1
|
Mishra KK, Dhamu VN, Jophy C, Muthukumar S, Prasad S. Electroanalytical Platform for Rapid E. coli O157:H7 Detection in Water Samples. BIOSENSORS 2024; 14:298. [PMID: 38920602 PMCID: PMC11201563 DOI: 10.3390/bios14060298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
There is a pressing need to enhance early detection methods of E. coli O157:H7 to mitigate the occurrence and consequences of pathogenic contamination and associated outbreaks. This study highlights the efficacy of a portable electrochemical sensing platform that operates without faradaic processes towards detecting and quantifying E. coli O157:H7. It is specifically tailored for quick identification in potable water. The assay processing time is approximately 5 min, addressing the need for swift and efficient pathogen detection. The sensing platform was constructed utilizing specific, monoclonal E. coli antibodies, based on single-capture, non-faradaic, electrochemical immunoassay principles. The E. coli sensor assay underwent testing over a wide concentration range, spanning from 10 to 105 CFU/mL, and a limit of detection (LoD) of 1 CFU/mL was demonstrated. Significantly, the sensor's performance remained consistent across studies, with both inter- and intra-study coefficients of variation consistently below 20%. To evaluate real-world feasibility, a comparative examination was performed between laboratory-based benchtop data and data obtained from the portable device. The proposed sensing platform exhibited remarkable sensitivity and selectivity, enabling the detection of minimal E. coli concentrations in potable water. This successful advancement positions it as a promising solution for prompt on-site detection, characterized by its portability and user-friendly operation. This study presents electrochemical-based sensors as significant contributors to ensuring food safety and public health. They play a crucial role in preventing the occurrence of epidemics and enhancing the supervision of water quality.
Collapse
Affiliation(s)
- Kundan Kumar Mishra
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | | | - Chesna Jophy
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | | | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- EnLiSense LLC, 1813 Audubon Pondway, Allen, TX 75013, USA
| |
Collapse
|
2
|
Saetang J, Sukkapat P, Palamae S, Singh P, Senathipathi DN, Buatong J, Benjakul S. Multiplex PCR-Lateral Flow Dipstick Method for Detection of Thermostable Direct Hemolysin ( TDH) Producing V. parahaemolyticus. BIOSENSORS 2023; 13:698. [PMID: 37504096 PMCID: PMC10377466 DOI: 10.3390/bios13070698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Vibrio parahaemolyticus is usually found in seafood and causes acute gastroenteritis in humans. Therefore, a detection method of pathogenic V. parahaemolyticus is necessary. Multiplex PCR combined with lateral flow dipstick (LFD) assay was developed to detect pathogenic V. parahaemolyticus. Biotin-, FAM-, and Dig-conjugated primers targeting thermolabile hemolysin (TLH) and thermostable direct hemolysin (TDH) genes were used for multiplex PCR amplification. The condition of the method was optimized and evaluated by agarose gel electrophoresis and universal lateral flow dipstick. The specificity assay was evaluated using strains belonging to seven foodborne pathogen species. The sensitivity of the method was also evaluated using DNA in the concentration range of 0.39-100 ng/reaction. The artificial spiking experiment was performed using 10 g of shrimp samples with an enrichment time of 0, 4, and 8 h with 101, 102, and 103 CFU of V. parahaemolyticus. The developed multiplex PCR-LFD assay showed no non-specific amplification with a limit of the detection of 0.78 ng DNA/reaction visualized by agarose gel electrophoresis and 0.39 ng DNA with LFD assay. The artificial spiking experiment demonstrated that this method could detect pathogenic V. parahaemolyticus at 10 CFU/10 g shrimp samples following a 4 h of enrichment. Multiplex PCR-LFD assay was therefore established for detecting pathogenic V. parahaemolyticus with high sensitivity and specificity and might be a useful tool to develop a detection kit used in the food safety sector.
Collapse
Affiliation(s)
- Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Phutthipong Sukkapat
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Suriya Palamae
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Prashant Singh
- Department of Nutrition, and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Deep Nithun Senathipathi
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Jirayu Buatong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| |
Collapse
|
3
|
Elbehiry A, Abalkhail A, Marzouk E, Elmanssury AE, Almuzaini AM, Alfheeaid H, Alshahrani MT, Huraysh N, Ibrahem M, Alzaben F, Alanazi F, Alzaben M, Anagreyyah SA, Bayameen AM, Draz A, Abu-Okail A. An Overview of the Public Health Challenges in Diagnosing and Controlling Human Foodborne Pathogens. Vaccines (Basel) 2023; 11:vaccines11040725. [PMID: 37112637 PMCID: PMC10143666 DOI: 10.3390/vaccines11040725] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Pathogens found in food are believed to be the leading cause of foodborne illnesses; and they are considered a serious problem with global ramifications. During the last few decades, a lot of attention has been paid to determining the microorganisms that cause foodborne illnesses and developing new methods to identify them. Foodborne pathogen identification technologies have evolved rapidly over the last few decades, with the newer technologies focusing on immunoassays, genome-wide approaches, biosensors, and mass spectrometry as the primary methods of identification. Bacteriophages (phages), probiotics and prebiotics were known to have the ability to combat bacterial diseases since the turn of the 20th century. A primary focus of phage use was the development of medical therapies; however, its use quickly expanded to other applications in biotechnology and industry. A similar argument can be made with regards to the food safety industry, as diseases directly endanger the health of customers. Recently, a lot of attention has been paid to bacteriophages, probiotics and prebiotics most likely due to the exhaustion of traditional antibiotics. Reviewing a variety of current quick identification techniques is the purpose of this study. Using these techniques, we are able to quickly identify foodborne pathogenic bacteria, which forms the basis for future research advances. A review of recent studies on the use of phages, probiotics and prebiotics as a means of combating significant foodborne diseases is also presented. Furthermore, we discussed the advantages of using phages as well as the challenges they face, especially given their prevalent application in food safety.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia (E.M.)
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
- Correspondence:
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia (E.M.)
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia (E.M.)
| | - Ahmed Elnadif Elmanssury
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia (E.M.)
