1
|
Zhou S, Jia Y, Fang H, Jin C, Mo Y, Xiao Z, Zhang N, Sun L, Lu H. A new understanding on the prerequisite of antibiotic biodegradation in wastewater treatment: Adhesive behavior between antibiotic-degrading bacteria and ciprofloxacin. WATER RESEARCH 2024; 252:121226. [PMID: 38309071 DOI: 10.1016/j.watres.2024.121226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/10/2023] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The extensive exploration of antibiotic biodegradation by antibiotic-degrading bacteria in biological wastewater treatment processes has left a notable gap in understanding the behavior of these bacteria when exposed to antibiotics and the initiation of biodegradation processes. This study, therefore, delves into the adhesive behavior of Paraclostridium bifermentans, isolated from a bioreactor treating ciprofloxacin-laden wastewater, towards ciprofloxacin molecules. For the first time, this behavior is observed and characterized through quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy. The investigation further extends to identify key regulatory factors and mechanisms governing this adhesive behavior through a comparative proteomics analysis. The results reveal the dominance of extracellular proteins, particularly those involved in nucleotide binding, hydrolase, and transferase, in the adhesion process. These proteins play pivotal roles through direct chemical binding and the regulation of signaling molecule. Furthermore, QCM-D measurements provide evidence that transferase-related signaling molecules, especially tyrosine, augment the binding between ciprofloxacin and transferases, resulting in enhance ciprofloxacin removal by P. bifermentans (increased by ∼1.2-fold). This suggests a role for transferase-related signaling molecules in manipulating the adhesive behavior of P. bifermentans towards ciprofloxacin. These findings contribute to a new understanding of the prerequisites for antibiotic biodegradation and offer potential strategies for improving the application of antibiotic-degrading bacteria in the treatment of antibiotics-laden wastewater.
Collapse
Affiliation(s)
- Sining Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-sen University, Shenzhen, PR China
| | - Heting Fang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Yijun Mo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Zihan Xiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Ning Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China.
| |
Collapse
|
2
|
Machado CS, Seeger MG, Moreira KS, Burgo TAL, Iglesias BA, Vogel FSF, Cargnelutti JF. In vitro porphyrin-based photodynamic therapy against mono and polyculture of multidrug-resistant bacteria isolated from integumentary infections in animals. Photodiagnosis Photodyn Ther 2022; 40:103179. [PMID: 36334907 DOI: 10.1016/j.pdpdt.2022.103179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Multidrug-resistant (MDR) organisms have been frequently isolated from integumentary lesions of animals, and these lesions are usually infected by more than one pathogen. This study evaluated an in vitro antimicrobial photodynamic therapy (aPDT) using two water-soluble tetra-cationic porphyrins (3-H2TMeP and 4-H2TMeP) against mono and polyculture of MDR bacteria isolated from dogs, cats, and horses. Ten isolates of MDR bacteria (two of each species: Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus pseudointermedius) were used to evaluate aPDT against the monoculture using a non-cytotoxic concentration of 3-H2TMeP and 4-H2TMeP porphyrins (40 µM), with 30 min of light irradiation in Gram-positive and 90 min for Gram-negative bacteria. The aPDT using the 4-H2TMeP porphyrin was also tested against five different polycultures (Coagulase positive Staphylococcus (CPS) and Pseudomonas sp.; E. coli and Proteus sp.; Pseudomonas sp. and Proteus sp.; CPS and E. coli; and CPS and Proteus sp.) for 90 min. The efficacy of both treatments was evaluated by plating the solution exposed to light or kept in the dark and counting the colonies forming units after 24 h of incubation at 37 °C. Atomic force microscope analysis was used to map bacteria morphological changes and extract adhesion force parameters from the bacteria membranes. Only the 4-H2TMeP porphyrin had antibacterial activity against MDR bacteria in monoculture, especially S. pseudointermedius and P. aeruginosa. In polyculture, the 4-H2TMeP porphyrin reduced bacterial concentrations (p < 0.05) in the associations of E. coli and S. pseudointermedius, P. aeruginosa and S. pseudointermedius, and P. aeruginosa and P. mirabilis. These results showed that aPDT using 4-H2TMeP is a good option for future associations of aPDT and other therapies or in vivo research.
Collapse
Affiliation(s)
- Carolina S Machado
- Programa de Pós-graduação em Medicina Veterinária (PPGMV) - Av. Roraima, Universidade Federal de Santa Maria (UFSM), 1000, prédio 97 - HVU, bairro Camobi, Santa Maria, RS CEP 97105-900, Brazil
| | - Marlane G Seeger
- Programa de Pós-graduação em Medicina Veterinária (PPGMV) - Av. Roraima, Universidade Federal de Santa Maria (UFSM), 1000, prédio 97 - HVU, bairro Camobi, Santa Maria, RS CEP 97105-900, Brazil
| | - Kelly S Moreira
- Coulomb Electrostatic and Mechanochemical Laboratory, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Campus Camobi, Santa Maria, RS CEP 97105-900, Brazil
| | - Thiago A L Burgo
- Coulomb Electrostatic and Mechanochemical Laboratory, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Campus Camobi, Santa Maria, RS CEP 97105-900, Brazil; Department of Chemistry and Environmental Sciences, Ibilce, São Paulo state University (Unesp), São José do Rio Preto, São Paulo, Brazil
| | - Bernardo A Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos - Departamento de Química, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Campus Camobi, Santa Maria, RS CEP 97105-900, Brazil.
