1
|
Pigula M, Lai YC, Koh M, Diercks CS, Rogers TF, Dik DA, Schultz PG. An unnatural amino acid dependent, conditional Pseudomonas vaccine prevents bacterial infection. Nat Commun 2024; 15:6766. [PMID: 39117651 PMCID: PMC11310302 DOI: 10.1038/s41467-024-50843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Live vaccines are ideal for inducing immunity but suffer from the need to attenuate their pathogenicity or replication to preclude the possibility of escape. Unnatural amino acids (UAAs) provide a strategy to engineer stringent auxotrophies, yielding conditionally replication incompetent live bacteria with excellent safety profiles. Here, we engineer Pseudomonas aeruginosa to maintain auxotrophy for the UAA p-benzoyl-L-phenylalanine (BzF) through its incorporation into the essential protein DnaN. In vivo evolution using an Escherichia coli-based two-hybrid selection system enabled engineering of a mutant DnaN homodimeric interface completely dependent on a BzF-specific interaction. This engineered strain, Pa Vaccine, exhibits undetectable escape frequency (<10-11) and shows excellent safety in naïve mice. Animals vaccinated via intranasal or intraperitoneal routes are protected from lethal challenge with pathogenic P. aeruginosa PA14. These results establish UAA-auxotrophic bacteria as promising candidates for bacterial vaccine therapy and outline a platform for expanding this technology to diverse bacterial pathogens.
Collapse
Affiliation(s)
- Michael Pigula
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Yen-Chung Lai
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Minseob Koh
- Department of Chemistry, Pusan National University, Busan, Korea
| | | | - Thomas F Rogers
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - David A Dik
- Department of Biology, Calibr-Skaggs Institute for Innovative Medicines, Scripps Research, La Jolla, CA, USA.
| | - Peter G Schultz
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
2
|
Huang Y, Chen M, Hu G, Wu B, He M. Elimination of editing plasmid mediated by theophylline riboswitch in Zymomonas mobilis. Appl Microbiol Biotechnol 2023; 107:7151-7163. [PMID: 37728624 DOI: 10.1007/s00253-023-12783-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Zymomonas mobilis is regarded as a potential chassis for the production of platform chemicals. Genome editing using the CRISPR-Cas system could meet the need for gene modification in metabolic engineering. However, the low curing efficiency of CRISPR editing plasmid is a common bottleneck in Z. mobilis. In this study, we utilized a theophylline-dependent riboswitch to regulate the expression of the replicase gene of the editing plasmid, thereby promoting the elimination of exogeneous plasmid. The riboswitch D (RSD) with rigorous regulatory ability was identified as the optimal candidate by comparing the transformation efficiency of four theophylline riboswitch-based backbone editing plasmids, and the optimal theophylline concentration for inducing RSD was determined to be 2 mM. A highly effective method for eliminating the editing plasmid, cells with RSD-based editing plasmid which were cultured in liquid and solid RM media in alternating passages at 37 °C without shaking, was established by testing the curing efficiency of backbone editing plasmids pMini and pMini-RSD in RM medium with or without theophylline at 30 °C or 37 °C. Finally, the RSD-based editing plasmid was applied to genome editing, resulting in an increase of more than 10% in plasmid elimination efficiency compared to that of pMini-based editing plasmid. KEY POINTS: • An effective strategy for curing CRISPR editing plasmid has been established in Z. mobilis. • Elimination efficiency of the CRISPR editing plasmid was enhanced by 10% to 20% under the regulation of theophylline-dependent riboswitch RSD.
Collapse
Affiliation(s)
- Yuhuan Huang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Mao Chen
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Guoquan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, China
| | - Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, China.