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Hani Alfheeaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Human Nutrition, School of Medicine, Nursing and Dentistry, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G31 2ER, UK
| | - Mohammed T. Alshahrani
- Department of Neurology, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia
| | - Nasser Huraysh
- Department of Family Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Mai Ibrahem
- Department of Public Health, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia;
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Farhan Alanazi
- Supply Administration, Armed Forces Hospital, King Abdul Aziz Naval Base in Jubail, Jubail 35517, Saudi Arabia
| | - Mohammed Alzaben
- Department of Food Factories Inspection, Operation Sector, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | | | | | - Abdelmaged Draz
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
4
|
Molecular Methods for Identification and Quantification of Foodborne Pathogens. Molecules 2022; 27:molecules27238262. [PMID: 36500353 PMCID: PMC9737419 DOI: 10.3390/molecules27238262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Foodborne pathogens that enter the human food chain are a significant threat worldwide to human health. Timely and cost-effective detection of them became challenging for many countries that want to improve their detection and control of foodborne illness. We summarize simple, rapid, specific, and highly effective molecular technology that is used to detect and identify foodborne pathogens, including polymerase chain reaction, isothermal amplification, loop-mediated isothermal amplification, nucleic acid sequence-based amplification, as well as gene chip and gene probe technology. The principles of their operation, the research supporting their application, and the advantages and disadvantages of each technology are summarized.
Collapse
|
5
|
Boukharouba A, González A, García-Ferrús M, Ferrús MA, Botella S. Simultaneous Detection of Four Main Foodborne Pathogens in Ready-to-Eat Food by Using a Simple and Rapid Multiplex PCR (mPCR) Assay. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031031. [PMID: 35162055 PMCID: PMC8834630 DOI: 10.3390/ijerph19031031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/25/2022]
Abstract
The increasing consumption of organic or ready-to-eat food may cause serious foodborne disease outbreaks. Developing microbiological culture for detection of food-borne pathogens is time-consuming, expensive, and laborious. Thus, alternative methods such as polymerase chain reaction (PCR) are usually employed for outbreaks investigation. In this work, we aimed to develop a rapid and simple protocol for the simultaneous detection of Escherichia coli (E coli), Listeria monocytogenes (L. monocytogenes), Staphylococcus aureus (S. aureus) and Salmonella enterica (S. enterica), by the combination of an enrichment step in a single culture broth and a multiplex PCR (mPCR) assay. The effectiveness of several enrichment media was assessed by culture and PCR. Buffered peptone water (BPW) was selected as the optimum one. Then, mPCR conditions were optimized and applied both to pure co-cultures and artificially inoculated food samples (organic lettuce and minced meat). In the culture medium inoculated at 100 CFU/mL, mPCR was able to detect the four microorganisms. When performed on artificially food samples, the mPCR assy was able to detect E. coli, S. enterica, and L. monocytogenes. In conclusion, BPW broth can effectively support the simultaneous growth of E. coli, S. aureus, L. monocytogenes, and S. enterica and could be, thus, used prior to a mPCR detection assay in ready-to-eat food, thereby considerably reducing the time, efforts and costs of analyzes.
Collapse
Affiliation(s)
| | | | | | | | - Salut Botella
- Correspondence: (M.A.F.); (S.B.); Tel.: +34-963877423 (M.A.F.)
| |
Collapse
|
6
|
Al-Awwal N, Masjedi M, El-Dweik M, Anderson SH, Ansari J. Nanoparticle immuno-fluorescent probes as a method for detection of viable E. coli O157:H7. METHODS IN MICROBIOLOGY 2022; 193:106403. [PMID: 34990644 DOI: 10.1016/j.mimet.2021.106403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
Abstract
Development of revolutionary sensitive biosensors for detecting the presence of harmful biological species in the environment is a necessity for countering disease outbreaks. This work examined the interaction of fluorescence-labeled antibody on amine functionalized gold nanoparticles (GNP) as a model system. The synthesized tetramethylrhodamine isothiocyanate (TRITC) labeled antibody-amine functionalized GNP interaction was characterized using UV-Vis spectroscopy and Fluorescent Microscopy imaging. Transmission Electron Microscopy (TEM) was also used to observe the morphology of the GNP. In contrast to TEM, the fluorescence microscopy imaging revealed the coating of the TRITC labeled antibody on the surface of the GNP. The signals were measured using a Photon Technology Inc. fluorometer at excitation of 541 nm and emission at 555 nm to 650 nm. Tests were conducted at near real-time with results obtained using the biosensor assay within 5 min. Results indicated that there was a shift of the wavelength from lower to higher wavelength (blue to red shift) when conjugated GNP (anti-E. coliO157:H7; IgY-TRITC-GNP) are compared to free GNP, a difference of about 28 nm. The GNP demonstrated a quenching capability when compared to the TRITC labeled antibody (degree of labeling of 15.41 mol dye per mole of IgY) using fluorometer. The lower and upper detection range of this method was found to be 103-105 CFU/mL with observed fluorescence of about 42,000 counts per seconds as against 24,000 counts per seconds that was observed when the specificity of the sensor was tested using Salmonella enterica.
Collapse
Affiliation(s)
- Nasruddeen Al-Awwal
- School of Natural Resources, University of Missouri Columbia, 321 Anheuser-Busch Natural Resources Building, 65211, United States
| | - Mehdi Masjedi
- Cooperative Research and Extension, College of Agriculture, Environmental and Human Sciences, Lincoln University Missouri, 65101, United States
| | - Majed El-Dweik
- Cooperative Research and Extension, College of Agriculture, Environmental and Human Sciences, Lincoln University Missouri, 65101, United States.