| | - Fernanda S F Vogel
- Departamento de Medicina Veterinária Preventiva (DMVP) - Av. Roraima, Universidade Federal de Santa Maria (UFSM), 1000, prédio 63D - bairro Camobi, Santa Maria, RS CEP 97105-900, Brazil
| | - Juliana F Cargnelutti
- Departamento de Medicina Veterinária Preventiva (DMVP) - Av. Roraima, Universidade Federal de Santa Maria (UFSM), 1000, prédio 63D - bairro Camobi, Santa Maria, RS CEP 97105-900, Brazil.
| |
Collapse
|
3
|
Ivanov YD, Tatur VY, Shumov ID, Kozlov AF, Valueva AA, Ivanova IA, Ershova MO, Ivanova ND, Stepanov IN, Lukyanitsa AA, Ziborov VS. The Effect of a Rotating Cone on Horseradish Peroxidase Aggregation on Mica Revealed by Atomic Force Microscopy. MICROMACHINES 2022; 13:1947. [PMID: 36363968 PMCID: PMC9697547 DOI: 10.3390/mi13111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Our study reported herein aims to determine whether an electromagnetic field, induced triboelectrically by a metallic cone, rotating at a frequency of 167 Hz, has an effect on the properties of the horseradish peroxidase (HRP) enzyme. Atomic force microscopy (AFM) was employed to detect even the most subtle effects on single enzyme molecules. In parallel, a macroscopic method (spectrophotometry) was used to reveal whether the enzymatic activity of HRP in solution was affected. An aqueous solution of the enzyme was incubated at a distance of 2 cm from the rotating cone. The experiments were performed at various incubation times. The control experiments were performed with a non-rotating cone. The incubation of the HRP solution was found to cause the disaggregation of the enzyme. At longer incubation times, this disaggregation was found to be accompanied by the formation of higher-order aggregates; however, no change in the HRP enzymatic activity was observed. The results of our experiments could be of interest in the development of enzyme-based biosensors with rotating elements such as stirrers. Additionally, the results obtained herein are important for the correct interpretation of data obtained with such biosensors.
Collapse
Affiliation(s)
- Yuri D. Ivanov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412 Moscow, Russia
| | - Vadim Y. Tatur
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia
| | - Ivan D. Shumov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia
| | - Andrey F. Kozlov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia
| | - Anastasia A. Valueva
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia
| | - Irina A. Ivanova
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia
| | - Maria O. Ershova
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia
| | - Nina D. Ivanova
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after Skryabin, 109472 Moscow, Russia
| | - Igor N. Stepanov
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia
| | - Andrei A. Lukyanitsa
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia
- Faculty of Computational Mathematics and Cybernetics, Moscow State University, 119991 Moscow, Russia
| | - Vadim S. Ziborov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412 Moscow, Russia
| |
Collapse
|
4
|
The Effect of a Dodecahedron-Shaped Structure on the Properties of an Enzyme. J Funct Biomater 2022; 13:jfb13040166. [PMID: 36278635 PMCID: PMC9590084 DOI: 10.3390/jfb13040166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/26/2022] Open
Abstract
In this research, the influence of a dodecahedron-shaped structure on the adsorption behavior of a horseradish peroxidase (HRP) enzyme glycoprotein onto mica substrates was studied. In the experiments, samples of an aqueous HRP solution were incubated at various distances (0.03 m, 2 m, 5 m, and control at 20 m) from the dodecahedron surface. After the incubation, the direct adsorption of HRP onto mica substrates immersed in the solutions was performed, and the mica-adsorbed HRP particles were visualized via atomic force microscopy (AFM). The effect of the increased HRP aggregation was only observed after the incubation of the enzyme solution at the 2 m distance from the dodecahedron. In addition, with respect to the control sample, spectrophotometric measurements revealed no change in the HRP enzymatic activity after the incubation at any of the distances studied. The results reported herein can be of use in the modeling of the possible influences of various spatial structures on biological objects in the development of biosensors and other electronic equipment.
Collapse
|
5
|
Lee SA, Kim M, Esterhuizen M, Le VV, Kang M, Ko SR, Oh HM, Kim YJ, Ahn CY. An acceleration of carotenoid production and growth of Haematococcus lacustris induced by host-microbiota network interaction. Microbiol Res 2022; 262:127097. [PMID: 35751943 DOI: 10.1016/j.micres.2022.127097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
Haematococcus lacustris is a chlamydomonadalean with high biotechnological interest owing to its capacity to produce astaxanthin, a valuable secondary carotenoid with extraordinary antioxidation properties. However, its prolonged growth has limited its utility commercially. Thus, rapid growth to attain high densities of H. lacustris cells optimally producing astaxanthin is an essential biotechnological target to facilitate profitable commercialisation. Our study focused on characterising the bacterial communities associated with the alga's phycosphere by metagenomics. Subsequently, we altered the bacterial consortia in combined co-culture with key beneficial bacteria to optimise the growth of H. lacustris. The algal biomass increased by up to 2.1-fold in co-cultures, leading to a 1.6-fold increase in the astaxanthin yield. This study attempted to significantly improve the H. lacustris growth rate and biomass yield via Next-Generation Sequencing analysis and phycosphere bacterial augmentation, highlighting the possibility to overcome the hurdles associated with astaxanthin production by H. lacustris at a commercial scale.
