mechanism in the CCL2-/- animal model of dry AMD, with a more beneficial effect when ω-3 are used alone. Our findings indicated that inflammation is not the only determining factor; perhaps a regenerative process might be involved following administration of ω-3 fatty acids.
Collapse
Affiliation(s)
| | | | - Maria Kalogerou
- Ophthalmos Research and Educational Institute, Nicosia, Cyprus
| | | | - Gregory Papagregoriou
- Department of Biological Sciences, Molecular Medicine Research Centre and Laboratory of Molecular and Medical Genetics, University of Cyprus, Nicosia, Cyprus
| | - Constantinos Deltas
- Department of Biological Sciences, Molecular Medicine Research Centre and Laboratory of Molecular and Medical Genetics, University of Cyprus, Nicosia, Cyprus
| | - Stavros Malas
- Developmental and Functional Genetics Group, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Tassos Georgiou
- Ophthalmos Research and Educational Institute, Nicosia, Cyprus
| |
Collapse
|
40
|
Osada H, Okamoto T, Kawashima H, Toda E, Miyake S, Nagai N, Kobayashi S, Tsubota K, Ozawa Y. Neuroprotective effect of bilberry extract in a murine model of photo-stressed retina. PLoS One 2017; 12:e0178627. [PMID: 28570634 PMCID: PMC5453571 DOI: 10.1371/journal.pone.0178627] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/16/2017] [Indexed: 12/03/2022] Open
Abstract
Excessive exposure to light promotes degenerative and blinding retinal diseases such as age-related macular degeneration and retinitis pigmentosa. However, the underlying mechanisms of photo-induced retinal degeneration are not fully understood, and a generalizable preventive intervention has not been proposed. Bilberry extract is an antioxidant-rich supplement that ameliorates ocular symptoms. However, its effects on photo-stressed retinas have not been clarified. In this study, we examined the neuroprotective effects of bilberry extract against photo-stress in murine retinas. Light-induced visual function impairment recorded by scotopic and phototopic electroretinograms showing respective rod and cone photoreceptor function was attenuated by oral administration of bilberry extract through a stomach tube in Balb/c mice (750 mg/kg body weight). Bilberry extract also suppressed photo-induced apoptosis in the photoreceptor cell layer and shortening of the outer segments of rod and cone photoreceptors. Levels of photo-induced reactive oxygen species (ROS), oxidative and endoplasmic reticulum (ER) stress markers, as measured by real-time reverse transcriptase polymerase chain reaction, were reduced by bilberry extract treatment. Reduction of ROS by N-acetyl-L-cysteine, a well-known antioxidant also suppressed ER stress. Immunohistochemical analysis of activating transcription factor 4 expression showed the presence of ER stress in the retina, and at least in part, in Müller glial cells. The photo-induced disruption of tight junctions in the retinal pigment epithelium was also attenuated by bilberry extract, repressing an oxidative stress marker, although ER stress markers were not repressed. Our results suggest that bilberry extract attenuates photo-induced apoptosis and visual dysfunction most likely, and at least in part, through ROS reduction, and subsequent ER stress attenuation in the retina. This study can help understand the mechanisms of photo-stress and contribute to developing a new, potentially useful therapeutic approach using bilberry extract for preventing retinal photo-damage.
