1
|
Sampaio C, Cusicanqui Méndez DA, Buzalaf MAR, Pessan JP, Cruvinel T. Influence of different growth conditions on the composition and acidogenicity of saliva-derived microcosm biofilm and their effects on enamel demineralization. BIOFOULING 2024; 40:743-753. [PMID: 39377107 DOI: 10.1080/08927014.2024.2410781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
This study compared the influence of growth conditions on the composition and acidogenicity of saliva-derived microcosm biofilms and enamel demineralization. Biofilms grown in sucrose-supplemented modified McBain medium, containing 25/50 mmol/L PIPES (buffer), under anaerobiosis/microaerophilia, for 3 and 7 days were evaluated for their acidogenicity, microbial composition, matrix, and enamel mineral content. The viability of total lactobacilli was higher in the group containing 25 mmol/L PIPES grown under anaerobiosis, which also showed lower pH values. The viability of total streptococci and total microorganisms was significantly higher at 7 days in the groups with 50 mmol/L PIPES than at 3 days, regardless of the incubation atmosphere. No significant differences were observed in lactic acid, calcium, superficial hardness loss, or lesion depth. In conclusion, the incubation atmosphere, buffer content in the growth media, and duration of biofilm formation displayed species-varied influence on microcosm biofilms, without causing significant changes in acid metabolism or enamel demineralization.
Collapse
Affiliation(s)
- Caio Sampaio
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | | | | | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Thiago Cruvinel
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
2
|
Sampaio C, Méndez DAC, Buzalaf MAR, Pessan JP, Cruvinel T. Arginine and sodium fluoride affect the microbial composition and reduce biofilm metabolism and enamel mineral loss in an oral microcosm model. J Dent 2024; 145:104997. [PMID: 38621525 DOI: 10.1016/j.jdent.2024.104997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVE To assess the effects of arginine, with or without sodium fluoride (NaF; 1,450 ppm), on saliva-derived microcosm biofilms and enamel demineralization. METHODS Saliva-derived biofilms were grown on bovine enamel blocks in 0.2 % sucrose-containing modified McBain medium, according to six experimental groups: control (McBain 0.2 %); 2.5 % arginine; 8 % arginine; NaF; 2.5 % arginine with NaF; and 8 % arginine with NaF. After 5 days of growth, biofilm viability was assessed by colony-forming units counting, laser scanning confocal microscopy was used to determine biofilm vitality and extracellular polysaccharide (EPS) production, while biofilm metabolism was evaluated using the resazurin assay and lactic acid quantification. Demineralization was evaluated by measuring pH in the culture medium and calcium release. Data were analyzed by Kruskal-Wallis' and Dunn's tests (p < 0.05). RESULTS 8 % arginine with NaF showed the strongest reduction in total streptococci and total microorganism counts, with no significant difference compared to arginine without NaF. Neither 2.5 % arginine alone nor NaF alone significantly reduced microbial counts compared to the control, although in combination, a reduction in all microbial groups was observed. Similar trends were found for biofilm vitality and EPS, and calcium released to the growth medium. CONCLUSIONS 8 % Arginine, with or without NaF, exhibited the strongest antimicrobial activity and reduced enamel calcium loss. Also, NaF enhanced the effects of 2.5 % arginine, yielding similar results to 8 % arginine for most parameters analyzed. CLINICAL SIGNIFICANCE The results provided further evidence on how arginine, with or without NaF, affects oral microcosm biofilms and enamel mineral loss.
Collapse
Affiliation(s)
- Caio Sampaio
- Department of Preventive and Restorative Dentistry, São Paulo State University, School of Dentistry, Araçatuba, Brazil
| | - Daniela Alejandra Cusicanqui Méndez
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Vila Universitária SP, Bauru 17012-901, Brazil
| | | | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, São Paulo State University, School of Dentistry, Araçatuba, Brazil
| | - Thiago Cruvinel
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Vila Universitária SP, Bauru 17012-901, Brazil.