| | - Stephen H Anderson
- School of Natural Resources, University of Missouri Columbia, 321 Anheuser-Busch Natural Resources Building, 65211, United States
| | - Jamshid Ansari
- School of Natural Resources, University of Missouri Columbia, 321 Anheuser-Busch Natural Resources Building, 65211, United States
| |
Collapse
|
7
|
Yang X, Wisuthiphaet N, Young GM, Nitin N. Rapid detection of Escherichia coli using bacteriophage-induced lysis and image analysis. PLoS One 2020; 15:e0233853. [PMID: 32502212 PMCID: PMC7274428 DOI: 10.1371/journal.pone.0233853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/13/2020] [Indexed: 02/02/2023] Open
Abstract
Rapid detection of bacterial pathogens is a critical unmet need for both food and environmental samples such as irrigation water. As a part of the Food safety Modernization Act (FSMA), The Produce Safety rule has established several requirements for testing for the presence of generic Escherichia coli in water, but the current method available for testing (EPA M1603) demands specified multiple colony verification and highly trained personnel to perform these tests. The purpose of the study was to assess a phage induced bacterial lysis using quantitative image analysis to achieve rapid detection of E. coli at low concentrations within 8 hours. This study aimed to develop a simple yet highly sensitive and specific approach to detect target bacteria in complex matrices. In the study, E. coli cells were first enriched in tryptic soy broth (TSB), followed by T7 phage induced lysis, concentration, staining and fluorescent imaging. Image analysis was conducted including image pre-processing, image segmentation and quantitatively analysis of cellular morphological features (area, eccentricity and full width at half maximum). Challenge experiments using realistic matrices, including simulated fresh produce wash water, coconut water and spinach wash water, demonstrated the method can be applied for use in situations that occur in food processing facilities. The results indicated E. coli cells that are lysed by T7 phages demonstrated significantly (P < 0.05) higher extracellular DNA release, altered cellular shape (from rod to circular) and diffused fluorescent signal intensity. Using this biosensing strategy, a sensitivity to detect Escherichia coli at 10 CFU/ml within 8 hours was achieved, both in laboratory medium and in complex matrices. The proposed phage based biosensing strategy enables rapid detection of bacteria and is applicable to analysis of food systems. Furthermore, the steps involved in this assay can be automated to enable detection of target bacteria in food facilities without extensive resources.
Collapse
Affiliation(s)
- Xu Yang
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States of America
| | - Nicharee Wisuthiphaet
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States of America
| | - Glenn M. Young
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States of America
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States of America
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Sahu B, Singh SD, Behera BK, Panda SK, Das A, Parida PK. Rapid detection of Salmonella contamination in seafoods using multiplex PCR. Braz J Microbiol 2019; 50:807-816. [PMID: 31006836 PMCID: PMC6863201 DOI: 10.1007/s42770-019-00072-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/09/2019] [Indexed: 12/20/2022] Open
Abstract
Effective monitoring of Salmonella contamination in seafood processing to conform the requirements of HACCP is a great challenge today. Such challenges can be effectively addressed, if the conventional detection methods are replaced with DNA-based molecular methods. Accordingly, it was aimed to develop a robust PCR protocol for specific detection of Salmonella spp. Out of the different primers screened, one pair of primers developed in this study targeting invA gene demonstrated 100% inclusivity for a wide range of Salmonella serotypes and 100% exclusivity for wide range of non-target species. The in silico analysis of the nucleotide sequence obtained from the PCR product suggests its potential as a hybridization probe for genus specific detection of Salmonella spp. contamination. The PCR protocol was sensitive enough to detect 15 cells per reaction using crude DNA prepared within a short time directly from artificially contaminated shrimp tissue. The study demonstrated that the result of PCR reaction can come out on the same day of sample arrival. Incorporation of this pair of primers in a multiplex PCR designed for simultaneous detection of four common seafood-borne human pathogens yielded 147 bp, 302 bp, 403 bp, and 450 bp distinct DNA bands specifically targeting E. coli, toxigenic Vibrio cholerae, Salmonella spp., and V. parahaemolyticus, respectively in a single PCR tube. The PCR methods developed in this study has the potential to be used in the seafood processing plants for effective monitoring of CCPs required for implementation of HACCP-based quality assurance system.
Collapse
Affiliation(s)
- Brundaban Sahu
- College of Fisheries (OUAT), Rangailunda, Berhampur, Odisha, 760007, India.
| | - Shiva D Singh
- Former ADG (Inland Fisheries), ICAR, New Delhi; presently at - 5/85,Biramkhand, Gomti Nagar, Lucknow, 226010, India
| | | | | | | | | |
Collapse
|
9
|
Abdelhaseib MU, Singh AK, Bhunia AK. Simultaneous detection of Salmonella enterica, Escherichia coli and Listeria monocytogenes in food using a light scattering sensor. J Appl Microbiol 2019; 126:1496-1507. [PMID: 30761711 DOI: 10.1111/jam.14225] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Abstract
AIM To investigate the use of a light scattering sensor, BActerial Rapid Detection using Optical scattering Technology (BARDOT) coupled with a multipathogen selective medium, Salmonella, Escherichia and Listeria (SEL), for concurrent detection of the three major foodborne pathogens in a single assay. METHODS AND RESULTS BARDOT was used to detect and distinguish the three major pathogens, Salmonella enterica, Shiga toxin-producing Escherichia coli (STEC) and Listeria monocytogenes from food based on colony scatter signature patterns on SEL agar (SELA). Multiple strains of three test pathogens were grown on SELA, and BARDOT was used to generate colony scatter image libraries for inclusive (SEL Library) and exclusive (non-SEL Library) bacterial group. These pathogens were further differentiated using the SEL scatter image library. Raw chicken and hotdog samples were artificially inoculated with pathogens (100 CFU per 25 g each), and enriched in SEL broth at 37°C for 18 h and colonies were grown on SELA for 11-22 h before screening with BARDOT. The BARDOT sensor successfully detected and differentiated Salmonella, STEC and Listeria on SELA with high classification accuracy 92-98%, 91-98% and 83-98% positive predictive values (PPV) respectively; whereas the nontarget strains showed only 0-13% PPV. BARDOT-identified colonies were further confirmed by multiplex PCR targeting inlB gene of L. monocytogenes, stx2 of STEC and sefA of S. enterica serovar Enteritidis. CONCLUSIONS The results show that BARDOT coupled with SELA can efficiently screen for the presence of three major pathogens simultaneously in a test sample within 29-40 h. SIGNIFICANCE AND IMPACT OF THE STUDY This innovative SELA-BARDOT detection platform can reduce turnaround time and economic burden on food industries by offering a label-free, noninvasive on-plate multipathogen screening technology for reducing microbial food safety and public health concerns.
