1
|
Li S, Yang L, Christudasjustus J, Overman NR, Wirth BD, Sushko ML, Simonnin P, Schreiber DK, Gao F, Wang C. Selective atomic sieving across metal/oxide interface for super-oxidation resistance. Nat Commun 2024; 15:6149. [PMID: 39034317 PMCID: PMC11271475 DOI: 10.1038/s41467-024-50576-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Surface passivation, a desirable natural consequence during initial oxidation of alloys, is the foundation for functioning of corrosion and oxidation resistant alloys ranging from industrial stainless steel to kitchen utensils. This initial oxidation has been long perceived to vary with crystal facet, however, the underlying mechanism remains elusive. Here, using in situ environmental transmission electron microscopy, we gain atomic details on crystal facet dependent initial oxidation behavior in a model Ni-5Cr alloy. We find the (001) surface shows higher initial oxidation resistance as compared to the (111) surface. We reveal the crystal facet dependent oxidation is related to an interfacial atomic sieving effect, wherein the oxide/metal interface selectively promotes diffusion of certain atomic species. Density functional theory calculations rationalize the oxygen diffusion across Ni(111)/NiO(111) interface, as contrasted with Ni(001)/NiO(111), is enhanced. We unveil that crystal facet with initial fast oxidation rate could conversely switch to a slow steady state oxidation.
Collapse
Affiliation(s)
- Shuang Li
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Li Yang
- Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, USA
| | - Jijo Christudasjustus
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nicole R Overman
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brian D Wirth
- Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, USA
| | - Maria L Sushko
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Pauline Simonnin
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Daniel K Schreiber
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Fei Gao
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
2
|
Liu Z, Shimada H. Visualization of the structural transformation of NiO/YSZ/BZY nanocomposite particles using in situ gas environmental transmission electron microscopy. NANOSCALE 2024; 16:1890-1896. [PMID: 38167724 DOI: 10.1039/d3nr04525k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
This study focused on investigating the dynamic structural transformations of spherical NiO/YSZ/BZY triple-phase nanocomposite particles, commonly employed for cermet anodes, during the hydrogen reduction reaction. We utilized both spherical aberration (Cs) corrected transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) observation modes under a controlled gaseous environment. The environmental gas pressure was set to 1 atm (760 Torr), mirroring real-world conditions. To elucidate pre- and post-hydrogen reduction compositional alterations, we conducted elemental mapping using energy-dispersive X-ray spectroscopy (EDS). Our findings indicated that NiO nanoparticles underwent reduction to Ni particles upon heat treatments in an environment containing H2 gas. Significantly, this reduction of NiO led to the migration of Ni along the external surface of each composite particle, ultimately resulting in the agglomeration at the interparticle spaces among the three NiO/YSZ/BZY nanocomposite particles.
Collapse
Affiliation(s)
- Zheng Liu
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakurazaka, Moriyama-ku, Nagoya, Aichi, 463-8560, Japan.
| | - Hiroyuki Shimada
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakurazaka, Moriyama-ku, Nagoya, Aichi, 463-8560, Japan.
| |
Collapse
|
3
|
You R, Ou Y, Qi R, Yu J, Wang F, Jiang Y, Zou S, Han ZK, Yuan W, Yang H, Zhang Z, Wang Y. Revealing Temperature-Dependent Oxidation Dynamics of Ni Nanoparticles via Ambient Pressure Transmission Electron Microscopy. NANO LETTERS 2023; 23:7260-7266. [PMID: 37534944 DOI: 10.1021/acs.nanolett.3c00923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Understanding the oxidation mechanism of metal nanoparticles under ambient pressure is extremely important to make the best use of them in a variety of applications. Through ambient pressure transmission electron microscopy, we in situ investigated the dynamic oxidation processes of Ni nanoparticles at different temperatures under atmospheric pressure, and a temperature-dependent oxidation behavior was revealed. At a relatively low temperature (e.g., 600 °C), the oxidation of Ni nanoparticles underwent a classic Kirkendall process, accompanied by the formation of oxide shells. In contrast, at a higher temperature (e.g., 800 °C), the oxidation began with a single crystal nucleus at the metal surface and then proceeded along the metal/oxide interface without voids formed during the whole process. Through our experiments and density functional theory calculations, a temperature-dependent oxidation mechanism based on Ni nanoparticles was proposed, which was derived from the discrepancy of gas adsorption and diffusion rates under different temperatures.