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, China.
| |
Collapse
|
3
|
Tian L, Yang Z, Wang J, Liu J. Analysis of the Plasmid-Based ts-Mutant Δ fabA/pTS-fabA Reveals Its Lethality under Aerobic Growth Conditions That Is Suppressed by Mild Overexpression of desA at a Restrictive Temperature in Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0133823. [PMID: 37191499 PMCID: PMC10269440 DOI: 10.1128/spectrum.01338-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
It is uncertain whether PA1610|fabA is essential or dispensable for growth on LB-agar plates under aerobic conditions in Pseudomonas aeruginosa PAO1. To examine its essentiality, we disrupted fabA in the presence of a native promoter-controlled complementary copy on ts-plasmid. In this analysis, we showed that the plasmid-based ts-mutant ΔfabA/pTS-fabA failed to grow at a restrictive temperature, consistent with the observation by Hoang and Schweizer (T. T. Hoang, H. P. Schweizer, J Bacteriol 179:5326-5332, 1997, https://doi.org/10.1128/jb.179.17.5326-5332.1997), and expanded on this by showing that ΔfabA exhibited curved cell morphology. On the other hand, strong induction of fabA-OE or PA3645|fabZ-OE impeded the growth of cells displaying oval morphology. Suppressor analysis revealed a mutant sup gene that suppressed a growth defect but not cell morphology of ΔfabA. Genome resequencing and transcriptomic profiling of sup identified PA0286|desA, whose promoter carried a single-nucleotide polymorphism (SNP), and transcription was significantly upregulated (level increase of >2-fold, P < 0.05). By integration of the SNP-bearing promoter-controlled desA gene into the chromosome of ΔfabA/pTS-fabA, we showed that the SNP is sufficient for ΔfabA to phenocopy the sup mutant. Furthermore, mild induction of the araC-PBAD-controlled desA gene but not desB rescued ΔfabA. These results validated that mild overexpression of desA fully suppressed the lethality but not the curved cell morphology of ΔfabA. Similarly, Zhu et al. (Zhu K, Choi K-H, Schweizer HP, Rock CO, Zhang Y-M, Mol Microbiol 60:260-273, 2006, https://doi.org/10.1111/j.1365-2958.2006.05088.x) showed that multicopy desA partially alleviated the slow growth phenotype of ΔfabA, the difference in which was that ΔfabA was viable. Taken together, our results demonstrate that fabA is essential for aerobic growth. We propose that the plasmid-based ts-allele is useful for exploring the genetic suppression interaction of essential genes of interest in P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen whose multidrug resistance demands new drug development. Fatty acids are essential for viability, and essential genes are ideal drug targets. However, the growth defect of essential gene mutants can be suppressed. Suppressors tend to be accumulated during the construction of essential gene deletion mutants, hampering the genetic analysis. To circumvent this issue, we constructed a deletion allele of fabA in the presence of a native promoter-controlled complementary copy in the ts-plasmid. In this analysis, we showed that ΔfabA/pTS-fabA failed to grow at a restrictive temperature, supporting its essentiality. Suppressor analysis revealed desA, whose promoter carried a SNP and whose transcription was upregulated. We validated that both the SNP-bearing promoter-controlled and regulable PBAD promoter-controlled desA suppressed the lethality of ΔfabA. Together, our results demonstrate that fabA is essential for aerobic growth. We propose that plasmid-based ts-alleles are suitable for genetic analysis of essential genes of interest.