Collapse
Affiliation(s)
- Sang-Ah Lee
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken 66123, Germany; Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Minsik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Maranda Esterhuizen
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken 66123, Germany; Helsinki Institute of Sustainability Science (HELSUS), Fabianinkatu 33, 00014 Helsinki, Finland; University of Helsinki, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Niemenkatu 73, 15140 Lahti, Finland; University of Manitoba, Clayton H. Riddell Faculty of Environment, Earth, and Resources, Wallace Building, 125 Dysart Road, Winnipeg MB R3T 2N2, Canada
| | - Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Mingyeong Kang
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken 66123, Germany.
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
6
|
Salamanca CH, Barrera-Ocampo Á, Oñate-Garzón J. Development, Characterization, and Antimicrobial Evaluation of Ampicillin-Loaded Nanoparticles Based on Poly(maleic acid- co-vinylpyrrolidone) on Resistant Staphylococcus aureus Strains. Molecules 2022; 27:molecules27092943. [PMID: 35566294 PMCID: PMC9102852 DOI: 10.3390/molecules27092943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
This study was focused on synthesizing, characterizing, and evaluating the antimicrobial effect of polymer nanoparticles (NPs) loaded with ampicillin. For this, the NPs were produced through polymeric self-assembly in aqueous media assisted by high-intensity sonication, using anionic polymers corresponding to the sodium salts of poly(maleic acid-co-vinylpyrrolidone) and poly(maleic acid-co-vinylpyrrolidone) modified with decyl-amine, here named as PMA-VP and PMA-VP-N10, respectively. The polymeric NPs were analyzed and characterized through the formation of polymeric pseudo-phases utilizing pyrene as fluorescent probe, as well as by measurements of particle size, zeta potential, polydispersity index, and encapsulation efficiency. The antimicrobial effect was evaluated by means of the broth microdilution method employing ampicillin sensitive and resistant Staphylococcus aureus strains. The results showed that PMA-VP and PMA-VP-N10 polymers can self-assemble, forming several types of hydrophobic pseudo-phases with respect to the medium pH and polymer concentration. Likewise, the results described that zeta potential, particle size, polydispersity index, and encapsulation efficiency are extremely dependent on the medium pH, whereas the antimicrobial activity displayed an interesting recovery of antibiotic activity when ampicillin is loaded in the polymeric NPs.
Collapse
Affiliation(s)
- Constain H. Salamanca
- Grupo de investigación Biopolimer, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia
- Grupo de Investigación Natura, Facultad de Ciencias Naturales, Universidad ICESI, Calle 18 No. 122-135, Cali 760035, Colombia;
- Correspondence:
| | - Álvaro Barrera-Ocampo
- Grupo de Investigación Natura, Facultad de Ciencias Naturales, Universidad ICESI, Calle 18 No. 122-135, Cali 760035, Colombia;
| | - Jose Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 No. 62-00, Cali, Colombia 760035, Colombia;
| |
Collapse
|
7
|
The Effect of Incubation near an Inversely Oriented Square Pyramidal Structure on Adsorption Properties of Horseradish Peroxidase. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The incubation of a solution of horseradish peroxidase (HRP) enzyme either below the apex or near the base of an inversely oriented square pyramid (inverted square pyramid; ISP) has been found to influence the enzyme’s aggregation and adsorption properties. The HRP enzyme is used herein as a model object due to its importance in analytical chemistry applications. Atomic force microscopy (AFM) is employed to investigate the HRP’s adsorption on mica substrates at the single-molecule level. Conventional spectrophotometry is used in parallel as a reference method for the determination of the HRP’s enzymatic activity. Using AFM, we reveal a significant change in the adsorption properties of HRP on mica substrates after the incubation of the HRP solutions either above the base or below the apex of the ISP in comparison with the control HRP solution. The same situation is observed after the incubation of the enzyme solution above the center of the ISP’s base. Here, the enzymatic activity of HRP remained unaffected in both cases. Since pyramidal structures of positive and inverted orientation are employed in biosensor devices, it is important to take into account the results obtained herein in the development of highly sensitive biosensor systems, in which pyramidal structures are employed as sensor (such as AFM probes) or construction elements.
Collapse
|
8
|
Villalba M, Venturelli L, Arnal L, Masson C, Dietler G, Vela ME, Yantorno O, Kasas S. Effect of antibiotics on mechanical properties of Bordetella pertussis examined by atomic force microscopy. Micron 2022; 155:103229. [DOI: 10.1016/j.micron.2022.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/12/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022]
|
9
|
Laskowski D, Strzelecki J, Dahm H, Balter A. Adhesion heterogeneity of individual bacterial cells in an axenic culture studied by atomic force microscopy. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:668-674. [PMID: 34060237 DOI: 10.1111/1758-2229.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
The evaluation of bacterial adhesive properties at a single-cell level is critical for under standing the role of phenotypic heterogeneity in bacterial attachment and community formation. Bacterial population exhibits a wide variety of adhesive properties at the single-cell level, suggesting that bacterial adhesion is a rather complex process and some bacteria are prone to phenotypic heterogeneity. This heterogeneity was more pronounced for Escherichia coli, where two subpopulations were detected. Subpopulations exhibiting higher adhesion forces may be better adapted to colonize a new surface, especially during sudden changes in environmental conditions. Escherichia coli was characterized by a higher adhesion force, a stronger ability to form biofilm and larger heterogeneity index calculated in comparison with Bacillus subtilis. Higher adhesion forces are associated with a more efficient attachment of bacteria observed in an adhesion assay and might provide a basis for successful colonization, survival and multiplications in changing environment. The atomic force microscopy provides a platform for investigation of the adhesion heterogeneity of individual cells within a population, which may be expected to underpin further elucidation of the adaptive significance of phenotypic heterogeneity in a natural environment.