Collapse
Affiliation(s)
- Ruiyang You
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Ou
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui Qi
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jian Yu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fei Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Jiang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shihui Zou
- Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhong-Kang Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Hangsheng Yang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Ze Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
LaGrow AP, Famiani S, Sergides A, Lari L, Lloyd DC, Takahashi M, Maenosono S, Boyes ED, Gai PL, Thanh NTK. Environmental STEM Study of the Oxidation Mechanism for Iron and Iron Carbide Nanoparticles. MATERIALS 2022; 15:ma15041557. [PMID: 35208096 PMCID: PMC8877599 DOI: 10.3390/ma15041557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
Abstract
The oxidation of solution-synthesized iron (Fe) and iron carbide (Fe2C) nanoparticles was studied in an environmental scanning transmission electron microscope (ESTEM) at elevated temperatures under oxygen gas. The nanoparticles studied had a native oxide shell present, that formed after synthesis, an ~3 nm iron oxide (FexOy) shell for the Fe nanoparticles and ~2 nm for the Fe2C nanoparticles, with small void areas seen in several places between the core and shell for the Fe and an ~0.8 nm space between the core and shell for the Fe2C. The iron nanoparticles oxidized asymmetrically, with voids on the borders between the Fe core and FexOy shell increasing in size until the void coalesced, and finally the Fe core disappeared. In comparison, the oxidation of the Fe2C progressed symmetrically, with the core shrinking in the center and the outer oxide shell growing until the iron carbide had fully disappeared. Small bridges of iron oxide formed during oxidation, indicating that the Fe transitioned to the oxide shell surface across the channels, while leaving the carbon behind in the hollow core. The carbon in the carbide is hypothesized to suppress the formation of larger crystallites of iron oxide during oxidation, and alter the diffusion rates of the Fe and O during the reaction, which explains the lower sensitivity to oxidation of the Fe2C nanoparticles.
Collapse
Affiliation(s)
- Alec P. LaGrow
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Correspondence: (A.P.L.); (N.T.K.T.)
| | - Simone Famiani
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK; (S.F.); (A.S.)
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, London W1S 4BS, UK
| | - Andreas Sergides
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK; (S.F.); (A.S.)
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, London W1S 4BS, UK
| | - Leonardo Lari
- The York Nanocentre, University of York, York YO10 5DD, UK; (L.L.); (D.C.L.); (E.D.B.); (P.L.G.)
| | - David C. Lloyd
- The York Nanocentre, University of York, York YO10 5DD, UK; (L.L.); (D.C.L.); (E.D.B.); (P.L.G.)
| | - Mari Takahashi
- School of Material Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Kanazawa 923-1292, Japan; (M.T.); (S.M.)
| | - Shinya Maenosono
- School of Material Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Kanazawa 923-1292, Japan; (M.T.); (S.M.)
| | - Edward D. Boyes
- The York Nanocentre, University of York, York YO10 5DD, UK; (L.L.); (D.C.L.); (E.D.B.); (P.L.G.)
| | - Pratibha L. Gai
- The York Nanocentre, University of York, York YO10 5DD, UK; (L.L.); (D.C.L.); (E.D.B.); (P.L.G.)
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK; (S.F.); (A.S.)