Collapse
Affiliation(s)
- M U Abdelhaseib
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA.,Food Hygiene Department, Assiut University, Assiut, Egypt
| | - A K Singh
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA.,Clear Labs, Menlo Park, CA, USA
| | - A K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
10
|
Alahi MEE, Mukhopadhyay SC. Detection Methodologies for Pathogen and Toxins: A Review. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1885. [PMID: 28813028 PMCID: PMC5580025 DOI: 10.3390/s17081885] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/02/2017] [Accepted: 08/14/2017] [Indexed: 01/10/2023]
Abstract
Pathogen and toxin-contaminated foods and beverages are a major source of illnesses, even death, and have a significant economic impact worldwide. Human health is always under a potential threat, including from biological warfare, due to these dangerous pathogens. The agricultural and food production chain consists of many steps such as harvesting, handling, processing, packaging, storage, distribution, preparation, and consumption. Each step is susceptible to threats of environmental contamination or failure to safeguard the processes. The production process can be controlled in the food and agricultural sector, where smart sensors can play a major role, ensuring greater food quality and safety by low cost, fast, reliable, and profitable methods of detection. Techniques for the detection of pathogens and toxins may vary in cost, size, and specificity, speed of response, sensitivity, and precision. Smart sensors can detect, analyse and quantify at molecular levels contents of different biological origin and ensure quality of foods against spiking with pesticides, fertilizers, dioxin, modified organisms, anti-nutrients, allergens, drugs and so on. This paper reviews different methodologies to detect pathogens and toxins in foods and beverages.
Collapse
Affiliation(s)
- Md Eshrat E Alahi
- Department of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | | |
Collapse
|
11
|
Chen JQ, Healey S, Regan P, Laksanalamai P, Hu Z. PCR-based methodologies for detection and characterization of Listeria monocytogenes and Listeria ivanovii in foods and environmental sources. FOOD SCIENCE AND HUMAN WELLNESS 2017. [DOI: 10.1016/j.fshw.2017.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Feng K, Hu W, Jiang A, Sarengaowa, Xu Y, Zou Y, Yang L, Wang X. A Dual Filtration-Based Multiplex PCR Method for Simultaneous Detection of Viable Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus on Fresh-Cut Cantaloupe. PLoS One 2016; 11:e0166874. [PMID: 27906992 PMCID: PMC5132219 DOI: 10.1371/journal.pone.0166874] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 11/04/2016] [Indexed: 11/19/2022] Open
Abstract
Fresh-cut cantaloupe is particularly susceptible to contamination with pathogenic bacteria, such as Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Therefore, development of rapid, yet accurate detection techniques is necessary to ensure food safety. In this study, a multiplex PCR system and propidium monoazide (PMA) concentration were optimized to detect all viable pathogens in a single tube. A dual filtration system utilized a filtration membrane with different pore sizes to enrich pathogens found on fresh-cut cantaloupe. The results revealed that an optimized multiplex PCR system has the ability to effectively detect three pathogens in the same tube. The viable pathogens were simultaneously detected for PMA concentrations above 10 μg/ml. The combination of a nylon membrane (15 μm) and a micro pore filtration membrane (0.22 μm) formed the dual filtration system used to enrich pathogens. The achieved sensitivity of PMA-mPCR based on this dual filtration system was 2.6 × 103 cfu/g for L. monocytogenes, 4.3 × 10 cfu/g for E. coli O157:H7, and 3.1 × 102 cfu/g for S. aureus. Fresh-cut cantaloupe was inoculated with the three target pathogens using concentrations of 103, 102, 10, and 1 cfu/g. After 6-h of enrichment culture, assay sensitivity increased to 1 cfu/g for each of these pathogens. Thus, this technique represents an efficient and rapid detection tool for implementation on fresh-cut cantaloupe.
Collapse
Affiliation(s)
- Ke Feng
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
- College of Life Science, Dalian Nationalities University, Dalian, China
| | - Wenzhong Hu
- College of Life Science, Dalian Nationalities University, Dalian, China
| | - Aili Jiang
- College of Life Science, Dalian Nationalities University, Dalian, China
| | - Sarengaowa
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
- College of Life Science, Dalian Nationalities University, Dalian, China
| | - Yongping Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yu Zou
- College of Life Science, Dalian Nationalities University, Dalian, China
| | - Liu Yang
- College of Life Science, Dalian Nationalities University, Dalian, China
| | - Xin Wang
- College of Life Science, Dalian Nationalities University, Dalian, China
| |
Collapse
|
13
|
Kaynak A, Şakalar E. A Rapid and Cost-Efficient Technique for Simultaneous/Duplex Detection of Listeria Monocytogenes
and Escherichia Coli
O157:H7 Using Real Time PCR. J Food Saf 2016. [DOI: 10.1111/jfs.12254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ahmet Kaynak
- Department of Bioengineering, Faculty of Engineering; Canakkale Onsekiz Mart University; 17020 Canakkale Turkey
| | - Ergün Şakalar
- Department of Bioengineering, Faculty of Engineering; Canakkale Onsekiz Mart University; 17020 Canakkale Turkey
| |
Collapse
|
14
|
Zhang H, Zhang Y, Lin Y, Liang T, Chen Z, Li J, Yue Z, Lv J, Jiang Q, Yi C. Ultrasensitive detection and rapid identification of multiple foodborne pathogens with the naked eyes. Biosens Bioelectron 2015; 71:186-193. [DOI: 10.1016/j.bios.2015.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 04/12/2015] [Indexed: 10/23/2022]
|
15
|
Barizuddin S, Balakrishnan B, Stringer RC, Dweik M. Highly specific and rapid immuno-fluorescent visualization and detection of E. coli O104:H4 with protein-A coated magnetic beads based LST-MUG assay. J Microbiol Methods 2015; 115:27-33. [DOI: 10.1016/j.mimet.2015.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
|
16
|
Mangal M, Bansal S, Sharma SK, Gupta RK. Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety. Crit Rev Food Sci Nutr 2015; 56:1568-84. [DOI: 10.1080/10408398.2013.782483] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Kim JH, Rhim SR, Kim KT, Paik HD, Lee JY. Simultaneous Detection of Listeria monocytogenes, Escherichia coli O157:H7, Bacillus cereus, Salmonella spp., and Staphylococcus aureus in Low-fatted Milk by Multiplex PCR. Korean J Food Sci Anim Resour 2014; 34:717-23. [PMID: 26761507 PMCID: PMC4662235 DOI: 10.5851/kosfa.2014.34.5.717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/12/2014] [Accepted: 07/28/2014] [Indexed: 11/23/2022] Open
Abstract