Collapse
Affiliation(s)
- Dariusz Laskowski
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland
| | - Janusz Strzelecki
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudzia˛dzka 5, Toruń, 87-100, Poland
| | - Hanna Dahm
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland
| | - Aleksander Balter
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudzia˛dzka 5, Toruń, 87-100, Poland
| |
Collapse
|
10
|
Determination of Antimicrobial and Antibiofilm Activity of Combined LVX and AMP Impregnated in p(HEMA) Hydrogel. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Catheter-associated urinary tract infections (CAUTIs) are nosocomial infections, causing more than one million cases per year. CAUTIs cause serious health issues; in addition, the cost of replacement of the device constrains the employment of urological devices. Therefore, there is an urgent need to develop novel biomaterials for use in catheters. In this study, poly hydroxyethyl-methacrylate p(HEMA) and drugs-loaded p(HEMA) with ampicillin trihydrate (AMP), levofloxacin (LVX), and drug combinations were prepared using free radical polymerization. The characterization of the dried films included the determination of glass transition temperature (Tg), ultimate tensile strength, elongation percentage, and Young’s modulus. Formulation toxicity, antimicrobial activity, and biofilm-formation ability were tested. Decreases in Tg value, U.T.S., and Young’s modulus, and an increase in elongation percentage were observed in AMP-loaded p(HEMA). Different ratios of drug combinations increased the Tg values. The films exhibited a cell viability higher than 80% on HEK 293 cells. Antimicrobial activity increased when p(HEMA) was loaded with LVX or a combination of LVX and AMP. Biofilm-forming ability reduced after the addition of antimicrobial agents to the films. p(HEMA) impregnated with AMP, LVX, and drug combinations showed significantly increased antimicrobial activity and decreased biofilm-forming ability compared with p(HEMA), in addition to the effects on (HEMA) mechanical properties.
Collapse
|
11
|
Rossi GG, Guterres KB, Moreira KS, Burgo TAL, de Campos MMA, Iglesias BA. Photo-damage promoted by tetra-cationic palladium(II) porphyrins in rapidly growing mycobacteria. Photodiagnosis Photodyn Ther 2021; 36:102514. [PMID: 34481062 DOI: 10.1016/j.pdpdt.2021.102514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) has gained prominence in microbiology, especially in treating non-invasive infections. Diseases such as mycobacteriosis, which causes localized infections and has a slow treatment, tend to be future targets for this type of technology. Therefore, this study aimed to explore the action of two isomeric Pd(II)-porphyrins on fast-growing mycobacterial strains (RGM). Tetra-cationic porphyrins (4-PdTPyP and 3-PdTPyP) were synthesized and applied against standard strains of Mycobacteroides abscessus subsp. abscessus (ATCC 19977), Mycolicibacterium fortuitum (ATCC 6841), Mycolicibacterium smegmatis (ATCC 700084), and Mycobacteroides abscessus subsp. massiliense (ATCC 48898). Reactive oxygen species (ROS) scavengers were used in an attempt to determine possible ROS produced by the photosensitizers (PS) under study. Moreover, the impact of porphyrin on the mycobacterial surface was further evaluated by atomic force microscopy (AFM), and we observed significant damage on cells walls and altered nanomechanical and electrostatic adhesion properties. The results presented herein show that the positively charged porphyrin at the meta position (3-PdTPyP) was the most efficient PS against the RGM strains, and its bactericidal activity was proven in two irradiation sessions, with singlet oxygen species being the main ROS involved in this process. This study demonstrated the therapeutic potential of porphyrins, especially the 3-PdTPyP derivative.
Collapse
Affiliation(s)
- Grazille Guidolin Rossi
- Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Kevim Bordignon Guterres
- Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Kelly Schneider Moreira
- Coulomb Electrostatic and Mechanochemistry Laboratory, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Thiago Augusto Lima Burgo
- Coulomb Electrostatic and Mechanochemistry Laboratory, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Marli Matiko Anraku de Campos
- Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Bernardo Almeida Iglesias
- Bioinorganic and Porphyrinic Materials Laboratory, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil..