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, London W1S 4BS, UK
- Correspondence: (A.P.L.); (N.T.K.T.)
| |
Collapse
|
5
|
Dembele K, Moldovan S, Hirlimann C, Harmel J, Soulantica K, Serp P, Chaudret B, Gay AS, Maury S, Berliet A, Fecant A, Ersen O. Reactivity and structural evolution of urchin-like Co nanostructures under controlled environments. J Microsc 2017; 269:168-176. [PMID: 29064561 DOI: 10.1111/jmi.12656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 09/08/2017] [Accepted: 09/16/2017] [Indexed: 11/29/2022]
Abstract
In situ transmission electron microscopy (TEM) of samples in a controlled gas environment allows for the real time study of the dynamical changes in nanomaterials at high temperatures and pressures up to the ambient pressure (105 Pa) with a spatial resolution close to the atomic scale. In the field of catalysis, the implementation and quantitative use of in situ procedures are fundamental for a better understanding of the behaviour of catalysts in their environments and operating conditions. By using a microelectromechanical systems (MEMS)-based atmospheric gas cell, we have studied the thermal stability and the reactivity of crystalline cobalt nanostructures with initial 'urchin-like' morphologies sustained by native surface ligands that result from their synthesis reaction. We have evidenced various behaviors of the Co nanostructures that depend on the environment used during the observations. At high temperature under vacuum or in an inert atmosphere, the migration of Co atoms towards the core of the particles is activated and leads to the formation of carbon nanostructures using as a template the initial multipods morphology. In the case of reactive environments, for example, pure oxygen, our investigation allowed to directly monitor the voids formation through the Kirkendall effect. Once the nanostructures were oxidised, it was possible to reduce them back to the metallic phase using a dihydrogen flux. Under a pure hydrogen atmosphere, the sintering of the whole structure occurred, which illustrates the high reactivity of such structures as well as the fundamental role of the present ligands as morphology stabilisers. The last type of environmental study under pure CO and syngas (i.e. a mixture of H2 :CO = 2:1) revealed the metal particles carburisation at high temperature.
Collapse
Affiliation(s)
- K Dembele
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Strasbourg, France.,IFP Energies nouvelles, Rond Point de l'échangeur de Solaize, Solaize, France
| | - S Moldovan
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Strasbourg, France.,Groupe de Physique des Matériaux UMR CNRS 6634, Université de Rouen, INSA Rouen, Avenue de l'Université, Saint Etienne du Rouvray, France
| | - Ch Hirlimann
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Strasbourg, France
| | - J Harmel
- Laboratoire de Chimie de Coordination UPR CNRS 8241, composante ENSIACET, Université de Toulouse UPS-INP-LCC, Toulouse, Cedex 4, France.,Laboratoire de Physique et Chimie des Nano-objets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, Toulouse, France
| | - K Soulantica
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, Toulouse, France
| | - P Serp
- Laboratoire de Chimie de Coordination UPR CNRS 8241, composante ENSIACET, Université de Toulouse UPS-INP-LCC, Toulouse, Cedex 4, France
| | - B Chaudret
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, Toulouse, France
| | - A-S Gay
- IFP Energies nouvelles, Rond Point de l'échangeur de Solaize, Solaize, France
| | - S Maury
- IFP Energies nouvelles, Rond Point de l'échangeur de Solaize, Solaize, France
| | - A Berliet
- IFP Energies nouvelles, Rond Point de l'échangeur de Solaize, Solaize, France
| | - A Fecant
- IFP Energies nouvelles, Rond Point de l'échangeur de Solaize, Solaize, France
| | - O Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Strasbourg, France.,University of Strasbourg Institute for Advanced Studies (USIAS), Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
6
|
LAGROW A, ALYAMI N, LLOYD D, BAKR O, BOYES E, GAI P. In situ
oxidation and reduction of triangular nickel nanoplates via environmental transmission electron microscopy. J Microsc 2017; 269:161-167. [DOI: 10.1111/jmi.12621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/11/2017] [Accepted: 08/06/2017] [Indexed: 01/22/2023]
Affiliation(s)