A rapid and specific PCR assay for the simultaneous detection of Listeria monocytogenes, Escherichia coli O157:H7, Bacillus cereus, Salmonella spp., and Staphylococcus aureus in foods was developed to reduce the detection time and to increase sensitivity. Multiplex PCR developed in this study produced only actA, fliC, hbl, invA, ileS amplicons, but did not produce any non-specific amplicon. The primer sets successfully amplified the target genes in the multiplex PCR without any non-specific or additional bands on the other strains. The multiplex PCR assays also amplified some target genes from five pathogens, and multiplex amplification was obtained from as little as 1 pg of DNA. According to the results from the sensitivity evaluation, the multiplex PCR developed in this study detected 10 cells/mL of the pathogens inoculated in milk samples, respectively. The results suggested that multiplex PCR was an effective assay demonstrating high specificity for the simultaneous detection of five target pathogens in food system.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea
| | - Seong-Ryul Rhim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea
| | - Kee-Tae Kim
- Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea
| | - Joo-Yeon Lee
- Korea Livestock Products HACCP Accreditation Service, Anyang 430-731, Korea
| |
Collapse
|
18
|
Liao Y, Zhou X, Xing D. Quantum dots and graphene oxide fluorescent switch based multivariate testing strategy for reliable detection of Listeria monocytogenes. ACS APPLIED MATERIALS & INTERFACES 2014; 6:9988-9996. [PMID: 24901065 DOI: 10.1021/am503230h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Graphene oxide (GO) and quantum dots (QDs), as burgeoning types of nanomaterials, have gained tremendous interest in the biosensor field. In this work, we designed a novel multivariate testing strategy that depends on the fluorescence resonance energy transfer (FRET) effect between quantum dots (QDs) and graphene oxide (GO). It integrates the QD-GO FRET principle and QD probes with different emission peaks into a platform, aims at multiplex gene detection of a human infectious and highly pathogenic pathogen, Listeria monocytogenes (L. monocytogenes). With the development of a multiplex linear-after-the-exponential (LATE) polymerase chain reaction (PCR) system, the single-stranded DNA (ssDNA) products of hlyA genes and iap genes are obtained by simultaneous amplification of the target genes. Then with the hybridization of ssDNA products and QD probes, simultaneous homogeneous detection of two gene amplification products can be achieved by using GO as a fluorescence switch and monitoring the relevant emissions excited by a single light source. Distinguishable signals corresponding to target genes are obtained. With this developed approach, genomic DNA from L. monocytogenes can be detected as low as 100 fg/μL. Moreover, this platform has a good dynamic range from 10(2) to 10(6) fg/μL. It is indicated that this platform has potential to be a reliable complement for rapid gene detection technologies and is capable of reducing the false-negative and false-dismissal probabilities in routine tests.
Collapse
Affiliation(s)
- Yuhui Liao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | | | | |
Collapse
|
19
|
Cho MS, Joh K, Ahn TY, Park DS. Improved PCR assay for the specific detection and quantitation of Escherichia coli serotype O157 in water. Appl Microbiol Biotechnol 2014; 98:7869-77. [PMID: 24903818 DOI: 10.1007/s00253-014-5855-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/11/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
Abstract
Escherichia coli serotype O157 is still a major global healthcare problem. However, only limited information is now available on the molecular and serological detection of pathogenic bacteria. Therefore, the development of appropriate strategies for their rapid identification and monitoring is still needed. In general, the sequence analysis based on stx, slt, eae, hlyA, rfb, and fliCh7 genes is widely employed for the identification of E. coli serotype O157; but there have been critical defects in the diagnosis and identification of E. coli serotype O157, in that they are also present in other E. coli serogroups. In this study, NCBI-BLAST searches using the nucleotide sequences of the putative regulatory protein gene from E. coli O157:H7 str. Sakai found sequence difference at the serotype level. The specific primers from the putative regulatory protein gene were designed and investigated for their sensitivity and specificity for detecting the pathogen in environment water samples. The specificity of the primer set was evaluated using genomic DNA from 8 isolates of E. coli serotype O157 and 32 other reference strains. In addition, the sensitivity and specificity of this assay were confirmed by successful identification of E. coli serotype O157 in environmental water samples. In conclusion, this study showed that the newly developed quantitative serotype-specific PCR method is a highly specific and efficient tool for the surveillance and rapid detection of high-risk E. coli serotype O157.
Collapse
Affiliation(s)
- Min Seok Cho
- National Academy of Agricultural Science, Rural Development Administration, Suwon, 441-707, Republic of Korea
| | | | | | | |
Collapse
|
20
|
Tokunaga A, Kawano M, Okura M, Iyoda S, Watanabe H, Osawa R. Identification of EnterohemorrhagicEscherichia coliO157-Specific DNA Sequence Obtained from Amplified Fragment Length Polymorphism Analysis. Microbiol Immunol 2013; 51:883-8. [PMID: 17895605 DOI: 10.1111/j.1348-0421.2007.tb03970.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An approximately 1.1 kbp fragment that was commonly observed only in the enterohemorrhagic Escherichia coli (EHEC) O157 strains in an analysis of amplified fragment length polymorphism was found to be a partial gene sequence encoding the locus of toxB and a useful molecular marker for the identification of EHEC O157.
Collapse
Affiliation(s)
- Akihiko Tokunaga
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Bai Y, Song M, Cui Y, Shi C, Wang D, Paoli GC, Shi X. A rapid method for the detection of foodborne pathogens by extraction of a trace amount of DNA from raw milk based on amino-modified silica-coated magnetic nanoparticles and polymerase chain reaction. Anal Chim Acta 2013; 787:93-101. [PMID: 23830426 DOI: 10.1016/j.aca.2013.05.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 05/20/2013] [Accepted: 05/23/2013] [Indexed: 11/29/2022]
Abstract
A method based on amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction (PCR) was developed to rapidly and sensitively detect foodborne pathogens in raw milk. After optimizing parameters such as pH, temperature, and time, a trace amount of genomic DNA of pathogens could be extracted directly from complex matrices such as raw milk using ASMNPs. The magnetically separated complexes of genomic DNA and ASMNPs were directly subjected to single PCR (S-PCR) or multiplex PCR (M-PCR) to detect single or multiple pathogens from raw milk samples. Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive) were used as model organisms to artificially contaminate raw milk samples. After magnetic separation and S-PCR, the detection sensitivities were 8 CFU mL(-1) and 13 CFU mL(-1) respectively for these two types of pathogens. Furthermore, this method was successfully used to detect multiple pathogens (S. Enteritidis and L. monocytogenes) from artificially contaminated raw milk using M-PCR at sensitivities of 15 CFU mL(-1) and 25 CFU mL(-1), respectively. This method has great potential to rapidly and sensitively detect pathogens in raw milk or other complex food matrices.