Collapse
Affiliation(s)
- Hideto Osada
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiro Okamoto
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hirohiko Kawashima
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Eriko Toda
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Miyake
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Wakasa Seikatsu Co., Ltd., Kyoto, Japan
| | - Norihiro Nagai
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | | | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
41
|
Cehofski LJ, Honoré B, Vorum H. A Review: Proteomics in Retinal Artery Occlusion, Retinal Vein Occlusion, Diabetic Retinopathy and Acquired Macular Disorders. Int J Mol Sci 2017; 18:ijms18050907. [PMID: 28452939 PMCID: PMC5454820 DOI: 10.3390/ijms18050907] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/08/2017] [Accepted: 04/05/2017] [Indexed: 01/26/2023] Open
Abstract
Retinal artery occlusion (RAO), retinal vein occlusion (RVO), diabetic retinopathy (DR) and age-related macular degeneration (AMD) are frequent ocular diseases with potentially sight-threatening outcomes. In the present review we discuss major findings of proteomic studies of RAO, RVO, DR and AMD, including an overview of ocular proteome changes associated with anti-vascular endothelial growth factor (VEGF) treatments. Despite the severe outcomes of RAO, the proteome of the disease remains largely unstudied. There is also limited knowledge about the proteome of RVO, but proteomic studies suggest that RVO is associated with remodeling of the extracellular matrix and adhesion processes. Proteomic studies of DR have resulted in the identification of potential therapeutic targets such as carbonic anhydrase-I. Proliferative diabetic retinopathy is the most intensively studied stage of DR. Proteomic studies have established VEGF, pigment epithelium-derived factor (PEDF) and complement components as key factors associated with AMD. The aim of this review is to highlight the major milestones in proteomics in RAO, RVO, DR and AMD. Through large-scale protein analyses, proteomics is bringing new important insights into these complex pathological conditions.
Collapse
Affiliation(s)
- Lasse Jørgensen Cehofski
- Department of Ophthalmology, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9000 Aalborg, Denmark.
| | - Bent Honoré
- Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9000 Aalborg, Denmark.
- Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Building 1182, 024, 8000 Aarhus C, Denmark.
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9000 Aalborg, Denmark.
| |
Collapse
|
42
|
Jha KA, Nag TC, Wadhwa S, Roy TS. Expressions of visual pigments and synaptic proteins in neonatal chick retina exposed to light of variable photoperiods. J Biosci 2016; 41:667-676. [PMID: 27966487 DOI: 10.1007/s12038-016-9637-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Light causes damage to the retina, which is one of the supposed factors for age-related macular degeneration in human. Some animal species show drastic retinal changes when exposed to intense light (e.g. albino rats). Although birds have a pigmented retina, few reports indicated its susceptibility to light damage. To know how light influences a cone-dominated retina (as is the case with human), we examined the effects of moderate light intensity on the retina of white Leghorn chicks (Gallus g. domesticus). The newly hatched chicks were initially acclimatized at 500 lux for 7 days in 12 h light: 12 h dark cycles (12L:12D). From posthatch day (PH) 8 until PH 30, they were exposed to 2000 lux at 12L:12D, 18L:6D (prolonged light) and 24L:0D (constant light) conditions. The retinas were processed for transmission electron microscopy and the level of expressions of rhodopsin, S- and L/M cone opsins, and synaptic proteins (Synaptophysin and PSD-95) were determined by immunohistochemistry and Western blotting. Rearing in 24L:0D condition caused disorganization of photoreceptor outer segments. Consequently, there were significantly decreased expressions of opsins and synaptic proteins, compared to those seen in 12L:12D and 18L:6D conditions. Also, there were ultrastructural changes in outer and inner plexiform layer (OPL, IPL) of the retinas exposed to 24L:0D condition. Our data indicate that the cone-dominated chick retina is affected in constant light condition, with changes (decreased) in opsin levels. Also, photoreceptor alterations lead to an overall decrease in synaptic protein expressions in OPL and IPL and death of degenerated axonal processes in IPL.