- A.P. LAGROW
- The York Nanocentre; University of York; York U.K
- Department of Physics; University of York; York U.K
| | - N.M. ALYAMI
- Division of Physical Sciences and Engineering (PSE); King Abdullah University of Science and Technology; Thuwal Saudi Arabia
| | - D.C. LLOYD
- The York Nanocentre; University of York; York U.K
- Department of Physics; University of York; York U.K
| | - O.M. BAKR
- Division of Physical Sciences and Engineering (PSE); King Abdullah University of Science and Technology; Thuwal Saudi Arabia
| | - E.D. BOYES
- The York Nanocentre; University of York; York U.K
- Department of Physics; University of York; York U.K
- Department of Electronics; University of York; York U.K
| | - P.L. GAI
- The York Nanocentre; University of York; York U.K
- Department of Physics; University of York; York U.K
- Department of Chemistry; University of York; York U.K
| |
Collapse
|
7
|
Papaefthimiou V, Niakolas DK, Paloukis F, Teschner D, Knop-Gericke A, Haevecker M, Zafeiratos S. Operando observation of nickel/ceria electrode surfaces during intermediate temperature steam electrolysis. J Catal 2017. [DOI: 10.1016/j.jcat.2017.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
|
9
|
Spectroscopic Methods in Catalysis and Their Application in Well-Defined Nanocatalysts. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/b978-0-12-805090-3.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
|
11
|
Tao F(F, Crozier PA. Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis. Chem Rev 2016; 116:3487-539. [DOI: 10.1021/cr5002657] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Franklin (Feng) Tao
- Department
of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Peter A. Crozier
- School
of Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
12
|
Pan YT, Wu J, Yin X, Yang H. In situ
ETEM study of composition redistribution in Pt-Ni octahedral catalysts for electrochemical reduction of oxygen. AIChE J 2015. [DOI: 10.1002/aic.15070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yung-Tin Pan
- Dept. of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; 206 Roger Adams Laboratory, MC-712, 600 South Mathews Avenue Urbana IL 61801
| | - Jianbo Wu
- Dept. of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; 206 Roger Adams Laboratory, MC-712, 600 South Mathews Avenue Urbana IL 61801
| | - Xi Yin
- Dept. of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; 206 Roger Adams Laboratory, MC-712, 600 South Mathews Avenue Urbana IL 61801
| | - Hong Yang
- Dept. of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; 206 Roger Adams Laboratory, MC-712, 600 South Mathews Avenue Urbana IL 61801
| |
Collapse
|
13
|
Wang CM, Schreiber DK, Olszta MJ, Baer DR, Bruemmer SM. Direct in Situ TEM Observation of Modification of Oxidation by the Injected Vacancies for Ni-4Al Alloy Using a Microfabricated Nanopost. ACS APPLIED MATERIALS & INTERFACES 2015; 7:17272-17277. [PMID: 26186484 DOI: 10.1021/acsami.5b04341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Vacancy injection and selective oxidation of one species in bimetallic alloy at high temperature is a well-known phenomenon. However, detailed understanding of the behavior of the injected vacancies and consequently their effect on oxidation remains elusive. The current research examines the oxidation of high-purity Ni doped with 4.1 at. % Al using in situ transmission electron microscopy (TEM). Experiments are performed on nanoposts fabricated from solution-annealed bulk material that are essentially single crystal samples. Initial oxidation is observed to occur by multisite oxide nucleation, formation of an oxide shell followed by cavity nucleation and growth at the metal/oxide interface. One of the most interesting in situ TEM observations is the formation of a cavity that leads to the faceting of the metal and subsequent oxidation occurring by an atomic ledge migration mechanism on the faceted metal surface. Further, it is directly observed that metal atoms diffuse through the oxide layer to combine with oxygen at the outer surface of the oxide. The present work indicates that injection of vacancies and formation of cavity will lead to a situation where the oxidation rate is essentially controlled by the low surface energy plane of the metal, rather than by the initial terminating plane at the metal surface exposed to the oxidizing environment.
