1
|
Virulence Protein Pgp3 Is Insufficient To Mediate Plasmid-Dependent Infectivity of Chlamydia trachomatis. Infect Immun 2023; 91:e0039222. [PMID: 36722979 PMCID: PMC9933628 DOI: 10.1128/iai.00392-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chlamydia trachomatis is the most common cause of infectious blindness and sexually transmitted bacterial infection globally. C. trachomatis contains a conserved chlamydial plasmid with eight coding sequences. Plasmid-cured Chlamydia strains are attenuated and display reduced infectivity in cell culture and in vivo genital infection of female mice. Mutants that do not express the plasmid-encoded proteins Pgp3, a secreted protein with unknown function, or Pgp4, a putative regulator of pgp3 and other chromosomal loci, display an infectivity defect similar to plasmid-deficient strains. Our objective was to determine the combined and individual contributions of Pgp3 and Pgp4 to this phenotype. Deletion of pgp3 and pgp4 resulted in an infectivity defect detected by competition assay in cell culture and in mice. The pgp3 locus was placed under the control of an anhydrotetracycline-inducible promoter to examine the individual contributions of Pgp3 and Pgp4 to infectivity. Expression of pgp3 was induced 100- to 1,000-fold after anhydrotetracycline administration, regardless of the presence or absence of pgp4. However, secreted Pgp3 was not detected when pgp4 was deleted, confirming a role for Pgp4 in Pgp3 secretion. We discovered that expression of pgp3 or pgp4 alone was insufficient to restore normal infectivity, which required expression of both Pgp3 and Pgp4. These results suggest Pgp3 and Pgp4 are both required for infectivity during C. trachomatis infection. Future studies are required to determine the mechanism by which Pgp3 and Pgp4 influence chlamydial infectivity as well as the potential roles of Pgp4-regulated loci.
Collapse
|
2
|
Li P, Zong D, Gan P, Li H, Wu Z, Li F, Zhao C, Li L, He C. Comparison of the diversity and structure of the rhizosphere microbial community between the straight and twisted trunk types of Pinus yunnanensis. Front Microbiol 2023; 14:1066805. [PMID: 36910200 PMCID: PMC9995709 DOI: 10.3389/fmicb.2023.1066805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Background Pinus yunnanensis is a major silvicultural species in Southwest China. Currently, large areas of twisted-trunk Pinus yunnanensis stands severely restrict its productivity. Different categories of rhizosphere microbes evolve alongside plants and environments and play an important role in the growth and ecological fitness of their host plant. However, the diversity and structure of the rhizosphere microbial communities between P. yunnanensis with two different trunk types-straight and twisted-remain unclear. Methods We collected the rhizosphere soil of 5 trees with the straight and 5 trees with the twisted trunk type in each of three sites in Yunnan province. We assessed and compared the diversity and structure of the rhizosphere microbial communities between P. yunnanensis with two different trunk types by Illumina sequencing of 16S rRNA genes and internal transcribed spacer (ITS) regions. Results The available phosphorus in soil differed significantly between P. yunnanensis with straight and twisted trunks. Available potassium had a significant effect on fungi. Chloroflexi dominated the rhizosphere soils of the straight trunk type, while Proteobacteria was predominant in the rhizosphere soils of the twisted trunk type. Trunk types significantly explained 6.79% of the variance in bacterial communities. Conclusion This study revealed the composition and diversity of bacterial and fungal groups in the rhizosphere soil of P. yunnanensis with straight and twisted trunk types, providing proper microbial information for different plant phenotypes.