Collapse
Affiliation(s)
- Kumar Abhiram Jha
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | | | |
Collapse
|
43
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. The Diversity of Spine Synapses in Animals. Neuromolecular Med 2016; 18:497-539. [PMID: 27230661 PMCID: PMC5158183 DOI: 10.1007/s12017-016-8405-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/11/2016] [Indexed: 12/23/2022]
Abstract
Here we examine the structure of the various types of spine synapses throughout the animal kingdom. Based on available evidence, we suggest that there are two major categories of spine synapses: invaginating and non-invaginating, with distributions that vary among different groups of animals. In the simplest living animals with definitive nerve cells and synapses, the cnidarians and ctenophores, most chemical synapses do not form spine synapses. But some cnidarians have invaginating spine synapses, especially in photoreceptor terminals of motile cnidarians with highly complex visual organs, and also in some mainly sessile cnidarians with rapid prey capture reflexes. This association of invaginating spine synapses with complex sensory inputs is retained in the evolution of higher animals in photoreceptor terminals and some mechanoreceptor synapses. In contrast to invaginating spine synapse, non-invaginating spine synapses have been described only in animals with bilateral symmetry, heads and brains, associated with greater complexity in neural connections. This is apparent already in the simplest bilaterians, the flatworms, which can have well-developed non-invaginating spine synapses in some cases. Non-invaginating spine synapses diversify in higher animal groups. We also discuss the functional advantages of having synapses on spines and more specifically, on invaginating spines. And finally we discuss pathologies associated with spine synapses, concentrating on those systems and diseases where invaginating spine synapses are involved.
Collapse
Affiliation(s)
- Ronald S Petralia
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA.
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| |
Collapse
|
44
|
Abstract
The aim of the study was to evaluate the effect of sex and age on the thickness of the retinal layer in normal eyes using spectral-domain optical coherence tomography (SD-OCT).Fifty healthy subjects between the ages of 20 and 80 had their retinal layers measured using SD-OCT at Seoul St. Mary's Hospital. Mean thickness and volume were measured for 9 retinal layers in the fovea, the pericentral ring, and the peripheral ring. The differences of sex- and age-related thickness and volume in each retinal layer were analyzed.The retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), and outer plexiform layer (OPL) were thinnest in the fovea area, whereas the outer nuclear layer (ONL), photoreceptor layer (PHL), and retinal pigment epithelium (RPE) were thickest at similar locations. Mean thickness of the RNFL, GCL, IPL, and OPL was significantly greater in men than women. However, mean thickness of the ONL was greater in women than in men. When compared between patients < 30 years and > 60 years of age, the thickness and volume of peripheral RNFL, GCL, and pericentral and peripheral IPL were significantly larger in the younger group than the older group. Conversely, the thickness and volume of foveal INL and IR were larger in the older group than in the younger group.The thickness and volume of the retinal layer in normal eyes significantly vary depending on age and sex. These results should be considered when evaluating layer analysis in retinal disease.
Collapse
|
45
|
Immunolocalisation pattern of complex I-V in ageing human retina: Correlation with mitochondrial ultrastructure. Mitochondrion 2016; 31:20-32. [PMID: 27581213 DOI: 10.1016/j.mito.2016.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 11/22/2022]
Abstract
Earlier studies reported accumulation of mitochondrial DNA mutations in ageing and age-related macular degeneration. To know about the mitochondrial status with age, we examined immunoreactivity (IR) to markers of mitochondria (anti-mitochondrial antibody and voltage-dependent anion channel-1) and complex I-V (that mediate oxidative phosphorylation, OXPHOS) in donor human retinas (age: 19-94years; N=26; right eyes). In all samples, at all ages, IR to anti-mitochondrial antibody and voltage-dependent anion channel-1 was prominent in photoreceptor cells. Between second and seventh decade of life, strong IR to complex I-V was present in photoreceptors over macular to peripheral retina. With progressive ageing, the photoreceptors showed a decrease in complex I-IR (subunit NDUFB4) at eighth decade, and a weak or absence of IR in 10 retinas between ninth and tenth decade. Patchy IR to complex III and complex IV was detected at different ages. IR to ND1 (complex I) and complex II and V remained unaltered with ageing. Nitrosative stress (evaluated by IR to a nitro-tyrosine antibody) was found in photoreceptors. Superoxide dismutase-2 was found upregulated in photoreceptors with ageing. Mitochondrial ultrastructure was examined in two young retinas with intact complex IR and six aged retinas whose counterparts showed weak to absence of IR. Observations revealed irregular, photoreceptor inner segment mitochondria in aged maculae and mid-peripheral retina between eighth and ninth decade; many cones possessed autophagosomes with damaged mitochondria, indicating age-related alterations. A trend in age-dependent reduction of complex I-IR was evident in aged photoreceptors, whereas patchy complex IV-IR (subunits I and II) was age-independent, suggesting that the former is prone to damage with ageing perhaps due to oxidative stress. These changes in OXPHOS system may influence the energy budget of human photoreceptors, affecting their viability.