| |
Collapse
|
12
|
Generalov SV, Erokhin PS, Kuznetsov OS, Abramova EG, Zhulidov IM, Osina NA. Determining the Specific Activity of Anti-Rabies Sera and Immunoglobulin Using Atomic Force Microscopy of Cell Cultures. Avicenna J Med Biotechnol 2021; 13:136-142. [PMID: 34484643 PMCID: PMC8377403 DOI: 10.18502/ajmb.v13i3.6362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/19/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Mouse neutralization test is widely used to determine the level of anti-rabies antibodies, but it is labor-intensive and time consuming. Alternative methods for determining the neutralizing activity of anti-rabies sera and immunoglobulin in cell cultures are also known. Methods such as FAVN and RFFIT involve the use of fluorescent diagnostics. Determination of Cytopathic Effect (CPE) is often complicated due to features of rabies virus replication in cells. Atomic Force Microscopy (AFM) is able to detect the interaction of the virus with the cell at an early stage. Therefore, in this study, a method has been developed for determining the specific activity of anti-rabies sera and immunoglobulin using AFM of cell cultures. METHODS The method is based on the preliminary interaction of rabies virus with samples of rabies sera or immunoglobulin drug, adding the specified reaction mixture to cell culture (Vero or BHK-21), and then measuring the surface roughness of the cells using AFM. AFM was carried out in the intermittent contact mode by the mismatch method in the semi-contact mode. The results were compared with the values obtained in the mouse neutralization test. The consistency of the results obtained by both methods was evaluated by Bland-Altman method. RESULTS The increment in the surface roughness of the cells is a consequence of the damaging effect of the virus, which is weakened as a result of its neutralization by rabies antibodies. A dilution allowing 50% suppression of the increase in the surface roughness of cells was selected as the titer of rabies sera or immunoglobulin. In this case, the recommended range for determining the antibody titer is from 1:100 to 1:3000. CONCLUSION For the first time, a new methodological approach in virology and pharmaceutical research is presented in this study. The use of the proposed methodological technique will reduce the time from 21 to 2 days to obtain results in comparison with the mouse neutralization test; also, fewer laboratory animals are required in this approach which is in agreement with 3 R Principle.
Collapse
Affiliation(s)
| | - Pavel S. Erokhin
- Russian Research Anti-Plague Institute “Microbe”, Saratov, Russia
| | | | - Elena G. Abramova
- Russian Research Anti-Plague Institute “Microbe”, Saratov, Russia
- Saratov State Vavilov Agrarian University, Saratov, Russia
| | - Ivan M. Zhulidov
- Russian Research Anti-Plague Institute “Microbe”, Saratov, Russia
| | - Natalya A. Osina
- Russian Research Anti-Plague Institute “Microbe”, Saratov, Russia
| |
Collapse
|
13
|
Ivanov YD, Tatur VY, Pleshakova TO, Shumov ID, Kozlov AF, Valueva AA, Ivanova IA, Ershova MO, Ivanova ND, Repnikov VV, Stepanov IN, Ziborov VS. Effect of Spherical Elements of Biosensors and Bioreactors on the Physicochemical Properties of a Peroxidase Protein. Polymers (Basel) 2021; 13:1601. [PMID: 34063512 PMCID: PMC8155990 DOI: 10.3390/polym13101601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
External electromagnetic fields are known to be able to concentrate inside the construction elements of biosensors and bioreactors owing to reflection from their surface. This can lead to changes in the structure of biopolymers (such as proteins), incubated inside these elements, thus influencing their functional properties. Our present study concerned the revelation of the effect of spherical elements, commonly employed in biosensors and bioreactors, on the physicochemical properties of proteins with the example of the horseradish peroxidase (HRP) enzyme. In our experiments, a solution of HRP was incubated within a 30 cm-diameter titanium half-sphere, which was used as a model construction element. Atomic force microscopy (AFM) was employed for the single-molecule visualization of the HRP macromolecules, adsorbed from the test solution onto mica substrates in order to find out whether the incubation of the test HRP solution within the half-sphere influenced the HRP aggregation state. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was employed in order to reveal whether the incubation of HRP solution within the half-sphere led to any changes in its secondary structure. In parallel, spectrophotometry-based estimation of the HRP enzymatic activity was performed in order to find out if the HRP active site was affected by the electromagnetic field under the conditions of our experiments. We revealed an increased aggregation of HRP after the incubation of its solution within the half-sphere in comparison with the control sample incubated far outside the half-sphere. ATR-FTIR allowed us to reveal alterations in HRP's secondary structure. Such changes in the protein structure did not affect its active site, as was confirmed by spectrophotometry. The effect of spherical elements on a protein solution should be taken into account in the development of the optimized design of biosensors and bioreactors, intended for performing processes involving proteins in biomedicine and biotechnology, including highly sensitive biosensors intended for the diagnosis of socially significant diseases in humans (including oncology, cardiovascular diseases, etc.) at early stages.
Collapse
Affiliation(s)
- Yuri D. Ivanov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (I.D.S.); (A.F.K.); (A.A.V.); (I.A.I.); (M.O.E.); (V.S.Z.)