| |
Collapse
|
3
|
Regulatory Effect of Irresistin-16 on Competitive Dual-Species Biofilms Composed of Streptococcus mutans and Streptococcus sanguinis. Pathogens 2022; 11:pathogens11010070. [PMID: 35056018 PMCID: PMC8779588 DOI: 10.3390/pathogens11010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 02/04/2023] Open
Abstract
Based on the ecological plaque hypothesis, suppressing opportunistic pathogens within biofilms, rather than killing microbes indiscriminately, could be a biofilm control strategy for managing dental caries. The present study aimed to evaluate the effects of irresistin-16 (IRS-16) on competitive dual-species biofilms, which consisted of the conditional cariogenic agent Streptococcus mutans (S. mutans) and oral commensal bacteria Streptococcus sanguinis (S. sanguinis). Bacterial growth and biofilm formation were monitored using growth curve and crystal violet staining, respectively. The microbial proportion was determined using fluorescence in situ hybridization. A 2, 5-diphenyltetrazolium bromide assay was used to measure the metabolic activity of biofilms. Bacterial/extracellular polysaccharide (EPS) dyeing, together with water-insoluble EPS measurements, were used to estimate EPS synthesis. A lactic acid assay was performed to detect lactic acid generation in biofilms. The cytotoxicity of IRS-16 was evaluated in mouse fibroblast L929 cells using a live/dead cell viability assay and cell counting kit-8 assay. Our results showed that IRS-16 exhibited selective anti-biofilm activity, leading to a remarkable survival disadvantage of S. mutans within competitive dual-species biofilms. In addition, the metabolic activity, EPS synthesis, and acid generation of dual-species biofilms were significantly reduced by IRS-16. Moreover, IRS-16 showed minimal cytotoxicity against mouse fibroblast L929 cells. In conclusion, IRS-16 exhibited remarkable regulatory effects on dual-species biofilms composed of S. mutans and S. sanguinis with low cytotoxicity, suggesting that it may have potential for use in caries management through ecological biofilm control.
Collapse
|
4
|
Adhesion of Streptococcus mutans on remineralized enamel surface induced by poly(amido amine) dendrimers. Colloids Surf B Biointerfaces 2021; 197:111409. [DOI: 10.1016/j.colsurfb.2020.111409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 11/21/2022]
|
5
|
Tao S, Su Z, Xiang Z, Xu HHK, Weir MD, Fan M, Yu Z, Zhou X, Liang K, Li J. Nano-calcium phosphate and dimethylaminohexadecyl methacrylate adhesive for dentin remineralization in a biofilm-challenged environment. Dent Mater 2020; 36:e316-e328. [PMID: 32847685 DOI: 10.1016/j.dental.2020.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Dentin remineralization at the bonded interface would protect it from external risk factors, therefore, would enhance the longevity of restoration and combat secondary caries. Dental biofilm, as one of the critical biological factors in caries formation, should not be neglected in the assessment of caries preventive agents. In this work, the remineralization effectiveness of demineralized human dentin in a multi-species dental biofilm environment via an adhesive containing nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM) was investigated. METHODS Dentin demineralization was promoted by subjecting samples to a three-species acidic biofilm containing Streptococcus mutans, Streptococcus sanguinis, Streptococcus gordonii for 24h. Samples were divided into a control group, a DMAHDM adhesive group, an NACP group, and an NACP+DMAHDM adhesive group. A bonded model containing a control-bonded group, a DMAHDM-bonded group, an NACP-bonded group, and an NACP+DMAHDM-bonded group was also included in this study. All samples were subjected to a remineralization protocol consisting of 4-h exposure per 24-h period in brain heart infusion broth plus 1% sucrose (BHIS) followed by immersion in artificial saliva for the remaining period. The pH of BHIS after 4-h immersion was measured every other day. After 14 days, the biofilm was assessed for colony-forming unit (CFU) count, lactic acid production, live/dead staining, and calcium and phosphate content. The mineral changes in the demineralized dentin samples were analyzed by transverse microradiography. RESULTS The in vitro experiment results showed that the NACP+DMAHDM adhesive effectively achieved acid neutralization, decreased biofilm colony-forming unit (CFU) count, decreased biofilm lactic acid production, and increased biofilm calcium and phosphate content. The NACP+DMAHDM adhesive group had higher remineralization value than the NACP or DMAHDM alone adhesive group. SIGNIFICANCE The NACP+DMAHDM adhesive was effective in remineralizing dentin lesion in a biofilm model. It is promising to use NACP+DMAHDM adhesive to protect bonded interface, inhibit secondary caries, and prolong the longevity of restoration.