Collapse
Affiliation(s)
- Liyan Tian
- Systems Biology, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Zhili Yang
- Systems Biology, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jianxin Wang
- Systems Biology, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jianhua Liu
- Systems Biology, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
4
|
Elmore JR, Dexter GN, Baldino H, Huenemann JD, Francis R, Peabody GL, Martinez-Baird J, Riley LA, Simmons T, Coleman-Derr D, Guss AM, Egbert RG. High-throughput genetic engineering of nonmodel and undomesticated bacteria via iterative site-specific genome integration. SCIENCE ADVANCES 2023; 9:eade1285. [PMID: 36897939 PMCID: PMC10005180 DOI: 10.1126/sciadv.ade1285] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/01/2023] [Indexed: 05/31/2023]
Abstract
Efficient genome engineering is critical to understand and use microbial functions. Despite recent development of tools such as CRISPR-Cas gene editing, efficient integration of exogenous DNA with well-characterized functions remains limited to model bacteria. Here, we describe serine recombinase-assisted genome engineering, or SAGE, an easy-to-use, highly efficient, and extensible technology that enables selection marker-free, site-specific genome integration of up to 10 DNA constructs, often with efficiency on par with or superior to replicating plasmids. SAGE uses no replicating plasmids and thus lacks the host range limitations of other genome engineering technologies. We demonstrate the value of SAGE by characterizing genome integration efficiency in five bacteria that span multiple taxonomy groups and biotechnology applications and by identifying more than 95 heterologous promoters in each host with consistent transcription across environmental and genetic contexts. We anticipate that SAGE will rapidly expand the number of industrial and environmental bacteria compatible with high-throughput genetics and synthetic biology.
Collapse
Affiliation(s)
- Joshua R. Elmore
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Gara N. Dexter
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Henri Baldino
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jay D. Huenemann
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996,USA
| | - Ryan Francis
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - George L. Peabody
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Jessica Martinez-Baird
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Lauren A. Riley
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996,USA
| | - Tuesday Simmons
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94701, USA
| | - Devin Coleman-Derr
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94701, USA
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA
| | - Adam M. Guss
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Robert G. Egbert
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
5
|
Analysis of the Plasmid-Based ts Allele of PA0006 Reveals Its Function in Regulation of Cell Morphology and Biosynthesis of Core Lipopolysaccharide in Pseudomonas aeruginosa. Appl Environ Microbiol 2022; 88:e0048022. [PMID: 35762790 PMCID: PMC9317947 DOI: 10.1128/aem.00480-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Over 300 essential genes are predicted using transposon sequencing in the genome of Pseudomonas aeruginosa. However, methods for reverse genetic analysis of essential genes are scarce. To address this issue, we developed a three-step protocol consisting of integration of deletion plasmid, introduction of temperature-sensitive rescue plasmid, and excision of integrated-deletion plasmid to construct the plasmid-based temperature-sensitive allele of essential genes. Using PA0006 as an example, we showed that PA0006(Ts) exhibited wild-type cell morphology at permissive temperature but filamentous form at restrictive temperatures. We further showed that the glycerol-mannoheptose-bisphosphate phosphatase GmhB in Escherichia coli shared 32.4% identity with that of PA0006p and functionally complemented the defect of PA0006(Ts) at 42°C. SDS-PAGE and Western blotting indicated the presence and absence of the complete core lipopolysaccharide (LPS) and B-band O-antigen in PA0006(Ts) at 30 and 42°C, respectively. An isolated suppressor sup displayed wild-type-like cell morphology but no complete core LPS or O-antigen. Genome resequencing together with comparative transcriptomic profiling identified a candidate suppressor fructose-bisphosphate phosphatase in which the promoter harbored a SNP and the transcription level was not downregulated at 42°C compared to 30°C in sup. It was further validated that fbp overexpression suppressed the lethality of PA0006(Ts) at 42°C. Taken together, our results demonstrate that PA0006 plays a role in regulation of cell morphology and biosynthesis of core LPS. This three-step protocol for construction of conditional lethal allele in P. aeruginosa should be widely applicable for genetic analysis of other essential genes of interest, including analysis of bypass suppressibility. IMPORTANCE Microbial essential genes encode nondispensable function for cell growth and therefore are ideal targets for the development of new drugs. Essential genes are readily identified using transposon-sequencing technology at the genome scale. However, genetic analysis of essential genes of interest was hampered by limited methodologies. To address this issue, we developed a three-step protocol for construction of conditional allele of essential genes in the opportunistic pathogen Pseudomonas aeruginosa. Using PA0006 as an example, we demonstrated that the plasmid-based PA0006(Ts) mutant exhibited defects in regulation of cell morphology, formation of intact core LPS, and attachment of the O-antigen at restrictive temperatures but not at permissive temperatures. A suppressor of PA0006(Ts) was isolated through spontaneous mutations and showed restored cell morphology but not core oligosaccharide or O-antigen. This method should be widely applicable for phenotype and suppressibility analyses of other essential genes of interest in P. aeruginosa.