Collapse
Affiliation(s)
- Chong-Min Wang
- †Environmental Molecular Sciences Laboratory and ‡Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Daniel K Schreiber
- †Environmental Molecular Sciences Laboratory and ‡Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Matthew J Olszta
- †Environmental Molecular Sciences Laboratory and ‡Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Donald R Baer
- †Environmental Molecular Sciences Laboratory and ‡Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Stephen M Bruemmer
- †Environmental Molecular Sciences Laboratory and ‡Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
14
|
Su DS, Zhang B, Schlögl R. Electron microscopy of solid catalysts--transforming from a challenge to a toolbox. Chem Rev 2015; 115:2818-82. [PMID: 25826447 DOI: 10.1021/cr500084c] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dang Sheng Su
- †Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.,‡Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Bingsen Zhang
- †Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Robert Schlögl
- ‡Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
15
|
Anderson BD, Tracy JB. Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange. NANOSCALE 2014; 6:12195-216. [PMID: 25051257 DOI: 10.1039/c4nr02025a] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Conversion chemistry is a rapidly maturing field, where chemical conversion of template nanoparticles (NPs) into new compositions is often accompanied by morphological changes, such as void formation. The principles and examples of three major classes of conversion chemical reactions are reviewed: the Kirkendall effect for metal NPs, galvanic exchange, and anion exchange, each of which can result in void formation in NPs. These reactions can be used to obtain complex structures that may not be attainable by other methods. During each kind of conversion chemical reaction, NPs undergo distinct chemical and morphological changes, and insights into the mechanisms of these reactions will allow for improved fine control and prediction of the structures of intermediates and products. Conversion of metal NPs into oxides, phosphides, sulphides, and selenides often occurs through the Kirkendall effect, where outward diffusion of metal atoms from the core is faster than inward diffusion of reactive species, resulting in void formation. In galvanic exchange reactions, metal NPs react with noble metal salts, where a redox reaction favours reduction and deposition of the noble metal (alloying) and oxidation and dissolution of the template metal (dealloying). In anion exchange reactions, addition of certain kinds of anions to solutions containing metal compound NPs drives anion exchange, which often results in significant morphological changes due to the large size of anions compared to cations. Conversion chemistry thus allows for the formation of NPs with complex compositions and structures, for which numerous applications are anticipated arising from their novel catalytic, electronic, optical, magnetic, and electrochemical properties.
Collapse
Affiliation(s)
- Bryan D Anderson
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
16
|
Miller BK, Crozier PA. Analysis of catalytic gas products using electron energy-loss spectroscopy and residual gas analysis for operando transmission electron microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:815-824. [PMID: 24815065 DOI: 10.1017/s1431927614000749] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Operando transmission electron microscopy (TEM) of catalytic reactions requires that the gas composition inside the TEM be known during the in situ reaction. Two techniques for measuring gas composition inside the environmental TEM are described and compared here. First, electron energy-loss spectroscopy, both in the low-loss and core-loss regions of the spectrum was utilized. The data were quantified using a linear combination of reference spectra from individual gasses to fit a mixture spectrum. Mass spectrometry using a residual gas analyzer was also used to quantify the gas inside the environmental cell. Both electron energy-loss spectroscopy and residual gas analysis were applied simultaneously to a known 50/50 mixture of CO and CO2, so the results from the two techniques could be compared and evaluated. An operando TEM experiment was performed using a Ru catalyst supported on silica spheres and loaded into the TEM on a specially developed porous pellet TEM sample. Both techniques were used to monitor the conversion of CO to CO2 over the catalyst, while simultaneous atomic resolution imaging of the catalyst was performed.
Collapse
Affiliation(s)
- Benjamin K Miller
- School for Engineering of Matter,Transport and Energy,Arizona State University,Tempe,AZ 85287-6106,USA
| | - Peter A Crozier
- School for Engineering of Matter,Transport and Energy,Arizona State University,Tempe,AZ 85287-6106,USA
| |
Collapse
|
17
|
Hansen TW, Wagner JB. Catalysts under Controlled Atmospheres in the Transmission Electron Microscope. ACS Catal 2014. [DOI: 10.1021/cs401148d] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thomas W. Hansen
- Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jakob B. Wagner
- Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
18
|
In-situ TEM visualization of vacancy injection and chemical partition during oxidation of Ni-Cr nanoparticles. Sci Rep 2014; 4:3683. [PMID: 24418778 PMCID: PMC3891023 DOI: 10.1038/srep03683] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/01/2013] [Indexed: 12/02/2022] Open
Abstract
Oxidation of alloy often involves chemical partition and injection of vacancies. Chemical partition is the consequence of selective oxidation, while injection of vacancies is associated with the differences of diffusivity of cations and anions. It is far from clear as how the injected vacancies behave during oxidation of metal. Using in-situ transmission electron microscopy, we captured unprecedented details on the collective behavior of injected vacancies during oxidation of metal, featuring an initial multi-site oxide nucleation, vacancy supersaturation, nucleation of a single cavity, sinking of vacancies into the cavity and accelerated oxidation of the particle. High sensitive energy dispersive x-ray spectroscopy mapping reveals that Cr is preferentially oxidized even at the initial oxidation, leading to a structure that Cr oxide is sandwiched near the inner wall of the hollow particle. The work provides a general guidance on tailoring of nanostructured materials involving multi-ion exchange such as core-shell structured composite nanoparticles.