Collapse
|
46
|
Meléndez García R, Arredondo Zamarripa D, Arnold E, Ruiz-Herrera X, Noguez Imm R, Baeza Cruz G, Adán N, Binart N, Riesgo-Escovar J, Goffin V, Ordaz B, Peña-Ortega F, Martínez-Torres A, Clapp C, Thebault S. Prolactin protects retinal pigment epithelium by inhibiting sirtuin 2-dependent cell death. EBioMedicine 2016; 7:35-49. [PMID: 27322457 PMCID: PMC4909382 DOI: 10.1016/j.ebiom.2016.03.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022] Open
Abstract
The identification of pathways necessary for retinal pigment epithelium (RPE) function is fundamental to uncover therapies for blindness. Prolactin (PRL) receptors are expressed in the retina, but nothing is known about the role of PRL in RPE. Using the adult RPE 19 (ARPE-19) human cell line and mouse RPE, we identified the presence of PRL receptors and demonstrated that PRL is necessary for RPE cell survival via anti-apoptotic and antioxidant actions. PRL promotes the antioxidant capacity of ARPE-19 cells by reducing glutathione. It also blocks the hydrogen peroxide-induced increase in deacetylase sirtuin 2 (SIRT2) expression, which inhibits the TRPM2-mediated intracellular Ca(2+) rise associated with reduced survival under oxidant conditions. RPE from PRL receptor-null (prlr(-/-)) mice showed increased levels of oxidative stress, Sirt2 expression and apoptosis, effects that were exacerbated in animals with advancing age. These observations identify PRL as a regulator of RPE homeostasis.
Collapse
Affiliation(s)
- Rodrigo Meléndez García
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - David Arredondo Zamarripa
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Xarubet Ruiz-Herrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Ramsés Noguez Imm
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - German Baeza Cruz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Norma Adán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Nadine Binart
- Institut National de la Santé et de la Recherche Médicale, U1185, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre 94270, France
| | - Juan Riesgo-Escovar
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Vincent Goffin
- Institut National de la Santé et de la Recherche Médicale, U1151, Institut Necker Enfants Malades, Université Paris-Descartes, Faculté de Médecine, Sorbonne Paris Cité, 75014, France
| | - Benito Ordaz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Fernando Peña-Ortega
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Ataúlfo Martínez-Torres
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Stéphanie Thebault
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico.
| |
Collapse
|
47
|
Ultrastructural changes in the melanocytes of aging human choroid. Micron 2015; 79:16-23. [DOI: 10.1016/j.micron.2015.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/01/2015] [Accepted: 08/01/2015] [Indexed: 01/22/2023]
|
48
|
Ren J, Chen YI, Mackey AM, Liu PK. Imaging rhodopsin degeneration in vivo in a new model of ocular ischemia in living mice. FASEB J 2015; 30:612-23. [PMID: 26443823 DOI: 10.1096/fj.15-280677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/21/2015] [Indexed: 12/19/2022]
Abstract
Delivery of antibodies to monitor key biomarkers of retinopathy in vivo represents a significant challenge because living cells do not take up immunoglobulins to cellular antigens. We met this challenge by developing novel contrast agents for retinopathy, which we used with magnetic resonance imaging (MRI). Biotinylated rabbit polyclonal to chick IgY (rIgPxcIgY) and phosphorylthioate-modified oligoDNA (sODN) with random sequence (bio-sODN-Ran) were conjugated with NeutrAvidin-activated superparamagnetic iron oxide nanoparticles (SPION). The resulting Ran-SPION-rIgPxcIgY carries chick polyclonal to microtubule-associated protein 2 (MAP2) as Ran-SPION-rIgP/cIgY-MAP2, or to rhodopsin (Rho) as anti-Rho-SPION-Ran. We examined the uptake of Ran-SPION-rIgP/cIgY-MAP2 or SPION-rIgP/cIgY-MAP2 in normal C57black6 mice (n = 3 each, 40 μg/kg, i.c.v.); we found retention of Ran-SPION-rIgP/cIgY-MAP2 using molecular contrast-enhanced MRI in vivo and validated neuronal uptake using Cy5-goat IgPxcIgY ex vivo. Applying this novel method to monitor retinopathy in a bilateral carotid artery occlusion-induced ocular ischemia, we observed pericytes (at d 2, using Gd-nestin, by eyedrop solution), significant photoreceptor degeneration (at d 20, using anti-Rho-SPION-Ran, eyedrops, P = 0.03, Student's t test), and gliosis in Müller cells (at 6 mo, using SPION-glial fibrillary acidic protein administered by intraperitoneal injection) in surviving mice (n ≥ 5). Molecular contrast-enhanced MRI results were confirmed by optical and electron microscopy. We conclude that chimera and molecular contrast-enhanced MRI provide sufficient sensitivity for monitoring retinopathy and for theranostic applications.