Collapse
|
6
|
Volke DC, Friis L, Wirth NT, Turlin J, Nikel PI. Synthetic control of plasmid replication enables target- and self-curing of vectors and expedites genome engineering of Pseudomonas putida. Metab Eng Commun 2020; 10:e00126. [PMID: 32215253 PMCID: PMC7090339 DOI: 10.1016/j.mec.2020.e00126] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/23/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
Genome engineering of non-conventional microorganisms calls for the development of dedicated synthetic biology tools. Pseudomonas putida is a Gram-negative, non-pathogenic soil bacterium widely used for metabolic engineering owing to its versatile metabolism and high levels of tolerance to different types of stress. Genome editing of P. putida largely relies on homologous recombination events, assisted by helper plasmid-based expression of genes encoding DNA modifying enzymes. Plasmid curing from selected isolates is the most tedious and time-consuming step of this procedure, and implementing commonly used methods to this end in P. putida (e.g. temperature-sensitive replicons) is often impractical. To tackle this issue, we have developed a toolbox for both target- and self-curing of plasmid DNA in Pseudomonas species. Our method enables plasmid-curing in a simple cultivation step by combining in vivo digestion of vectors by the I-SceI homing nuclease with synthetic control of plasmid replication, triggered by the addition of a cheap chemical inducer (3-methylbenzoate) to the medium. The system displays an efficiency of vector curing >90% and the screening of plasmid-free clones is greatly facilitated by the use of fluorescent markers that can be selected according to the application intended. Furthermore, quick genome engineering of P. putida using self-curing plasmids is demonstrated through genome reduction of the platform strain EM42 by eliminating all genes encoding β-lactamases, the catabolic ben gene cluster, and the pyoverdine synthesis machinery. Physiological characterization of the resulting streamlined strain, P. putida SEM10, revealed advantageous features that could be exploited for metabolic engineering. Plasmid-curing is the most time-consuming step in genome engineering approaches. We have developed a system for easy target- and self-curing of plasmid DNA. Synthetic control of replication and highly-specific in vivo DNA digestion were used. Plasmid curing with this system displays an efficiency >90% in a 24-h cultivation. Quick genome engineering facilitated genome reduction of P. putida.
Collapse
Affiliation(s)
- Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Laura Friis
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Justine Turlin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| |
Collapse
|
7
|
Jaroensuk J, Wong YH, Zhong W, Liew CW, Maenpuen S, Sahili AE, Atichartpongkul S, Chionh YH, Nah Q, Thongdee N, McBee ME, Prestwich EG, DeMott MS, Chaiyen P, Mongkolsuk S, Dedon PC, Lescar J, Fuangthong M. Crystal structure and catalytic mechanism of the essential m 1G37 tRNA methyltransferase TrmD from Pseudomonas aeruginosa. RNA (NEW YORK, N.Y.) 2019; 25:1481-1496. [PMID: 31399541 PMCID: PMC6795141 DOI: 10.1261/rna.066746.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
The tRNA (m1G37) methyltransferase TrmD catalyzes m1G formation at position 37 in many tRNA isoacceptors and is essential in most bacteria, which positions it as a target for antibiotic development. In spite of its crucial role, little is known about TrmD in Pseudomonas aeruginosa (PaTrmD), an important human pathogen. Here we present detailed structural, substrate, and kinetic properties of PaTrmD. The mass spectrometric analysis confirmed the G36G37-containing tRNAs Leu(GAG), Leu(CAG), Leu(UAG), Pro(GGG), Pro(UGG), Pro(CGG), and His(GUG) as PaTrmD substrates. Analysis of steady-state kinetics with S-adenosyl-l-methionine (SAM) and tRNALeu(GAG) showed that PaTrmD catalyzes the two-substrate reaction by way of a ternary complex, while isothermal titration calorimetry revealed that SAM and tRNALeu(GAG) bind to PaTrmD independently, each with a dissociation constant of 14 ± 3 µM. Inhibition by the SAM analog sinefungin was competitive with respect to SAM (Ki = 0.41 ± 0.07 µM) and uncompetitive for tRNA (Ki = 6.4 ± 0.8 µM). A set of crystal structures of the homodimeric PaTrmD protein bound to SAM and sinefungin provide the molecular basis for enzyme competitive inhibition and identify the location of the bound divalent ion. These results provide insights into PaTrmD as a potential target for the development of antibiotics.