Collapse
Affiliation(s)
- Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhifei Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhenting Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Menglin Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhaohan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Ayoub HM, Gregory RL, Tang Q, Lippert F. Comparison of human and bovine enamel in a microbial caries model at different biofilm maturations. J Dent 2020; 96:103328. [DOI: 10.1016/j.jdent.2020.103328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 11/25/2022] Open
|
7
|
Ibrahim MS, Garcia IM, Vila T, Balhaddad AA, Collares FM, Weir MD, Xu HHK, Melo MAS. Multifunctional antibacterial dental sealants suppress biofilms derived from children at high risk of caries. Biomater Sci 2020; 8:3472-3484. [DOI: 10.1039/d0bm00370k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dental sealant containing antibacterial and bioactive agents decreased biofilm formation due to the saliva of children at low and high risk of caries.
Collapse
Affiliation(s)
- Maria Salem Ibrahim
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Isadora Martini Garcia
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Taissa Vila
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Abdulrahman A. Balhaddad
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Fabrício Mezzomo Collares
- Dental Materials Laboratory
- School of Dentistry
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Michael D. Weir
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Hockin H. K. Xu
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Mary Anne S. Melo
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| |
Collapse
|
8
|
Han Q, Jiang Y, Brandt BW, Yang J, Chen Y, Buijs MJ, Crielaard W, Cheng L, Deng D. Regrowth of Microcosm Biofilms on Titanium Surfaces After Various Antimicrobial Treatments. Front Microbiol 2019; 10:2693. [PMID: 31824464 PMCID: PMC6886480 DOI: 10.3389/fmicb.2019.02693] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/06/2019] [Indexed: 02/05/2023] Open
Abstract
Objectives: Our aim of this work was to investigate the regrowth of implant-related biofilms after various antimicrobial treatments in vitro. Methods: Saliva-derived microcosm biofilms were grown on titanium discs in an active attachment model. Treatments including hydrogen peroxide (HP), citric acid (CA), chlorhexidine (CHX), and distilled water (control), at different concentrations, were applied to 2-day biofilms for 1 or 5 min. The viability, lactic acid production, and composition of the biofilms were followed for 3 days. The biofilm composition was analyzed by 16S rDNA amplicon sequencing. Results: The short treatments of CA, CHX, and HP resulted in a 2-3 log reduction in biofilm viability and lactic acid production immediately. However, both parameters returned to the pre-treatment level within 2 days due to biofilm regrowth. The alpha diversity of the regrown biofilms in antimicrobial-treated groups tended to decrease, whereas the diversity of those in water-treated group increased. The composition of the regrown biofilms altered compared to those before treatments. Streptococcus and Enterobacteriaceae were enriched in the regrown biofilms. Conclusions: Although the antimicrobial treatments were efficient, the multi-species biofilms were indeed able to regrow within 2 days. The regrown biofilms display an altered microbial diversity and composition, which in the oral cavity may lead to an aggressive infection.
Collapse
Affiliation(s)
- Qi Han
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, Department of Pathology, Sichuan University, Chengdu, China.,Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| | - Yaling Jiang
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands.,State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodonics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| | - Jingmei Yang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Chen
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, Department of Pathology, Sichuan University, Chengdu, China
| | - Mark J Buijs
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| | - Lei Cheng
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodonics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Tao S, He L, Xu HHK, Weir MD, Fan M, Yu Z, Zhang M, Zhou X, Liang K, Li J. Dentin remineralization via adhesive containing amorphous calcium phosphate nanoparticles in a biofilm-challenged environment. J Dent 2019; 89:103193. [PMID: 31476321 DOI: 10.1016/j.jdent.2019.103193] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The remineralization of dentin at a bonded interface would help to strengthen the bonded interface and inhibit secondary caries, and would prolong the longevity of restoration. The aim of this study was to investigate the remineralization of demineralized human dentin in a dental biofilm environment via an adhesive containing nanoparticles of amorphous calcium phosphate (NACP). METHODS Dentin demineralization was promoted by subjecting samples to a Streptococcus mutans acidic biofilm for 24 h. Samples were divided into a control group, a commercial fluoride-releasing adhesive group, and an NACP adhesive group. All samples were subjected to a remineralization protocol consisting of 4-h exposure per 24-h period in brain heart infusion broth plus 1% sucrose (BHIS) followed by immersion in artificial saliva for the remaining period. The pH of BHIS after 4-h immersion was measured every other day. After 10 days, the biofilm was assessed for colony-forming unit (CFU) count, lactic acid production, live/dead staining, and calcium and phosphate content. The mineral changes in the demineralized dentin samples were analyzed by transverse microradiography, hardness measurement, X-ray diffraction characterization, and scanning electron microscopy. RESULTS The NACP adhesive achieved acid neutralization, decreased biofilm CFU count, decreased biofilm lactic acid production, and increased biofilm calcium and phosphate content (P < 0.05). The NACP adhesive group had higher remineralization value than the commercial fluoride-releasing adhesive group (P < 0.05). CONCLUSIONS The NACP adhesive was effective in remineralizing dentin lesions in a biofilm model. Its ability to protect bond interface, inhibit secondary caries, and prolong the longevity of restoration is promising. CLINICAL SIGNIFICANCE Using NACP-containing adhesives could be recommended because of the protective ability of its hybrid layer even under a biofilm-challenged environment.