Collapse
Affiliation(s)
- Peiling Li
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan, Southwest Forestry University, Kunming, China.,Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Dan Zong
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan, Southwest Forestry University, Kunming, China.,Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China.,Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Peihua Gan
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan, Southwest Forestry University, Kunming, China.,Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Hailin Li
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan, Southwest Forestry University, Kunming, China.,Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Zhiyang Wu
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan, Southwest Forestry University, Kunming, China.,Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Fahong Li
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan, Southwest Forestry University, Kunming, China.,Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Changlin Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China.,College of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Chengzhong He
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan, Southwest Forestry University, Kunming, China.,Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China.,Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
3
|
Ölander M, Sixt BS. Bringing genetics to heretofore intractable obligate intracellular bacterial pathogens: Chlamydia and beyond. PLoS Pathog 2022; 18:e1010669. [PMID: 35901011 PMCID: PMC9333220 DOI: 10.1371/journal.ppat.1010669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Magnus Ölander
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Barbara S. Sixt
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Zhang L, Yue Y, Wang X, Dai W, Piao C, Yu H. Optimization of fermentation for γ-aminobutyric acid (GABA) production by yeast Kluyveromyces marxianus C21 in okara (soybean residue). Bioprocess Biosyst Eng 2022; 45:1111-1123. [PMID: 35179639 DOI: 10.1007/s00449-022-02702-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022]
Abstract
γ-Aminobutyric acid (GABA) is a non-protein amino acid with a variety of physiological functions. Recently, yeast Kluyveromyces marxianus strains involved in the catabolism and anabolism of GABA can be used as a microbial platform for GABA production. Okara, rich in nutrients, can be used as a low-cost fermentation substrate for the production of functional materials. This study first proved the advantages of the okara medium to produce GABA by K. marxianus C21 when L-glutamate (L-Glu) or monosodium glutamate (MSG) is the substrate. The highest production of GABA was obtained with 4.31 g/L at optimization condition of culture temperature 35 °C, fermentation time 60 h, and initial pH 4.0. Furthermore, adding peptone significantly increased the GABA production while glucose and vitamin B6 had no positive impact on GABA production. This research provided a powerful new strategy of GABA production by K. marxianus C21 fermentation and is expected to be widely utilized in the functional foods industry to increase GABA content for consumers as a daily supplement as suggested.
Collapse
Affiliation(s)
- Lei Zhang
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Yang Yue
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Xiujuan Wang
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Weichang Dai
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China.
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, 130118, Jilin, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China.
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, 130118, Jilin, China.
| |
Collapse
|
5
|
Li Z, Zhu Q, Azad MAK, Li H, Huang P, Kong X. The Impacts of Dietary Fermented Mao-tai Lees on Growth Performance, Plasma Metabolites, and Intestinal Microbiota and Metabolites of Weaned Piglets. Front Microbiol 2021; 12:778555. [PMID: 34912318 PMCID: PMC8667599 DOI: 10.3389/fmicb.2021.778555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
This study investigated the effects of dietary supplementation with fermented Mao-tai lees (FML) on growth performance, plasma metabolites, and intestinal microbiota and metabolites of weaned piglets. A total of 128 Duroc×Landrace×Yorkshire piglets (28-days old) were randomly assigned to one of four groups, feeding a basal diet (control group), a basal diet supplemented with 2, 4 or 6% FML, respectively, for 42days. The results showed that dietary 4% FML supplementation had higher (p<0.05) average daily gain (ADG) and plasma triglyceride concentration during days 1–14 of the trial than the other FML supplemented groups. In addition, dietary 2 and 4% FML supplementation increased (p<0.05) the ADG during days 15–28 of the trial and plasma total protein concentration on day 42 of the trial compared with the 6% FML supplement. The plasma concentrations of arginine, ethanolamine, histidine, isoleucine, lysine, methionine, proline, taurine, threonine, and tyrosine were increased (p<0.05) in the 4% FML group compared with the other three groups on day 14 of the trial. Dietary supplementation with 2–6% FML decreased (p<0.05) the plasma urea nitrogen concentration on day 14 of the trial and the abundance of Escherichia coli in the colon, and dietary 2 and 4% FML supplementation decreased (p<0.05) the abundance of sulfate-reducing bacteria compared with the control group. In the intestinal contents, a higher concentration of FML (6%) supplementation decreased (p<0.05) the colonic acetate concentration compared with the control and 2% FML groups, while 4% FML supplementation increased (p<0.05) the colonic cadaverine concentration compared with the other three groups. In conclusion, dietary 4% FML supplementation might contribute to the increased amino acids metabolism without affecting the growth performance of weaned piglets. Moreover, dietary 2 and 4% FML supplementation were also beneficial to intestinal health via decreasing the abundances of specific pathogens and increasing the concentrations of microbial metabolites in the gut, which provides the theoretical basis and data support for the application of FML in pigs.