Collapse
Affiliation(s)
- Jiaqian Ren
- *Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA, and Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Yinching I Chen
- *Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA, and Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Ashley M Mackey
- *Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA, and Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Philip K Liu
- *Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA, and Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Harvard Medical School, Cambridge, Massachusetts, USA
| |
Collapse
|
49
|
Abstract
Current proteomic technologies can effectively be used to study the proteins of the vitreous body and retina in health and disease. The use of appropriate samples, analytical platform and bioinformatic method are essential factors to consider when undertaking such studies. Certain proteins may hinder the detection and evaluation of more relevant proteins associated with pathological processes if not carefully considered, particularly in the sample preparation and data analysis stages. The utilization of more than one quantification technique and database search program to expand the level of proteome coverage and analysis will help to generate more robust and worthwhile results. This review discusses important aspects of sample processing and the use of label and label-free quantitative proteomics strategies applied to the vitreous and retina.
Collapse
|
50
|
Wiesmeier IK, Dalin D, Maurer C. Elderly Use Proprioception Rather than Visual and Vestibular Cues for Postural Motor Control. Front Aging Neurosci 2015; 7:97. [PMID: 26157386 PMCID: PMC4477145 DOI: 10.3389/fnagi.2015.00097] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/07/2015] [Indexed: 12/29/2022] Open
Abstract
Multiple factors have been proposed to contribute to the deficits of postural control in the elderly. They were summarized as sensory, motor, and higher-level adaptation deficits. Using a model-based approach, we aimed to identify which of these deficits mainly determine age-related changes in postural control. We analyzed postural control of 20 healthy elderly people with a mean age of 74 years. The findings were compared to data from 19 healthy young volunteers (mean age 28 years) and 16 healthy middle-aged volunteers (mean age 48 years). Postural control was characterized by spontaneous sway measures and measures of perturbed stance. Perturbations were induced by pseudorandom anterior-posterior tilts of the body support surface. We found that spontaneous sway amplitude and velocity were significantly larger, and sway frequencies were higher in elderly compared to young people. Body excursions as a function of tilt stimuli were clearly different in elderly compared to young people. Based on simple feedback model simulations, we found that elderly favor proprioceptive over visual and vestibular cues, other than younger subjects do. Moreover, we identified an increase in overall time delay challenging the feedback systems stability, and a decline in the amplitude of the motor feedback, probably representing weakness of the motor system. In general, these parameter differences between young and old may result from both deficits and compensation strategies in the elderly. Our model-based findings correlate well with deficits measured with clinical balance scores, which are widely used in clinical practice.
Collapse
Affiliation(s)
| | - Daniela Dalin
- Klinik für Neurologie und Neurophysiologie, Universität Freiburg , Freiburg , Germany
| | - Christoph Maurer
- Klinik für Neurologie und Neurophysiologie, Universität Freiburg , Freiburg , Germany
| |
Collapse
|