Collapse
Affiliation(s)
- Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Libang He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Menglin Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhaohan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Cusicanqui Méndez DA, Gutierres E, José Dionisio E, Afonso Rabelo Buzalaf M, Cardoso Oliveira R, Andrade Moreira Machado MA, Cruvinel T. Curcumin-mediated antimicrobial photodynamic therapy reduces the viability and vitality of infected dentin caries microcosms. Photodiagnosis Photodyn Ther 2018; 24:102-108. [PMID: 30240927 DOI: 10.1016/j.pdpdt.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/26/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND To our knowledge, there is a lack of evidence on the effect of Antimicrobial Photodynamic Therapy (aPDT) by the application of curcumin against complex biofilms of dental caries lesions. This study aimed to evaluate the viability, vitality, and acid metabolism of infected dentin caries microcosms treated with curcumin-mediated aPDT. METHODS After microcosm biofilms growing anaerobically on bovine dentin disks immersed in McBain medium with 1% sucrose at 37 °C for 5 days, the biofilms were treated by the association of DMSO water solution or 600 μmol L-1 curcumin with 0, 37.5 or 75 J cm-2 blue LED (455 nm). Then, the colony-forming units (CFU) counts of total microorganisms, total streptococci, mutans streptococci, and total lactobacilli were determined by plating. The lactic acid concentration was analyzed by enzymatic spectrophotometry method, while the vitality of intact biofilms was evaluated by confocal laser scanning microscope (CLSM). Statistical analysis was performed by Kruskal Wallis and post-hoc Dunn's tests (P < 0.05). RESULTS Curcumin alone did not affect the viability of microorganisms and the vitality of intact biofilms. However, 75 J cm-2 LED alone decreased the total microorganisms and total lactobacilli counts. The combination of curcumin and LED reduced significantly the counts of all microorganism groups and the vitality of intact biofilms. Differences were not observed between the lactic acid concentrations of distinct groups. CONCLUSIONS Therefore, curcumin-mediated aPDT was effective in reducing the viability and the vitality of infected dentin caries microcosms, without interfering in their acidogenicity.
Collapse
Affiliation(s)
| | - Eliézer Gutierres
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Evandro José Dionisio
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Brazil
| | | | | | | | - Thiago Cruvinel
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Brazil.