Collapse
Affiliation(s)
- Zhihua Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qian Zhu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Md Abul Kalam Azad
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Huawei Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Pan Huang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
6
|
Greer M, Elnaggar J, Taylor CM, Shen L. Mycoplasma decontamination in Chlamydia trachomatis culture: a curative approach. Pathog Dis 2021; 79:6464140. [PMID: 34918079 DOI: 10.1093/femspd/ftab056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/14/2021] [Indexed: 11/14/2022] Open
Abstract
Mycoplasma contamination of cell culture represents a serious problem in research and decontamination from cell-propagated obligate intracellular bacteria has proven challenging. Here, we presented an optimized protocol to remove Mycoplasma from contaminated Chlamydia trachomatis culture. A stepwise procedure of Mycoplasma removal entails (i) incubation in nonionic detergent containing solution, and (ii) separation of viable chlamydial organisms by fluorescence-activated cell sorting (FACS), followed by subcloning using a focus-forming assay. We also adapted a polymerase chain reaction (PCR) assay using paired universal and Mycoplasma-specific primers, which are distinguishable from the C. trachomatis counterparts, in combination with Sanger sequencing to determine the presence of mycoplasmas' 16S rRNA genes. These integrated approaches allow for full removal of Mycoplasma, as verified by the improved PCR assay, without compromising the capacity of viable C. trachomatis to adapt to new infection in epithelial cells. Some pitfalls during the Mycoplasma decontamination process are discussed.
Collapse
Affiliation(s)
- Madison Greer
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jacob Elnaggar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Li X, Smid SD, Lin J, Gong Z, Chen S, You F, Zhang Y, Hao Z, Lin H, Yu X, Jin X. Neuroprotective and Anti-Amyloid β Effect and Main Chemical Profiles of White Tea: Comparison Against Green, Oolong and Black Tea. Molecules 2019; 24:molecules24101926. [PMID: 31109117 PMCID: PMC6571989 DOI: 10.3390/molecules24101926] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/12/2019] [Accepted: 05/17/2019] [Indexed: 12/26/2022] Open
Abstract
White tea (WT) is one of six tea types originally derived from Fujian Province, China. White tea is known for its health-promoting properties. However, the neuroprotective and anti-aggregatory properties of WT against the hallmark toxic Alzheimer's protein, Aβ have not been investigated. In this study, WT, green tea (GT), oolong tea (OT) and black tea (BT) were manufactured using tea leaves from the cultivar Camellia sinensis (Jin Guanyin). The protective effects of these tea extracts were then studied under oxidative stress conditions via t-bhp and H2O2 exposure, in addition to Aβ treatment using a PC-12 cell model. Each tea type failed to rescue PC-12 cells from either t-bhp or H2O2-mediated toxicity, however each extract exerted significant protection against Aβ-evoked neurotoxicity. Results of the Thioflavin T Kinetic (ThT) and TEM assay showed that Aβ aggregate formation was inhibited by each tea type. Additionally, TEM also supported the different anti-aggregatory effect of WT by modifying Aβ into an amorphous and punctate aggregate morphology. Higher accumulated precedent or potential neuroprotective compounds in WT, including ECG''3Me, 8-C-ascorbyl-EGCG, GABA and Gln, in addition to flavonol or flavone glycosides detected by using UPLC-QTOF-MS and UPLC-QqQ-MS, may contribute to a favourable anti-aggregative and neuroprotective effect of WT against Aβ.
