1
|
Lee YR, Lee J, Hong S, Lee SY, Lee WH, Koh M, Chang IS, Lee S. Optimization of Electroporation Conditions for Introducing Heterologous DNA into Rhodobacter sphaeroides. J Microbiol Biotechnol 2024; 34:2347-2352. [PMID: 39403725 PMCID: PMC11637821 DOI: 10.4014/jmb.2408.08044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 11/29/2024]
Abstract
Rhodobacter sphaeroides is a strain capable of both photoautotrophic and chemoautotrophic growth, with various metabolic pathways that make it highly suitable for converting carbon dioxide into high value-added products. However, its low transformation efficiency has posed challenges for genetic and metabolic engineering of this strain. In this study, we aimed to increase the transformation efficiency of R. sphaeroides by deleting the rshI gene coding for an endogenous DNA restriction enzyme that inhibits. We evaluated the effects of growth conditions for making electrocompetent cells and optimized electroporation parameters to be a cuvette width of 0.1 cm, an electric field strength of 30 kV/cm, a resistance of 200 Ω, and a plasmid DNA amount of 0.5 μg, followed by a 24-h recovery period. As a result, we observed over 7,000 transformants per μg of DNA under the optimized electroporation conditions using the R. sphaeroides ΔrshI strain, which is approximately 10 times higher than that of wild-type R. sphaeroides under standard bacterial electroporation conditions. These findings are expected to enhance the application of R. sphaeroides in various industrial fields in the future.
Collapse
Affiliation(s)
- Yu Rim Lee
- National Biotechnology Policy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Juah Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Suhyeon Hong
- Department of Bio-Environmental Chemistry, College of Agricultural and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soo Youn Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Won-Heong Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Minseob Koh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - In Seop Chang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sangmin Lee
- Department of Bio-Environmental Chemistry, College of Agricultural and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Christi K, Hudson J, Egan S. Current approaches to genetic modification of marine bacteria and considerations for improved transformation efficiency. Microbiol Res 2024; 284:127729. [PMID: 38663232 DOI: 10.1016/j.micres.2024.127729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/25/2024] [Accepted: 04/15/2024] [Indexed: 05/26/2024]
Abstract
Marine bacteria play vital roles in symbiosis, biogeochemical cycles and produce novel bioactive compounds and enzymes of interest for the pharmaceutical, biofuel and biotechnology industries. At present, investigations into marine bacterial functions and their products are primarily based on phenotypic observations, -omic type approaches and heterologous gene expression. To advance our understanding of marine bacteria and harness their full potential for industry application, it is critical that we have the appropriate tools and resources to genetically manipulate them in situ. However, current genetic tools that are largely designed for model organisms such as E. coli, produce low transformation efficiencies or have no transfer ability in marine bacteria. To improve genetic manipulation applications for marine bacteria, we need to improve transformation methods such as conjugation and electroporation in addition to identifying more marine broad host range plasmids. In this review, we aim to outline the reported methods of transformation for marine bacteria and discuss the considerations for each approach in the context of improving efficiency. In addition, we further discuss marine plasmids and future research areas including CRISPR tools and their potential applications for marine bacteria.
Collapse
Affiliation(s)
- Katrina Christi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Jennifer Hudson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
3
|
Mohamadzadeh M, Ghiasi M, Aghamollaei H. Optimization of plasmid electrotransformation into Bacillus subtilis using an antibacterial peptide. Arch Microbiol 2024; 206:116. [PMID: 38388903 DOI: 10.1007/s00203-024-03847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 02/24/2024]
Abstract
Bacillus subtilis can potentially serve as an efficient expression host for biotechnology due to its ability to secrete extracellular proteins and enzymes directly into the culture medium. One of the important challenges in the biotechnology industry is to optimize the transformation conditions of B. subtilis bacteria. This study aims to provide a new method to optimize the transformation conditions and improve the transformation efficiency of B. subtilis WB600. To increase the transformation efficiency in B. subtilis, two methods of adding CM11 antibacterial peptides to the bacterial medium along with electroporation and optimizing the variables including the growth medium composition, time to adding CM11 peptide, electroporation voltage, recovery medium, and cell recovery time are used. The results of this study showed that the addition of antimicrobial peptides (AMPs) with a concentration of 2 μg/ml increases the transformation efficiency by 4 times compared to the absence of AMP in the bacterial medium. Additionally, the findings from our study indicated that the most optimal rate of transformation for B. subtilis was observed at a voltage of 7.5 kV/cm, with a recovery period of 12 h. With the optimized method, the transformation efficiency came up to 1.69 × 104 CFU/µg DNA. This improvement in transformation efficiency will be attributed to the research of expression of exogenous genes in B. subtilis, gene library construction for transformation of wild-type B. subtilis strains.