Collapse
Affiliation(s)
- Yalong Bai
- MOST-USDA Joint Research Center for Food Safety & Bor Luh Food Safety Center, School of Agriculture and Biology & State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Barbau-Piednoir E, Botteldoorn N, Yde M, Mahillon J, Roosens NH. Development and validation of qualitative SYBR®Green real-time PCR for detection and discrimination of Listeria spp. and Listeria monocytogenes. Appl Microbiol Biotechnol 2013; 97:4021-37. [PMID: 23086339 PMCID: PMC3627020 DOI: 10.1007/s00253-012-4477-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/26/2012] [Accepted: 09/29/2012] [Indexed: 11/21/2022]
Abstract
A combination of four qualitative SYBR®Green qPCR screening assays targeting two levels of discrimination: Listeria genus (except Listeria grayi) and Listeria monocytogenes, is presented. These assays have been developed to be run simultaneously using the same polymerase chain reaction (PCR) programme. The paper also proposes a new validation procedure to specifically validate qPCR assays applied to food microbiology according to two guidelines: the ISO 22118 norm and the "Definition of minimum performance requirements for analytical methods of GMO testing". The developed assays target the iap, prs and hlyA genes that belong to or neighbour the virulence cluster of Listeria spp. The selected primers were designed to amplify short fragments (60 to 103 bp) in order to obtain optimal PCR efficiency (between 97 and 107 % efficiency). The limit of detection of the SYBR®Green qPCR assays is two to five copies of target genes per qPCR reaction. These assays are highly accurate (98.08 and 100 % accuracy for the Listeria spp. and L. monocytogenes assays, respectively).
Collapse
Affiliation(s)
- Elodie Barbau-Piednoir
- Scientific Institute of Public Health, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Faculty of Bioscience Engineering, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 2, bte L7.05.12, 1348 Louvain-la-Neuve, Belgium
| | - Nadine Botteldoorn
- Scientific Institute of Public Health, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Marc Yde
- Scientific Institute of Public Health, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Jacques Mahillon
- Faculty of Bioscience Engineering, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 2, bte L7.05.12, 1348 Louvain-la-Neuve, Belgium
| | - Nancy H. Roosens
- Scientific Institute of Public Health, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| |
Collapse
|
23
|
Rijal K, Mutharasan R. A method for DNA-based detection of E. coli O157:H7 in a proteinous background using piezoelectric-excited cantilever sensors. Analyst 2013; 138:2943-50. [DOI: 10.1039/c3an36814a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Elliott GN, Thomas N, Macrae M, Campbell CD, Ogden ID, Singh BK. Multiplex T-RFLP allows for increased target number and specificity: detection of Salmonella enterica and six species of Listeria in a single test. PLoS One 2012; 7:e43672. [PMID: 22937073 PMCID: PMC3427147 DOI: 10.1371/journal.pone.0043672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/24/2012] [Indexed: 01/14/2023] Open
Abstract
A multiplex T-RFLP test was developed to detect and identify Salmonella enterica and all six species of Listeria inoculated into milk at minimal levels. Extensive in silico analysis was used to design a fifteen-primer, six-amplimer methodology and in vitro application showed target organism DNA, when amplified individually, yielded the predicted terminal restriction fragments (TRFs) following digestion. Non-target organisms were either not-amplified or yielded TRFs which did not interfere with target identification. Multiple target DNA analysis gave over 86% detection of total TRFs predicted, and this was improved to over 90% detection of total TRFs predicted when only two target DNA extracts were combined analysed. Co-inoculation of milk with five strains each of the target species of S. enterica and L. monocytogenes, along with five strains of the non-target species E. coli was followed by enrichment in SEL medium for M-TRFLP analysis. This allowed for detection of both target species in all samples, with detection of one S. enterica and two Listeria TRFs in all cases, and detection of a second S. enterica TRF in 91% of cases. This was from an initial inoculum of <5 cfu per 25 ml milk with a background of competing E. coli present, and gave a result from sampling of under 20 hours. The ability to increase target species number without loss of sensitivity means that extensive screening can be performed at reduced cost due to a reduction in the number of tests required.
Collapse
|
25
|
Zhang QY, Zhou WW, Zhou Y, Wang XF, Xu JF. Response surface methodology to design a selective co-enrichment broth of Escherichia coli, Salmonella spp. and Staphylococcus aureus for simultaneous detection by multiplex PCR. Microbiol Res 2012; 167:405-12. [PMID: 22444435 DOI: 10.1016/j.micres.2012.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/12/2012] [Accepted: 02/16/2012] [Indexed: 11/28/2022]
Abstract
Escherichia coli, Salmonella spp. and Staphylococcus aureus are frequent co-visitors of contaminated foods to cause food-borne diseases. To achieve rapid detection of three organisms by multiplex PCR, a selective co-enrichment broth was considered to design using response surface methodology (RSM) in this work. NaCl, LiCl and KSCN as selective bacterial inhibitors were selected to optimize their concentrations for a matched composition of bacterial biomass with uniform amplification of three targets. Central composite design was employed to collect the data and fit the responses. Three quadratic polynomial models were derived by computer simulation. A statistical analysis was carried out to explore the effects of the variables on the composition of bacterial biomass and PCR amplification yields. In the end, a novel broth (ESS-3 broth) of NaCl 1.60%, LiCl 0.70%, KSCN 0.10% was formulated to allow co-enrichment of the target pathogens and suppress growth of some non-target pathogens. The simultaneous detection of E. coli, Salmonella spp. and S. aureus was developed on a rapid, convenient and sensitive method consisting of selective co-enrichment in ESS-3 broth, DNA extraction with the boiling method and robust test by multiplex PCR. Our work provided broader application of RSM for the simultaneous detection of other combinations of multiple pathogens.
Collapse
Affiliation(s)
- Qiao Yan Zhang
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, Zhejiang, PR China.
| | | | | | | | | |
Collapse
|
26
|
Lidder P, Sonnino A. Biotechnologies for the management of genetic resources for food and agriculture. ADVANCES IN GENETICS 2012; 78:1-167. [PMID: 22980921 DOI: 10.1016/b978-0-12-394394-1.00001-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can facilitate the development and appropriate use of biotechnologies in developing countries; and that FAO and other relevant international organizations and donors should significantly increase their efforts to support the strengthening of national capacities in the development and appropriate use of pro-poor agricultural biotechnologies.