Collapse
Affiliation(s)
- Juthamas Jaroensuk
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
- Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance and Infectious Disease Interdisciplinary Research Groups, 138602 Singapore
| | - Yee Hwa Wong
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | - Wenhe Zhong
- Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance and Infectious Disease Interdisciplinary Research Groups, 138602 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | - Chong Wai Liew
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Abbas E Sahili
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | | | - Yok Hian Chionh
- Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance and Infectious Disease Interdisciplinary Research Groups, 138602 Singapore
| | - Qianhui Nah
- Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance and Infectious Disease Interdisciplinary Research Groups, 138602 Singapore
| | - Narumon Thongdee
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Megan E McBee
- Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance and Infectious Disease Interdisciplinary Research Groups, 138602 Singapore
| | - Erin G Prestwich
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
- Department of Biotechnology, Faculty of Sciences, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok 10400, Thailand
| | - Peter C Dedon
- Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance and Infectious Disease Interdisciplinary Research Groups, 138602 Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | - Mayuree Fuangthong
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok 10400, Thailand
| |
Collapse
|
8
|
Mikalauskas A, Parkins MD, Poole K. Rifampicin potentiation of aminoglycoside activity against cystic fibrosis isolates of Pseudomonas aeruginosa. J Antimicrob Chemother 2018; 72:3349-3352. [PMID: 28961705 DOI: 10.1093/jac/dkx296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/21/2017] [Indexed: 01/30/2023] Open
Abstract
Objectives Rifampicin potentiates the activity of aminoglycosides (AGs) versus Pseudomonas aeruginosa by targeting the AmgRS two-component system. In this study we examine the impact of rifampicin on the AG susceptibility of cystic fibrosis (CF) lung isolates of P. aeruginosa and the contribution of AmgRS to AG resistance in these isolates. Methods amgR deletion derivatives of clinical isolates were constructed using standard gene replacement technology. Susceptibility to AGs ± rifampicin (at ½ MIC) was assessed using a serial 2-fold dilution assay. Results Rifampicin showed a variable ability to potentiate AG activity versus the CF isolates, enhancing AG susceptibility between 2- and 128-fold. Most strains showed potentiation for at least two AGs, with only a few strains showing no AG potentiation by rifampicin. Notably, loss of amgR increased AG susceptibility although rifampicin potentiation of AG activity was still observed in the ΔamgR derivatives. Conclusions AmgRS contributes to AG resistance in CF isolates of P. aeruginosa and rifampicin shows a variable ability to potentiate AG activity against these, highlighting the complexity of AG resistance in such isolates.