Collapse
Affiliation(s)
- Xinlei Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, South Australia 5000, Australia.
| | - Scott D Smid
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, South Australia 5000, Australia.
| | - Jun Lin
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Institute of Microbiology, Fuzhou 350007, China.
| | - Zhihong Gong
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Si Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Fangning You
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yan Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongzheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaomin Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xinyi Jin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Abstract
It is estimated that approximately one billion people are at risk of infection with obligate intracellular bacteria, but little is known about the underlying mechanisms that govern their life cycles. The difficulty in studying Chlamydia spp., Coxiella spp., Rickettsia spp., Anaplasma spp., Ehrlichia spp. and Orientia spp. is, in part, due to their genetic intractability. Recently, genetic tools have been developed; however, optimizing the genomic manipulation of obligate intracellular bacteria remains challenging. In this Review, we describe the progress in, as well as the constraints that hinder, the systematic development of a genetic toolbox for obligate intracellular bacteria. We highlight how the use of genetically manipulated pathogens has facilitated a better understanding of microbial pathogenesis and immunity, and how the engineering of obligate intracellular bacteria could enable the discovery of novel signalling circuits in host-pathogen interactions.
Collapse
|
9
|
Emancipating Chlamydia: Advances in the Genetic Manipulation of a Recalcitrant Intracellular Pathogen. Microbiol Mol Biol Rev 2016; 80:411-27. [PMID: 27030552 DOI: 10.1128/mmbr.00071-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chlamydia species infect millions of individuals worldwide and are important etiological agents of sexually transmitted disease, infertility, and blinding trachoma. Historically, the genetic intractability of this intracellular pathogen has hindered the molecular dissection of virulence factors contributing to its pathogenesis. The obligate intracellular life cycle of Chlamydia and restrictions on the use of antibiotics as selectable markers have impeded the development of molecular tools to genetically manipulate these pathogens. However, recent developments in the field have resulted in significant gains in our ability to alter the genome of Chlamydia, which will expedite the elucidation of virulence mechanisms. In this review, we discuss the challenges affecting the development of molecular genetic tools for Chlamydia and the work that laid the foundation for recent advancements in the genetic analysis of this recalcitrant pathogen.
Collapse
|
10
|
Vicetti Miguel RD, Henschel KJ, Dueñas Lopez FC, Quispe Calla NE, Cherpes TL. Fluorescent labeling reliably identifies Chlamydia trachomatis in living human endometrial cells and rapidly and accurately quantifies chlamydial inclusion forming units. J Microbiol Methods 2015; 119:79-82. [PMID: 26453947 DOI: 10.1016/j.mimet.2015.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Chlamydia replication requires host lipid acquisition, allowing flow cytometry to identify Chlamydia-infected cells that accumulated fluorescent Golgi-specific lipid. Herein, we describe modifications to currently available methods that allow precise differentiation between uninfected and Chlamydia trachomatis-infected human endometrial cells and rapidly and accurately quantify chlamydial inclusion forming units.