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412 Moscow, Russia
| | - Vadim Yu. Tatur
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (N.D.I.); (I.N.S.)
| | - Tatyana O. Pleshakova
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (I.D.S.); (A.F.K.); (A.A.V.); (I.A.I.); (M.O.E.); (V.S.Z.)
| | - Ivan D. Shumov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (I.D.S.); (A.F.K.); (A.A.V.); (I.A.I.); (M.O.E.); (V.S.Z.)
| | - Andrey F. Kozlov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (I.D.S.); (A.F.K.); (A.A.V.); (I.A.I.); (M.O.E.); (V.S.Z.)
| | - Anastasia A. Valueva
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (I.D.S.); (A.F.K.); (A.A.V.); (I.A.I.); (M.O.E.); (V.S.Z.)
| | - Irina A. Ivanova
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (I.D.S.); (A.F.K.); (A.A.V.); (I.A.I.); (M.O.E.); (V.S.Z.)
| | - Maria O. Ershova
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (I.D.S.); (A.F.K.); (A.A.V.); (I.A.I.); (M.O.E.); (V.S.Z.)
| | - Nina D. Ivanova
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (N.D.I.); (I.N.S.)
- Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 109472 Moscow, Russia
| | | | - Igor N. Stepanov
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (N.D.I.); (I.N.S.)
| | - Vadim S. Ziborov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (I.D.S.); (A.F.K.); (A.A.V.); (I.A.I.); (M.O.E.); (V.S.Z.)
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412 Moscow, Russia
| |
Collapse
|
14
|
Pacholak A, Burlaga N, Guzik U, Kaczorek E. Investigation of the bacterial cell envelope nanomechanical properties after long-term exposure to nitrofurans. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124352. [PMID: 33160784 DOI: 10.1016/j.jhazmat.2020.124352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic residues in the environment may negatively affect biological communities in the natural ecosystems. However, their influence on environmental bacterial strains has not been thoroughly investigated. In this study, two representatives of 5-nitrofuran antibiotics (nitrofurantoin and furaltadone) were investigated in terms of their long-term influence on the cell envelopes of newly isolated environmental bacterial strains (Sphingobacterium caeni FTD2, Achromobacter xylosoxidans NFZ2 and Pseudomonas hibiscicola FZD2). A 12-month exposure of bacterial cells to nitrofurans at a concentration of 20 mg L-1 induced changes in the cell structure and texture (bacteria under stress conditions showed a loss of their original shape and seemed to be vastly inflated, the cells increased average surface roughness after exposure to NFT and FTD, respectively). AFM observations allowed the calculation of the bacterial cell nanomechanical properties. Significant increase in adhesion energy of bacteria after prolonged contact with nitrofurantoin was demonstrated. Changes in the permeability of bacterial membrane, fatty acids' composition and bacterial cell surface hydrophobicity were determined. Despite visible bacterial adaptation to nitrofurans, prolonged presence of pharmaceuticals in the environment has led to significant alterations in the cells' structures which was particularly visible in P. hibiscicola.
Collapse
Affiliation(s)
- Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Natalia Burlaga
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Urszula Guzik
- University of Silesia in Katowice, Faculty of Natural Science, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40 032 Katowice, Poland.
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
15
|
Zamani E, Johnson TJ, Chatterjee S, Immethun C, Sarella A, Saha R, Dishari SK. Cationic π-Conjugated Polyelectrolyte Shows Antimicrobial Activity by Causing Lipid Loss and Lowering Elastic Modulus of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49346-49361. [PMID: 33089982 PMCID: PMC8926324 DOI: 10.1021/acsami.0c12038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cationic, π-conjugated oligo-/polyelectrolytes (CCOEs/CCPEs) have shown great potential as antimicrobial materials to fight against antibiotic resistance. In this work, we treated wild-type and ampicillin-resistant (amp-resistant) Escherichia coli (E. coli) with a promising cationic, π-conjugated polyelectrolyte (P1) with a phenylene-based backbone and investigated the resulting morphological, mechanical, and compositional changes of the outer membrane of bacteria in great detail. The cationic quaternary amine groups of P1 led to electrostatic interactions with negatively charged moieties within the outer membrane of bacteria. Using atomic force microscopy (AFM), high-resolution transmission electron microscopy (TEM), we showed that due to this treatment, the bacterial outer membrane became rougher, decreased in stiffness/elastic modulus (AFM nanoindentation), formed blebs, and released vesicles near the cells. These evidences, in addition to increased staining of the P1-treated cell membrane by lipophilic dye Nile Red (confocal laser scanning microscopy (CLSM)), suggested loosening/disruption of packing of the outer cell envelope and release and exposure of lipid-based components. Lipidomics and fatty acid analysis confirmed a significant loss of phosphate-based outer membrane lipids and fatty acids, some of which are critically needed to maintain cell wall integrity and mechanical strength. Lipidomics and UV-vis analysis also confirmed that the extracellular vesicles released upon treatment (AFM) are composed of lipids and cationic P1. Such surface alterations (vesicle/bleb formation) and release of lipids/fatty acids upon treatment were effective enough to inhibit further growth of E. coli cells without completely disintegrating the cells and have been known as a defense mechanism of the cells against cationic antimicrobial agents.