Collapse
Affiliation(s)
- Preetmoninder Lidder
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| | - Andrea Sonnino
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| |
Collapse
|
27
|
Development of PCR assays for detection of Escherichia coli O157:H7 in meat products. Meat Sci 2011; 88:767-73. [PMID: 21458168 DOI: 10.1016/j.meatsci.2011.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 03/04/2011] [Accepted: 03/08/2011] [Indexed: 11/22/2022]
Abstract
A multiplex polymerase chain reaction (PCR) procedure based on fliC(h7) and rfbE genes was developed for the detection of Escherichia coli O157:H7 in raw pork meat and ready-to-eat (RTE) meat products. Two different DNA extraction procedures were evaluated for application on meat products. MasterPure™ DNA Purification kit in combination with immunomagnetic separation was found to be the best method in a meat system. The optimized PCR included an enrichment step in brilliant green bile 2% broth at 37 °C. This method was applied to artificially inoculated meat and RTE meat products with different concentrations of E. coli O157:H7. The results indicate that the PCR assay developed could sensitively and specifically detect E. coli O157:H7 in raw pork meat and RTE meat products in approximately 10h, including a 6h enrichment step. Thus, this method could be proposed for screening E. coli O157:H7 in raw pork and RTE meat products.
Collapse
|
28
|
Traunšek U, Toplak N, Jeršek B, Lapanje A, Majstorović T, Kovač M. Novel cost-efficient real-time PCR assays for detection and quantitation of Listeria monocytogenes. J Microbiol Methods 2011; 85:40-6. [PMID: 21256878 DOI: 10.1016/j.mimet.2011.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 12/27/2010] [Accepted: 01/11/2011] [Indexed: 11/29/2022]
Abstract
Listeriosis is a serious food-borne infection with mortality rates approaching 30%. Therefore, the rapid, cost-effective, and automated detection of Listeria monocytogenes throughout the food chain continues to be a major concern. Here we describe three novel quantitative real-time PCR assays for L. monocytogenes based on amplification of a target hlyA gene with SYBR Green I chemistry and hydrolysis probe (TaqMan MGB probe). In order to offer sensitive, rapid and robust tool of additional economical value the real-time PCR assays were designed and optimized to only 5 μl-reactions. All assays were evaluated by using different non-reference Listeria strains isolated from various food matrices. Results demonstrated specificity to L. monocytogenes with accurate quantification over a dynamic range of 5-6 log units with R² higher than 0.98 and amplification efficiencies reaching above 92%. The detection and quantification limits were as low as 165 genome equivalents. Comparison of novel assays to commercially available TaqMan® Listeria monocytogenes Detection Kit and previously published studies revealed similar specificity, sensitivity and efficiency, but greater robustness and especially cost-efficiency in the view of smaller reaction volumes and continuous increase in sample throughput.
Collapse
|
29
|
Development of an oligonucleotide-based microarray to detect multiple foodborne pathogens. Mol Cell Probes 2010; 24:77-86. [DOI: 10.1016/j.mcp.2009.10.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/28/2009] [Accepted: 10/06/2009] [Indexed: 01/10/2023]
|
30
|
Singh J, Batish VK, Grover S. A molecular beacon-based duplex real-time polymerase chain reaction assay for simultaneous detection of Escherichia coli O157:H7 and Listeria monocytogenes in milk and milk products. Foodborne Pathog Dis 2010; 6:1195-201. [PMID: 19735201 DOI: 10.1089/fpd.2009.0310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, a real-time polymerase chain reaction assay based on two specific molecular beacons tagged with different reporter dyes was designed and developed for Escherichia coli O157:H7 and Listeria monocytogenes in such a way that each pathogen could be detected simultaneously in a single tube and differentiated. The duplex assay was developed by targeting the rfb gene of E. coli O157:H7 and the hly gene of L. monocytogenes using the homemade master reaction mix. The detection limit of the assay in reconstituted nonfat dried milk (11%) spiked with the two targeted pathogens at different levels was 1 and 3 log colony forming units/mL of each with and without enrichment (6 h) of the sample. The assay was quantifiable for both pathogens over 5 logs with respective regression coefficient 0.9852 (E. coli O157:H7) and 0.9812 (L. monocytogenes). The application of the developed assay on 60 market samples, including 20 samples of two popular Indian indigenous products (10 each of Kulfi and Paneer), revealed three samples involving one each of raw milk, kulfi, and paneer found to be positive for E. coli O157:H7, while one sample of raw milk was positive for L. monocytogenes. The performance of the assay was validated using commercially available individual detection kits for both pathogens, which further authenticated the results by detecting the same samples positive. These assays were set up rigorously in a closed system, therefore enabling rapid, highly specific, and sensitive detection of E. coli O157:H7 and L. monocytogenes in dairy food samples.
Collapse
Affiliation(s)
- Jitender Singh
- Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | | | | |
Collapse
|
31
|
An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol Adv 2010; 28:232-54. [DOI: 10.1016/j.biotechadv.2009.12.004] [Citation(s) in RCA: 805] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 12/12/2022]
|
32
|
Yuan Y, Xu W, Zhai Z, Shi H, Luo Y, Chen Z, Huang K. Universal primer-multiplex PCR approach for simultaneous detection of Escherichia coli, Listeria monocytogenes, and Salmonella spp. in food samples. J Food Sci 2010; 74:M446-52. [PMID: 19799672 DOI: 10.1111/j.1750-3841.2009.01321.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli, Listeria monocytogenes, and Salmonella spp. are 3 kinds of the most important food-borne human pathogens. Traditional microbiological analysis is labor-intensive, time-consuming, and easily contaminated, thus producing false positive signals; it also involves much subjectivity judgments. Multiplex-PCR could be applied to detect multiple target organisms simultaneously to save time and labor, but there is always disproportionate amplification resulting from the disparity of different primers. To gain a rapid and sensitive method, a universal primer-multiplex PCR system (UP-M-PCR) was developed and applied for simultaneous detection of the 3 organisms. This method simplified traditional multiplex-PCR reaction system and overcame its amplification disparities among different primers; moreover, it got a high specificity and sensitivity (85, 155, and 104 copies/reaction for E. coli O157, L. monocytogenes, and Salmonella spp., respectively). Compared with the time-consuming and laborious microbiological analysis, UP-M-PCR had a lower risk of cross-contamination without inoculation and incubation. Test results for 36 food samples showed that UP-M-PCR method got a relative accuracy of 91.77% when compared with traditional microbiological analysis. It could serve as a rapid screening method for pathogen detection and could detect target genes even in dead pathogenic cells. In addition, it has the potential to be performed in an automation mode and might find broader application in simultaneous detection of other multiple pathogens.