Collapse
Affiliation(s)
- Alaya Mikalauskas
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases and Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith Poole
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
9
|
Prathapam R, Uehara T. A temperature-sensitive replicon enables efficient gene inactivation in Pseudomonas aeruginosa. J Microbiol Methods 2017; 144:47-52. [PMID: 29109011 DOI: 10.1016/j.mimet.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/25/2023]
Abstract
Tools to enable genome editing are essential for understanding physiology. Here we report a gene replacement method in Pseudomonas aeruginosa using a temperature-sensitive replicon plasmid that does not require mating or isolation of a merodiploid intermediate. This approach was validated by replacing the non-essential ampD gene with a gentamicin resistance cassette. In addition lpxA and lpxD, both located in a complex gene cluster including multiple downstream essential genes, were inactivated when complemented by each target gene in trans. These strains did not grow when expression of the gene in trans was repressed, confirming that both genes are essential for viability. This method facilitates efficient gene inactivation in P. aeruginosa.
Collapse
Affiliation(s)
- Ramadevi Prathapam
- Infectious Diseases Area, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA 94608, United States
| | - Tsuyoshi Uehara
- Infectious Diseases Area, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA 94608, United States.
| |
Collapse
|
10
|
Boonma S, Romsang A, Duang-Nkern J, Atichartpongkul S, Trinachartvanit W, Vattanaviboon P, Mongkolsuk S. The FinR-regulated essential gene fprA, encoding ferredoxin NADP+ reductase: Roles in superoxide-mediated stress protection and virulence of Pseudomonas aeruginosa. PLoS One 2017; 12:e0172071. [PMID: 28187184 PMCID: PMC5302815 DOI: 10.1371/journal.pone.0172071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/30/2017] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa has two genes encoding ferredoxin NADP(+) reductases, denoted fprA and fprB. We show here that P. aeruginosa fprA is an essential gene. However, the ΔfprA mutant could only be successfully constructed in PAO1 strains containing an extra copy of fprA on a mini-Tn7 vector integrated into the chromosome or carrying it on a temperature-sensitive plasmid. The strain containing an extra copy of the ferredoxin gene (fdx1) could suppress the essentiality of FprA. Other ferredoxin genes could not suppress the requirement for FprA, suggesting that Fdx1 mediates the essentiality of FprA. The expression of fprA was highly induced in response to treatments with a superoxide generator, paraquat, or sodium hypochlorite (NaOCl). The induction of fprA by these treatments depended on FinR, a LysR-family transcription regulator. In vivo and in vitro analysis suggested that oxidized FinR acted as a transcriptional activator of fprA expression by binding to its regulatory box, located 20 bases upstream of the fprA -35 promoter motif. This location of the FinR box also placed it between the -35 and -10 motifs of the finR promoter, where the reduced regulator functions as a repressor. Under uninduced conditions, binding of FinR repressed its own transcription but had no effect on fprA expression. Exposure to paraquat or NaOCl converted FinR to a transcriptional activator, leading to the expression of both fprA and finR. The ΔfinR mutant showed an increased paraquat sensitivity phenotype and attenuated virulence in the Drosophila melanogaster host model. These phenotypes could be complemented by high expression of fprA, indicating that the observed phenotypes of the ΔfinR mutant arose from the inability to up-regulate fprA expression. In addition, increased expression of fprB was unable to rescue essentiality of fprA or the superoxide-sensitive phenotype of the ΔfinR mutant, suggesting distinct mechanisms of the FprA and FprB enzymes.
Collapse
Affiliation(s)
- Siriwan Boonma
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Adisak Romsang
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jintana Duang-Nkern
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | | | | | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry Of Education, Bangkok, Thailand.,Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry Of Education, Bangkok, Thailand.,Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
11
|
DciA is an ancestral replicative helicase operator essential for bacterial replication initiation. Nat Commun 2016; 7:13271. [PMID: 27830752 PMCID: PMC5109545 DOI: 10.1038/ncomms13271] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022] Open
Abstract
Delivery of the replicative helicase onto DNA is an essential step in the initiation of replication. In bacteria, DnaC (in Escherichia coli) and DnaI (in Bacillus subtilis) are representative of the two known mechanisms that assist the replicative helicase at this stage. Here, we establish that these two strategies cannot be regarded as prototypical of the bacterial domain since dnaC and dnaI (dna[CI]) are present in only a few bacterial phyla. We show that dna[CI] was domesticated at least seven times through evolution in bacteria and at the expense of one gene, which we rename dciA (dna[CI] antecedent), suggesting that DciA and Dna[CI] share a common function. We validate this hypothesis by establishing in Pseudomonas aeruginosa that DciA possesses the attributes of the replicative helicase-operating proteins associated with replication initiation. DNA replication requires the loading of the replicative helicase onto the DNA molecule; in bacteria this was believed to be solely accomplished by DnaC and DnaI. Here the authors identify DciA as an ancestral and still widely distributed replicative helicase loader.