Collapse
Affiliation(s)
- Ehsan Zamani
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Tyler J. Johnson
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Shyambo Chatterjee
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Cheryl Immethun
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Anandakumar Sarella
- Nebraska Center for Materials and Nanoscience, Voelte-Keegan Nanoscience Research Center, University of Nebraska-Lincoln, Lincoln, NE 68588-0298, United States
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
16
|
Chen C, Li G, Cui X, Chen J, Yu Q, Zong C, Zhao Y, Xu M, Zhou S, Xu H. Mechanistic Investigation of a Self-Assembling Peptide against Escherichia coli. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9800-9809. [PMID: 32787117 DOI: 10.1021/acs.langmuir.0c01311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because of their distinctive mode of action in targeting bacterial cell membranes, antimicrobial peptides (AMPs) are increasingly regarded as a potential candidate for the development of novel antibiotics to combat the wide spread of bacterial resistance. To date, understanding of the exact molecular process by which AMPs act on the real bacterial envelope remains challenging. Simultaneously, the aggregated state of AMPs upon interaction with bacterial envelopes is still elusive. Previously, we have demonstrated that the potent antibacterial activity of a designed surfactant-like peptide Ac-A9K-NH2 benefited greatly from its high self-assembling ability and appropriate self-assembled morphologies and sizes. By using high-resolution atomic force microscopy, we here not only follow the variations of the Escherichia coli cell envelope in the presence of Ac-A9K-NH2 but also characterize the peptide aggregates on the bacterial surface as well as on the substrate surface. The results, together with those from fluorescence, zeta potential, circular dichroism, and scanning electron microscopy measurements, indicate that both the positively charged peptide monomers and self-assembled nanostructures can directly act on the negatively charged bacterial surface, followed by their insertion into the bacterial membrane, the formation of surface nanopores, and membrane lysis. The mechanism of Ac-A9K-NH2 against E. coli is thus consistent with the detergent-like mode of action. This work enhances our mechanistic understanding of the antibacterial behaviors of self-assembling peptides that will be valuable in exploring their biomedical applications.
Collapse
Affiliation(s)
- Cuixia Chen
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Gongrang Li
- Drilling Technology Research Institute, Sinopec Shengli Oilfield Service Corporation, Dongying 257000, China
| | - Xuejing Cui
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jiaxi Chen
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Qizhi Yu
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Cheng Zong
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yurong Zhao
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Minglu Xu
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Shasha Zhou
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
17
|
Variations in the Morphology, Mechanics and Adhesion of Persister and Resister E. coli Cells in Response to Ampicillin: AFM Study. Antibiotics (Basel) 2020; 9:antibiotics9050235. [PMID: 32392749 PMCID: PMC7277365 DOI: 10.3390/antibiotics9050235] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Persister bacterial cells are great at surviving antibiotics. The phenotypic means by which they do that are underexplored. As such, atomic force microscope (AFM) was used to quantify the contributions of the surface properties of the outer membrane of multidrug resistance (MDR)-Escherichia coli Strains (A5 and A9) in the presence of ampicillin at minimum inhibitory concentration (MIC) (resistant cells) and at 20× MIC (persistent cells). The properties quantified were morphology, root mean square (RMS) roughness, adhesion, elasticity, and bacterial surface biopolymers' thickness and grafting density. Compared to untreated cells, persister cells of E. coli A5 increased their RMS, adhesion, apparent grafting density, and elasticity by 1.2, 3.4, 2.0, and 3.3 folds, respectively, and decreased their surface area and brush thickness by 1.3 and 1.2 folds, respectively. Similarly, compared to untreated cells, persister cells of E. coli A9 increased their RMS, adhesion and elasticity by 1.6, 4.4, and 4.5 folds, respectively; decreased their surface area and brush thickness by 1.4 and 1.6 folds, respectively; and did not change their grafting densities. Our results indicate that resistant and persistent E. coli A5 cells battled ampicillin by decreasing their size and going through dormancy. The resistant E. coli A9 cells resisted ampicillin through elongation, increased surface area, and adhesion. In contrast, the persistent E. coli A9 cells resisted ampicillin through increased roughness, increased surface biopolymers' grafting densities, increased cellular elasticities, and decreased surface areas. Mechanistic insights into how the resistant and persistent E. coli cells respond to ampicillin's treatment are instrumental to guide design efforts exploring the development of new antibiotics or renovating the existing antibiotics that may kill persistent bacteria by combining more than one mechanism of action.
Collapse
|
18
|
Goss JW, Volle CB. Using Atomic Force Microscopy To Illuminate the Biophysical Properties of Microbes. ACS APPLIED BIO MATERIALS 2019; 3:143-155. [PMID: 32851362 DOI: 10.1021/acsabm.9b00973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since its invention in 1986, atomic force microscopy (AFM) has grown from a system designed for imaging inorganic surfaces to a tool used to probe the biophysical properties of living cells and tissues. AFM is a scanning probe technique and uses a pyramidal tip attached to a flexible cantilever to scan across a surface, producing a highly detailed image. While many research articles include AFM images, fewer include force-distance curves, from which several biophysical properties can be determined. In a single force-distance curve, the cantilever is lowered and raised from the surface, while the forces between the tip and the surface are monitored. Modern AFM has a wide variety of applications, but this review will focus on exploring the mechanobiology of microbes, which we believe is of particular interest to those studying biomaterials. We briefly discuss experimental design as well as different ways of extracting meaningful values related to cell surface elasticity, cell stiffness, and cell adhesion from force-distance curves. We also highlight both classic and recent experiments using AFM to illuminate microbial biophysical properties.