| |
Collapse
|
11
|
Effect of methylene blue-mediated antimicrobial photodynamic therapy on dentin caries microcosms. Lasers Med Sci 2017; 33:479-487. [DOI: 10.1007/s10103-017-2379-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/26/2017] [Indexed: 01/10/2023]
|
12
|
Greenhalgh R, Greenhalgh M, Alshareef F, Robson GD. Application of green fluorescent protein to measure antimicrobial efficacy and the kinetics of cell death against Escherichia coli. J Microbiol Methods 2017; 141:67-72. [DOI: 10.1016/j.mimet.2017.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 11/24/2022]
|
13
|
Cai Y, Liao Y, Brandt BW, Wei X, Liu H, Crielaard W, Van Loveren C, Deng DM. The Fitness Cost of Fluoride Resistance for Different Streptococcus mutans Strains in Biofilms. Front Microbiol 2017; 8:1630. [PMID: 28894441 PMCID: PMC5581503 DOI: 10.3389/fmicb.2017.01630] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/11/2017] [Indexed: 02/05/2023] Open
Abstract
The cariogenic bacterium Streptococcus mutans can develop stable resistance to fluoride through chromosomal mutations in vitro. Fluoride-resistant S. mutans has seldom been isolated in clinical settings, despite the wide application of fluoride in oral-care products. One explanation is that the fluoride-resistant S. mutans strains have decreased fitness. However, so far, there has been no conclusive evidence to support this idea. The aim of this study was to investigate the fitness cost of 48-h biofilms of two fluoride-resistant S. mutans strains, UF35 and UA159-FR (UAFR), using the wild-type fluoride-sensitive strain UA159 as a reference. The engineered UF35 strain contains one point mutation, whereas UAFR, selected from NaF-containing agar plates, has multiple chromosomal mutations. All biofilms were formed for 48 h under a constantly neutral pH or a pH-cycling (8 h of neutral pH and 16 h of pH 5.5) condition in the absence of fluoride. The biomass of the biofilms was quantified with a crystal violet assay. The biofilms were also treated with chlorhexidine or solutions at pH 3.0, after which their lactic acid production was quantified. Compared to the UF35 and UA159 biofilms, the biomass of UAFR biofilms was two–four fold higher, and the UAFR biofilms were more resistant to chlorhexidine and low pH in terms of lactic acid production. No difference in biomass and lactic acid production was detected between UF35 and UA159 biofilms. The fluoride resistance of UAFR and UF35 strains in biofilms was further confirmed by treating the biofilms with NaF solutions. The level of NaF resistance of the three biofilms is generally ranked as follows: UAFR > UF35 > UA159. In conclusion, there is indeed a fitness consequence in UAFR, but surprisingly, this fluoride-resistant strain performs better than UF35 and UA159 under the described conditions. In addition, UF35 did not display a reduced fitness; it performed as well as the wild-type fluoride-sensitive strain.
Collapse
Affiliation(s)
- Yanling Cai
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of StomatologyGuangzhou, China.,Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | - Ying Liao
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | - Xi Wei
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of StomatologyGuangzhou, China
| | - Hongyan Liu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of StomatologyGuangzhou, China
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | - Cor Van Loveren
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | - Dong Mei Deng
- Guangdong Province Key Laboratory of StomatologyGuangzhou, China.,Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands
| |
Collapse
|
14
|
Sim CP, Dashper SG, Reynolds EC. Oral microbial biofilm models and their application to the testing of anticariogenic agents. J Dent 2016; 50:1-11. [DOI: 10.1016/j.jdent.2016.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/04/2016] [Accepted: 04/24/2016] [Indexed: 01/05/2023] Open
|
15
|
Zhang M, He LB, Exterkate RAM, Cheng L, Li JY, Ten Cate JM, Crielaard W, Deng DM. Biofilm layers affect the treatment outcomes of NaF and Nano-hydroxyapatite. J Dent Res 2015; 94:602-7. [PMID: 25576469 DOI: 10.1177/0022034514565644] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During caries formation, dental biofilms function not only as acid producers but also as reservoirs and diffusion barriers for active caries-preventive components. The aim of this study was to investigate the influence of biofilms as a stagnant layer on the efficacy of NaF and nano-hydroxyapatite (nHA). Biofilms of Streptococcus mutans C180-2 were formed on the surfaces of artificially demineralized enamel in an active attachment biofilm model. After 2 days of biofilm formation, the model was subjected to a pH-cycling schedule, together with a control group without biofilms. Specimens were treated for 5 min twice daily with water, a 10% nHA slurry, or 18.4 mM NaF. At the end of the pH-cycling period, the biofilms were removed for the determination of the viable counts, the lactic acid production, and the calcium content. The mineral changes in the demineralized enamel blocks were analyzed by transversal microradiography. No differences in the biofilm viable counts and lactic acid production were found in the different treatment groups. The mean calcium content of the biofilms in the nHA group was 60.7 ± 15.3 mmol/g wet weight, which was approximately 8-fold higher than in the other 2 groups. The application of NaF resulted in net remineralization, but in the presence of a biofilm, net demineralization was observed. In contrast, nHA treatment reduced further demineralization compared with the water treatment, but the presence of a biofilm enhanced this effect. In conclusion, the presence of biofilms clearly influenced the treatment outcomes of anticaries products. Biofilms could either enhance or impede their efficacy. This result implies that biofilms should be included in the in vitro tests for the preclinical screening of caries-protective agents.