Collapse
Affiliation(s)
- Rodolfo D Vicetti Miguel
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | - Kevin J Henschel
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Fiorela C Dueñas Lopez
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Nirk E Quispe Calla
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Thomas L Cherpes
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Podgorny OV, Polina NF, Babenko VV, Karpova IY, Kostryukova ES, Govorun VM, Lazarev VN. Isolation of single Chlamydia-infected cells using laser microdissection. J Microbiol Methods 2015; 109:123-8. [DOI: 10.1016/j.mimet.2014.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/12/2014] [Accepted: 12/23/2014] [Indexed: 11/15/2022]
|
12
|
Somboonna N, Mead S, Liu J, Dean D. Discovering and differentiating new and emerging clonal populations of Chlamydia trachomatis with a novel shotgun cell culture harvest assay. Emerg Infect Dis 2008; 14:445-53. [PMID: 18325260 PMCID: PMC2570839 DOI: 10.3201/eid1403.071071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This assay, coupled with ompA and 16S rRNA sequencing, characterized clonal populations of C. trachomatis. Chlamydia trachomatis is the leading cause of preventable blindness and bacterial sexually transmitted diseases worldwide. Plaque assays have been used to clonally segregate laboratory-adapted C. trachomatis strains from mixed infections, but no assays have been reported to segregate clones from recent clinical samples. We developed a novel shotgun cell culture harvest assay for this purpose because we found that recent clinical samples do not form plaques. Clones were strain-typed by using outer membrane protein A and 16S rRNA sequences. Surprisingly, ocular trachoma reference strain A/SA-1 contained clones of Chlamydophila abortus. C. abortus primarily infects ruminants and pigs and has never been identified in populations where trachoma is endemic. Three clonal variants of reference strain Ba/Apache-2 were also identified. Our findings reflect the importance of clonal isolation in identifying constituents of mixed infections containing new or emerging strains and of viable clones for research to more fully understand the dynamics of in vivo strain-mixing, evolution, and disease pathogenesis.
Collapse
Affiliation(s)
- Naraporn Somboonna
- Children's Hospital, Oakland Research Institute, Oakland, California, USA
| | | | | | | |
Collapse
|
13
|
Vanover J, Sun J, Deka S, Kintner J, Duffourc MM, Schoborg RV. Herpes simplex virus co-infection-induced Chlamydia trachomatis persistence is not mediated by any known persistence inducer or anti-chlamydial pathway. MICROBIOLOGY-SGM 2008; 154:971-978. [PMID: 18310043 DOI: 10.1099/mic.0.2007/012161-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several inducers of chlamydial persistence have been described, including interferon-gamma (IFN-gamma), IFN-alpha, IFN-beta, and tumour necrosis factor-alpha (TNF-alpha) exposure, and iron, amino acid or glucose deprivation. A tissue-culture model of Chlamydia trachomatis/herpes simplex virus type-2 (HSV-2) co-infection indicates that viral co-infection stimulates the formation of persistent chlamydiae. This study was designed to ascertain whether co-infection-induced persistence is mediated by a previously characterized mechanism. Luminex assays indicate that IFN-gamma, IFN-alpha, and TNF-alpha are not released from co-infected cells. Semiquantitative RT-PCR studies demonstrate that IFN-beta, IFN-gamma, indoleamine 2,3-dioxygenase, lymphotoxin-alpha and inducible nitric oxide synthase are not expressed during co-infection. These data indicate that viral-induced persistence is not stimulated by any persistence-associated cytokine. Supplementation of co-infected cells with excess amino acids, iron-saturated holotransferrin, glucose or a combination of amino acids and iron does not restore chlamydial infectivity, demonstrating that HSV-2-induced persistence is not mediated by depletion of these nutrients. Finally, inclusions within co-infected cells continue to enlarge and incorporate C(6)-NBD-ceramide, indicating that HSV-2 co-infection does not inhibit vesicular transport to the developing inclusion. Collectively these data demonstrate that co-infection-induced persistence is not mediated by any currently characterized persistence inducer or anti-chlamydial pathway. Previous studies indicate that HSV-2 attachment and/or entry into the host cell is sufficient for stimulating chlamydial persistence, suggesting that viral attachment and/or entry may trigger a novel host pathway which restricts chlamydial development.
Collapse
Affiliation(s)
- Jennifer Vanover
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0579, USA
| | - Jingru Sun
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0579, USA
| | | | - Jennifer Kintner
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0579, USA
| | - Michelle M Duffourc
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Robert V Schoborg
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0579, USA
| |
Collapse
|