Collapse
Affiliation(s)
- John W Goss
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Catherine B Volle
- Departments of Biology and Chemistry, Cornell College, Mount Vernon, Iowa 52314, United States
| |
Collapse
|
19
|
Molecular Mechanisms of Leonurus Cardiaca L. Extract Activity in Prevention of Staphylococcal Endocarditis-Study on in Vitro and ex Vivo Models. Molecules 2019; 24:molecules24183318. [PMID: 31547303 PMCID: PMC6767068 DOI: 10.3390/molecules24183318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/23/2022] Open
Abstract
Better understanding the mechanisms of Leonurus cardiaca L. extract (LCE) activity is necessary to prepare recommendations for the use of LCE-based herbal products for preventive/supportive purposes in case of infective endocarditis (IE) and other staphylococcal invasive infections. The aim of the study was to analyze molecular mechanisms of LCE effect on Staphylococcus aureus and blood platelets in the context of their interactions playing a pivotal role in such disorders. Using atomic force microscopy, we demonstrated that adhesion forces of S. aureus were markedly reduced after exposure to LCE at subinhibitory concentrations. The effect resulted from the impact of LCE on S. aureus cell morphology and the composition of phospholipids and fatty acids in bacterial membranes (assessed by HPLC), which modulated their stabilization, hydrophobicity, and charge. Moreover, using FACS we showed also that LCE significantly reduced GP IIb/IIIa expression on blood platelets, thus the disruption of platelet-fibrinogen interactions seems to explain antiplatelet effect of LCE. The obtained results prove the usefulness of LCE in the prevention of S. aureus adhesion, platelet activation, and vegetations development, however, also pointed out the necessity of excluding the cationic antibiotics from the treatment of S. aureus-associated IE and other invasive diseases, when motherwort herb is used simultaneously as an addition to the daily diet.
Collapse
|
20
|
Uzoechi SC, Abu-Lail NI. Changes in Cellular Elasticities and Conformational Properties of Bacterial Surface Biopolymers of Multidrug-Resistant Escherichia coli (MDR- E. coli) Strains in Response to Ampicillin. ACTA ACUST UNITED AC 2019; 5. [PMID: 31179402 PMCID: PMC6550352 DOI: 10.1016/j.tcsw.2019.100019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The roles of the thicknesses and grafting densities of the surface biopolymers of four multi-drug resistant (MDR) Escherichia coli bacterial strains that varied in their biofilm formation in controlling cellular elasticities after exposure to ampicillin were investigated using atomic force microscopy. Exposure to ampicillin was carried out at minimum inhibitory concentrations for different duration times. Our results indicated that the four strains resisted ampicillin through variable mechanisms. Strain A5 did not change its cellular properties upon exposure to ampicillin and as such resisted ampicillin through dormancy. Strain H5 increased its biopolymer brush thickness, adhesion and biofilm formation and kept its roughness, surface area and cell elasticity unchanged upon exposure to ampicillin. As such, this strain likely limits the diffusion of ampicillin by forming strong biofilms. At three hours’ exposure to ampicillin, strains D4 and A9 increased their roughness, surface areas, biofilm formation, and brush thicknesses and decreased their elasticities. Therefore, at short exposure times to ampicillin, these strains resisted ampicillin through forming strong biofilms that impede ampicillin diffusion. At eight hours’ exposure to ampicillin, strains D4 and A9 collapsed their biopolymers, increased their apparent grafting densities and increased their cellular elasticities. Therefore, at long exposure times to ampicillin, cells utilized their higher rigidity to reduce the diffusion of ampicillin into the cells. The findings of this study clearly point to the potential of using the nanoscale characterization of MDR bacterial properties as a means to monitor cell modifications that enhance “phenotypic antibiotic resistance”.
Collapse
Affiliation(s)
- Samuel C Uzoechi
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164.,Department of Biomedical Technology, Federal University of Technology, Owerri, PMB 1526, Owerri, Nigeria
| | - Nehal I Abu-Lail
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249
| |
Collapse
|
21
|
Yu N, Zhao C, Ma B, Li S, She Z, Guo L, Zhang Q, Zhao Y, Jin C, Gao M. Impact of ampicillin on the nitrogen removal, microbial community and enzymatic activity of activated sludge. BIORESOURCE TECHNOLOGY 2019; 272:337-345. [PMID: 30384208 DOI: 10.1016/j.biortech.2018.10.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
The performance, nitrogen removal rate, extracellular polymeric substances (EPS), microbial community and enzymatic activity of activated sludge have been assessed in a sequencing batch reactor under ampicillin stress. The chemical oxygen demand and ammonia removal kept relatively stable at 0-30 mg/L ampicillin. No obvious nitrite and nitrate accumulation was found in the effluent. However, the oxygen utilization rate, nitrification rate and denitrification rate declined with the increment of ampicillin concentration. The activities of dehydrogenase and microbial enzymes relating to nitrogen removal were inhibited under ampicillin stress. Ampicillin at 20 and 30 mg/L heightened the microbial lactate dehydrogenase release and reactive oxygen species production. Ampicillin promoted the production of EPS, loosely bound EPS and tightly bound EPS and affected their chemical composition. Additionally, the protein/polysaccharide ratios in the EPS and the sludge settleability reduced with the increment of ampicillin concentration. Ampicillin obviously affected the relative abundance of nitrifying- and denitrifying bacteria.
Collapse
Affiliation(s)
- Naling Yu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Changkun Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Bingrui Ma
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shanshan Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Qian Zhang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|