Collapse
Affiliation(s)
- M Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, the Netherlands
| | - L B He
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - R A M Exterkate
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, the Netherlands
| | - L Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Y Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J M Ten Cate
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, the Netherlands
| | - W Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, the Netherlands
| | - D M Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Silva T, Pereira A, Buzalaf M, Machado M, Crielaard W, Deng D. Diverse outcomes of Photodynamic Antimicrobial Chemotherapy on five Enterococcus faecalis strains. Photodiagnosis Photodyn Ther 2014; 11:283-9. [DOI: 10.1016/j.pdpdt.2014.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
|
17
|
Lester K, Simmonds RS. Zoocin A and lauricidin in combination reduce Streptococcus mutans growth in a multispecies biofilm. Caries Res 2012; 46:185-93. [PMID: 22508519 DOI: 10.1159/000337307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 01/28/2012] [Indexed: 01/04/2023] Open
Abstract
Dental caries is the most prevalent human infection. It is a multifactorial disease in which the microbial composition of dental plaque plays a major role in the development of clinical symptoms. The bacteria most often implicated in the development of caries are that group of streptococci referred to as the mutans streptococci, in particular Streptococcus mutans and Streptococcus sobrinus. One approach to the prevention of caries is to reduce the numbers of mutans streptococci in plaque to a level insufficient to support demineralization of the tooth. In this study, zoocin A, a peptidoglycan hydrolase, combined with lauricidin, a cell membrane active lipid, was shown over a 72 h period to selectively suppress the growth of S. mutans in a triple species biofilm. Growth of the non-target species Streptococcus oralis and Actinomyces viscosus was not inhibited. In treated systems the amount of extracellular polysaccharide matrix produced was much reduced as determined by use of fluorescein isothiocyanate conjugated wheat germ agglutinin. The pH of treated biofilms remained above neutral as opposed to a value of 4.3 in untreated controls. We conclude that use of antimicrobial compounds that specifically target cariogenic bacteria should be further explored.
Collapse
Affiliation(s)
- K Lester
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
18
|
Butcher J, Malcolm J, Benson R, Deng D, Brewer J, Garside P, Culshaw S. Effects of Streptococcus mutans on Dendritic Cell Activation and Function. J Dent Res 2011; 90:1221-7. [DOI: 10.1177/0022034511412970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite existing preventive and therapeutic measures, caries remains a ubiquitous infectious disease. Vaccine studies suggest that an adaptive immune response, culminating in effective antibody production, may reduce an individual’s susceptibility to caries. However, the efficacy of the immune response elicited by mutans streptococci in the oral cavity remains controversial. A greater understanding of the early stages of the adaptive immune response to cariogenic bacteria may potentially assist therapeutic targeting and design. We therefore sought to characterize dendritic cell (DC) activation and antigen presentation following Streptococcus mutans exposure. We found that S. mutans up-regulated DC expression of co-stimulatory molecules and MHCII in vitro and that DCs effectively processed and presented exogenously administered antigen. These DCs effectively initiated T-cell proliferation, but this was abrogated by live bacteria. The in vitro DC activation effects were not mirrored in vivo, where DCs in draining lymph nodes did not mature following oral exposure to S. mutans. Analysis of these data provides a model for studying antigen uptake from the oral cavity and evidence that, in vitro, S. mutans activates dendritic cells, a critical event for initiating adaptive immunity.