Collapse
|
19
|
Yang JC, Small MW, Grieshaber RV, Nuzzo RG. Recent developments and applications of electron microscopy to heterogeneous catalysis. Chem Soc Rev 2013; 41:8179-94. [PMID: 23120754 DOI: 10.1039/c2cs35371g] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are popular and powerful techniques used to characterize heterogeneous catalysts. Rapid developments in electron microscopy--especially aberration correctors and in situ methods--permit remarkable capabilities for visualizing both morphologies and atomic and electronic structures. The purpose of this review is to summarize the significant developments and achievements in this field with particular emphasis on the characterization of catalysts. We also highlight the potential and limitations of the various methods, describe the need for synergistic and complementary tools when characterizing heterogeneous catalysts, and conclude with an outlook that also envisions future needs in the field.
Collapse
Affiliation(s)
- Judith C Yang
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
20
|
Miller BK, Crozier PA. System for in situ UV-visible illumination of environmental transmission electron microscopy samples. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:461-469. [PMID: 23312072 DOI: 10.1017/s1431927612014122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A system for illuminating a sample in situ with visible and ultraviolet light inside a transmission electron microscope was devised to study photocatalysts. There are many mechanical and optical factors that must be considered when designing and building such a system. Some of the restrictions posed by the electron microscope column are significant, and care must be taken not to degrade the microscope's electron-optical performance or to unduly restrict the other capabilities of the microscope. We discuss the nature of the design considerations, as well as the practical implementation and characterization of a solution. The system that has been added to an environmental transmission electron microscope includes a high brightness broadband light source with optical filters, a fiber to guide the light to the sample, and a mechanism for precisely aligning the fiber tip.
Collapse
Affiliation(s)
- Benjamin K Miller
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287-6106, USA
| | | |
Collapse
|
21
|
Medford JA, Johnston-Peck AC, Tracy JB. Nanostructural transformations during the reduction of hollow and porous nickel oxide nanoparticles. NANOSCALE 2013; 5:155-159. [PMID: 23168915 DOI: 10.1039/c2nr33005a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Size-dependent nanostructural transformations occurring during the H(2)-mediated reduction of hollow and porous NiO nanoparticles were investigated for controlled nanoparticle sizes of ~10 to 100 nm. Transmission electron microscopy reveals that the location and number of reduction sites strongly depend on the nanoparticle size and structure.
Collapse
Affiliation(s)
- John A Medford
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
22
|
Ha TL, Kim JG, Kim SM, Lee IS. Reversible and Cyclical Transformations between Solid and Hollow Nanostructures in Confined Reactions of Manganese Oxide and Silica within Nanosized Spheres. J Am Chem Soc 2012; 135:1378-85. [DOI: 10.1021/ja309142j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tae-Lin Ha
- Department of Applied Chemistry, Kyung Hee University, Gyeonggi-do 446-701, Korea
| | - Jin Goo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Gyeogbuk 790-784, Korea
| | - Soo Min Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Gyeogbuk 790-784, Korea
| | - In Su Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Gyeogbuk 790-784, Korea
| |
Collapse
|
23
|
Chenna S, Crozier PA. Operando Transmission Electron Microscopy: A Technique for Detection of Catalysis Using Electron Energy-Loss Spectroscopy in the Transmission Electron Microscope. ACS Catal 2012. [DOI: 10.1021/cs3004853] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Santhosh Chenna
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287-6106,
United States
| | - Peter A. Crozier
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287-6106,
United States
| |
Collapse
|