Collapse
Affiliation(s)
- Yanfang Yuan
- College of Food Science and Nutritional Engineering, China Agricultural Univ., Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Kim H, Bhunia AK. SEL, a selective enrichment broth for simultaneous growth of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes. Appl Environ Microbiol 2008; 74:4853-66. [PMID: 18539786 PMCID: PMC2519329 DOI: 10.1128/aem.02756-07] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 05/28/2008] [Indexed: 11/20/2022] Open
Abstract
Multipathogen detection on a single-assay platform not only reduces the cost for testing but also provides data on the presence of pathogens in a single experiment. To achieve this detection, a multipathogen selective enrichment medium is essential to allow the concurrent growth of pathogens. SEL broth was formulated to allow the simultaneous growth of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes. The results were compared to those obtained with the respective individual selective enrichment broths, Rappaport-Vassiliadis (RV) for S. enterica, modified E. coli broth with 20 mg of novobiocin/liter for E. coli O157:H7, and Fraser broth for L. monocytogenes, and a currently used universal preenrichment broth (UPB). The growth of each pathogen in SEL inoculated at 10(1) or 10(3) CFU/ml was superior to that in the respective individual enrichment broth, except in the case of RV, in which Salmonella cells inoculated at both concentrations grew equally well. In mixed-culture experiments with cells of the three species present in equal concentrations or at a 1:10:1,000 ratio, the overall growth was proportional to the initial inoculation levels; however, the growth of L. monocytogenes was markedly suppressed when cells of this species were present at lower concentrations than those of the other two species. Further, SEL was able to resuscitate acid- and cold-stressed cells, and recovery was comparable to that in nonselective tryptic soy broth containing 6% yeast extract but superior to that in the respective individual selective broths. SEL promoted the growth of all three pathogens in a mixture in ready-to-eat salami and in turkey meat samples. Moreover, each pathogen was readily detected by a pathogen-specific immunochromatographic lateral-flow or multiplex PCR assay. Even though the growth of each pathogen in SEL was comparable to that in UPB, SEL inhibited greater numbers of nontarget organisms than did UPB. In summary, SEL was demonstrated to be a promising new multiplex selective enrichment broth for the detection of the three most prominent food-borne pathogens by antibody- or nucleic acid-based methods.
Collapse
Affiliation(s)
- Hyochin Kim
- Department of Food Science, 745 Agriculture Mall Dr., Purdue University, West Lafayette, IN 47907-2009, USA
| | | |
Collapse
|
34
|
Seidavi A, Mirhossein S, Shivazad M, Chamani M, Sadeghi A. Optimizing Multiplex Polymerase Chain Reaction Method for Specific,
Sensitive and Rapid Detection of Salmonella sp., Escherichia
coli and Bifidobacterium sp. in Chick Gastrointestinal Tract. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/ajava.2008.230.235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Chen SH, Wu VCH, Chuang YC, Lin CS. Using oligonucleotide-functionalized Au nanoparticles to rapidly detect foodborne pathogens on a piezoelectric biosensor. J Microbiol Methods 2008; 73:7-17. [PMID: 18279983 DOI: 10.1016/j.mimet.2008.01.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 01/03/2008] [Accepted: 01/09/2008] [Indexed: 11/19/2022]
Abstract
A circulating-flow piezoelectric biosensor, based on an Au nanoparticle amplification and verification method, was used for real-time detection of a foodborne pathogen, Escherichia coli O157:H7. A synthesized thiolated probe (Probe 1; 30-mer) specific to E. coli O157:H7 eaeA gene was immobilized onto the piezoelectric biosensor surface. Hybridization was induced by exposing the immobilized probe to the E. coli O157:H7 eaeA gene fragment (104-bp) amplified by PCR, resulting in a mass change and a consequent frequency shift of the piezoelectric biosensor. A second thiolated probe (Probe 2), complementary to the target sequence, was conjugated to the Au nanoparticles and used as a "mass enhancer" and "sequence verifier" to amplify the frequency change of the piezoelectric biosensor. The PCR products amplified from concentrations of 1.2 x 10(2) CFU/ml of E. coli O157:H7 were detectable by the piezoelectric biosensor. A linear correlation was found when the E. coli O157:H7 detected from 10(2) to 10(6) CFU/ml. The piezoelectric biosensor was able to detect targets from real food samples.
Collapse
Affiliation(s)
- Sz-Hau Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30005, Taiwan
| | | | | | | |
Collapse
|
36
|
Settanni L, Corsetti A. The use of multiplex PCR to detect and differentiate food- and beverage-associated microorganisms: a review. J Microbiol Methods 2006; 69:1-22. [PMID: 17280731 DOI: 10.1016/j.mimet.2006.12.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 11/17/2006] [Accepted: 12/08/2006] [Indexed: 10/23/2022]
Abstract
Regarding food safety, rapid detection of microbial species is crucial to develop effective preventive and/or adjustment measures. Classical methods for determining the presence of certain species are time-consuming and labor-intensive, hence, molecular methods, which offer speed, sensitivity and specificity, have been developed to address this problem. Multiplex PCR (MPCR) is widely applied in the various fields of microbiology for the rapid differentiation of microbial species without compromising accuracy. This paper describes the method and reports on the state-of-the-art application of this technique to the identification of microorganisms vehiculated with foods and beverages. The identification of both pathogens and probiotics and the species important for food fermentation or deterioration will be discussed. Applications of MPCR in combination with other techniques are also reviewed. Potentials, pitfalls, limitations and future prospects are summarised.
Collapse
Affiliation(s)
- L Settanni
- Dipartimento di Scienze degli Alimenti, Sezione di Microbiologia Agro-Alimentare ed Ambientale, Università degli Studi di Teramo, V. C.R. Lerici 1, 64023 Mosciano Sant' Angelo, Teramo, Italy
| | | |
Collapse
|