Collapse
Affiliation(s)
- J.P. Butcher
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - J. Malcolm
- University of Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - R.A. Benson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - D.M. Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands
| | - J.M. Brewer
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - P. Garside
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - S. Culshaw
- University of Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| |
Collapse
|
19
|
Klein MI, Xiao J, Heydorn A, Koo H. An analytical tool-box for comprehensive biochemical, structural and transcriptome evaluation of oral biofilms mediated by mutans streptococci. J Vis Exp 2011:2512. [PMID: 21304472 DOI: 10.3791/2512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Biofilms are highly dynamic, organized and structured communities of microbial cells enmeshed in an extracellular matrix of variable density and composition (1, 2). In general, biofilms develop from initial microbial attachment on a surface followed by formation of cell clusters (or microcolonies) and further development and stabilization of the microcolonies, which occur in a complex extracellular matrix. The majority of biofilm matrices harbor exopolysaccharides (EPS), and dental biofilms are no exception; especially those associated with caries disease, which are mostly mediated by mutans streptococci (3). The EPS are synthesized by microorganisms (S. mutans, a key contributor) by means of extracellular enzymes, such as glucosyltransferases using sucrose primarily as substrate (3). Studies of biofilms formed on tooth surfaces are particularly challenging owing to their constant exposure to environmental challenges associated with complex diet-host-microbial interactions occurring in the oral cavity. Better understanding of the dynamic changes of the structural organization and composition of the matrix, physiology and transcriptome/proteome profile of biofilm-cells in response to these complex interactions would further advance the current knowledge of how oral biofilms modulate pathogenicity. Therefore, we have developed an analytical tool-box to facilitate biofilm analysis at structural, biochemical and molecular levels by combining commonly available and novel techniques with custom-made software for data analysis. Standard analytical (colorimetric assays, RT-qPCR and microarrays) and novel fluorescence techniques (for simultaneous labeling of bacteria and EPS) were integrated with specific software for data analysis to address the complex nature of oral biofilm research. The tool-box is comprised of 4 distinct but interconnected steps (Figure 1): 1) Bioassays, 2) Raw Data Input, 3) Data Processing, and 4) Data Analysis. We used our in vitro biofilm model and specific experimental conditions to demonstrate the usefulness and flexibility of the tool-box. The biofilm model is simple, reproducible and multiple replicates of a single experiment can be done simultaneously (4, 5). Moreover, it allows temporal evaluation, inclusion of various microbial species (5) and assessment of the effects of distinct experimental conditions (e.g. treatments (6); comparison of knockout mutants vs. parental strain (5); carbohydrates availability (7)). Here, we describe two specific components of the tool-box, including (i) new software for microarray data mining/organization (MDV) and fluorescence imaging analysis (DUOSTAT), and (ii) in situ EPS-labeling. We also provide an experimental case showing how the tool-box can assist with biofilms analysis, data organization, integration and interpretation.
Collapse
Affiliation(s)
- Marlise I Klein
- Center for Oral Biology, University of Rochester Medical Center
| | | | | | | |
Collapse
|
20
|
Ccahuana-Vásquez RA, Cury JA. S. mutans biofilm model to evaluate antimicrobial substances and enamel demineralization. Braz Oral Res 2010; 24:135-41. [DOI: 10.1590/s1806-83242010000200002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 05/24/2010] [Indexed: 11/22/2022] Open
|
21
|
Komljenović I, Marquardt D, Harroun TA, Sternin E. Location of chlorhexidine in DMPC model membranes: a neutron diffraction study. Chem Phys Lipids 2010; 163:480-7. [PMID: 20359468 DOI: 10.1016/j.chemphyslip.2010.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
Chlorhexidine (CHX) is an effective anti-bacterial agent whose mode of action is thought to be the disruption of the cell membrane. It is known to partition into phospholipid bilayers of aqueous model-membrane preparations. Neutron diffraction data taken at 36 degrees C on the location of CHX in phosphatidylcholine (PC) bilayers is presented. The center of mass of the deuterated hydrocarbon chain of CHX is found to reside 16A from the center of the bilayer in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (14:0-14:0PC). This places the drug near the glycerol backbone of the lipid, and suggests a mode of action whereby the molecule is bent in half and inserts wedge-like into the lipid matrix. This mechanism is distinct from detergent-like mechanisms of membrane disruption and more similar to some anti-microbial peptide action, where peptides insert obliquely into the bilayer headgroup region to disrupt its structure.
Collapse
Affiliation(s)
- Ivana Komljenović
- Department of Physics, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3S1, Canada
| | | | | | | |
Collapse
|
22
|
Deng DM, Hoogenkamp MA, Exterkate RA, Jiang LM, van der Sluis LW, ten Cate JM, Crielaard W. Influence of Streptococcus mutans on Enterococcus faecalis Biofilm Formation. J Endod 2009; 35:1249-52. [DOI: 10.1016/j.joen.2009.05.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 05/28/2009] [Accepted: 05/28/2009] [Indexed: 12/01/2022]
|