Collapse
|
12
|
Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J Microbiol Methods 2011; 85:155-63. [PMID: 21362445 DOI: 10.1016/j.mimet.2011.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/22/2011] [Accepted: 02/22/2011] [Indexed: 11/23/2022]
Abstract
Random chemical mutation of a Corynebacterium glutamicum-Escherichia coli shuttle vector derived from plasmid pCGR2 was done using hydroxylamine. It brought about amino acid substitutions G109D and E180K within the replicase superfamily domain of the plasmid's RepA protein and rendered the plasmid highly unstable, especially at higher incubation temperatures. Colony formation of C. glutamicum was consequently completely inhibited at 37°C but not at 25°C. G109 is a semi-conserved residue mutation which resulted in major temperature sensitivity. E180 on the other hand is not conserved even among RepA proteins of closely related C. glutamicum pCG1 family plasmids and its independent mutation caused relatively moderate plasmid instability. Nonetheless, simultaneous mutation of both residues was required to achieve temperature-sensitive colony formation. This new pCGR2-derived temperature-sensitive plasmid enabled highly efficient chromosomal integration in a variety of C. glutamicum wild-type strains, proving its usefulness in gene disruption studies. Based on this, an efficient markerless gene replacement system was demonstrated using a selection system incorporating the temperature-sensitive replicon and Bacillus subtilis sacB selection marker, a system hitherto not used in this bacterium. Single-crossover integrants were accurately selected by temperature-dependent manner and 93% of the colonies obtained by the subsequent sucrose selection were successful double-crossover recombinants.
Collapse
|
13
|
Chen L, Wang W, Sun W, Surette M, Duan K. Characterization of a cryptic plasmid from Pseudomonas sp. and utilization of its temperature-sensitive derivatives for genetic manipulation. Plasmid 2010; 64:110-7. [PMID: 20566404 DOI: 10.1016/j.plasmid.2010.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 05/14/2010] [Accepted: 05/18/2010] [Indexed: 11/24/2022]
Abstract
A new cryptic plasmid, named pMM101, in an environmental Pseudomonas sp. has been isolated, and its 2140-bp DNA sequence has been determined and analyzed. One open reading frame (Rep(MM)) similar to the rep gene of the rolling-circle replicon (RCR) group VIII has been allocated in the replication region where a putative double-strand origin dso and single-strand origin sso could also be identified. After in vitro mutagenesis by error-prone PCR and introduced into Pseudomonas aeruginosa PAO1, a mutant plasmid which was stably maintained at 30 degrees C but not at 42 degrees C was isolated and analyzed. It had two nucleotide substitutions in the putative sso and dso regions. Replacing one of the two sites with wild type sequence resulted in similar instability at 42 degrees C, indicating either mutation could result in the temperature-sensitive trait. Using the mutant replicon, a Pseudomonas (temperature-sensitive)-Escherichia coli shuttle vector, pUM109, has been constructed and used successfully to disrupt P. aeruginosa genes. This temperature-sensitive vector provides an alternative tool for genetic manipulations in this industrially as well as medically important bacterium.
Collapse
Affiliation(s)
- Lin Chen
- Molecular Microbiology Laboratory, Faculty of Life Sciences, Northwest University, 229 Taibai Road North, Xi'an, Shaanxi 710069, PR China
| | | | | | | | | |
Collapse
|