Collapse
Affiliation(s)
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
The Novel Amidase PcnH Initiates the Degradation of Phenazine-1-Carboxamide in Sphingomonas histidinilytica DS-9. Appl Environ Microbiol 2022; 88:e0054322. [PMID: 35579476 PMCID: PMC9195955 DOI: 10.1128/aem.00543-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phenazines are an important class of secondary metabolites and are primarily named for their heterocyclic phenazine cores, including phenazine-1-carboxylic acid (PCA) and its derivatives, such as phenazine-1-carboxamide (PCN) and pyocyanin (PYO). Although several genes involved in the degradation of PCA and PYO have been reported so far, the genetic foundations of PCN degradation remain unknown. In this study, a PCN-degrading bacterial strain, Sphingomonas histidinilytica DS-9, was isolated. The gene pcnH, encoding a novel amidase responsible for the initial step of PCN degradation, was cloned by genome comparison and subsequent experimental validation. PcnH catalyzed the hydrolysis of the amide bond of PCN to produce PCA, which shared low identity (only 26 to 33%) with reported amidases. The Km and kcat values of PcnH for PCN were 33.22 ± 5.70 μM and 18.71 ± 0.52 s-1, respectively. PcnH has an Asp-Lys-Cys motif, which is conserved among amidases of the isochorismate hydrolase-like (IHL) superfamily. The replacement of Asp37, Lys128, and Cys163 with alanine in PcnH led to the complete loss of enzymatic activity. Furthermore, the genes pcaA1A2A3A4 and pcnD were found to encode PCA 1,2-dioxygenase and 1,2-dihydroxyphenazine (2OHPC) dioxygenase, which were responsible for the subsequent degradation steps of PCN. The PCN-degradative genes were highly conserved in some bacteria of the genus Sphingomonas, with slight variations in the sequence identities. IMPORTANCE Phenazines have been widely acknowledged as a natural antibiotic for more than 150 years, but their degradation mechanisms are still not completely elucidated. Compared with the studies on the degradation mechanism of PCA and PYO, little is known regarding PCN degradation by far. Previous studies have speculated that its initial degradation step may be catalyzed by an amidase, but no further studies have been conducted. This study identified a novel amidase, PcnH, that catalyzed the hydrolysis of PCN to PCA. In addition, the PCA 1,2-dioxygenase PcaA1A2A3A4 and 2OHPC dioxygenase PcnD were also found to be involved in the subsequent degradation steps of PCN in S. histidinilytica DS-9. And the genes responsible for PCN catabolism are highly conserved in some strains of Sphingomonas. These results deepen our understanding of the PCN degradation mechanism.
Collapse
|
5
|
Carbamate C-N Hydrolase Gene ameH Responsible for the Detoxification Step of Methomyl Degradation in Aminobacter aminovorans Strain MDW-2. Appl Environ Microbiol 2020; 87:AEM.02005-20. [PMID: 33097501 DOI: 10.1128/aem.02005-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
Methomyl {bis[1-methylthioacetaldehyde-O-(N-methylcarbamoyl)oximino]sulfide} is a highly toxic oxime carbamate insecticide. Several methomyl-degrading microorganisms have been reported so far, but the role of specific enzymes and genes in this process is still unexplored. In this study, a protein annotated as a carbamate C-N hydrolase was identified in the methomyl-degrading strain Aminobacter aminovorans MDW-2, and the encoding gene was termed ameH A comparative analysis between the mass fingerprints of AmeH and deduced proteins of the strain MDW-2 genome revealed AmeH to be a key enzyme of the detoxification step of methomyl degradation. The results also demonstrated that AmeH was a functional homodimer with a subunit molecular mass of approximately 34 kDa and shared the highest identity (27%) with the putative formamidase from Schizosaccharomyces pombe ATCC 24843. AmeH displayed maximal enzymatic activity at 50°C and pH 8.5. Km and k cat of AmeH for methomyl were 87.5 μM and 345.2 s-1, respectively, and catalytic efficiency (k cat/Km ) was 3.9 μM-1 s-1 Phylogenetic analysis revealed AmeH to be a member of the FmdA_AmdA superfamily. Additionally, five key amino acid residues (162, 164, 191, 193, and 207) of AmeH were identified by amino acid variations.IMPORTANCE Based on the structural characteristic, carbamate insecticides can be classified into oxime carbamates (methomyl, aldicarb, oxamyl, etc.) and N-methyl carbamates (carbaryl, carbofuran, isoprocarb, etc.). So far, research on the degradation of carbamate pesticides has mainly focused on the detoxification step and hydrolysis of their carbamate bond. Several genes, such as cehA, mcbA, cahA, and mcd, and their encoding enzymes have also been reported to be involved in the detoxification step. However, none of these enzymes can hydrolyze methomyl. In this study, a carbamate C-N hydrolase gene, ameH, responsible for the detoxification step of methomyl in strain MDW-2 was cloned and the key amino acid sites of AmeH were investigated. These findings provide insight into the microbial degradation mechanism of methomyl.
Collapse
|
6
|
Zhang M, Ren Y, Jiang W, Wu C, Zhou Y, Wang H, Ke Z, Gao Q, Liu X, Qiu J, Hong Q. Comparative genomic analysis of iprodione-degrading Paenarthrobacter strains reveals the iprodione catabolic molecular mechanism in Paenarthrobacter sp. strain YJN-5. Environ Microbiol 2020; 23:1079-1095. [PMID: 33169936 DOI: 10.1111/1462-2920.15308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022]
Abstract
Degradation of the fungicide iprodione by the Paenarthrobacter sp. strain YJN-5 is initiated via hydrolysis of its N1 amide bond to form N-(3,5-dichlorophenyl)-2,4-dioxoimidazolidine. In this study, another iprodione-degrading strain, Paenarthrobacter sp. YJN-D, which harbours the same metabolic pathway as strain YJN-5 was isolated and characterized. The genes that encode the conserved iprodione catabolic pathway were identified based on comparative analysis of the genomes of the two iprodione-degrading Paenarthrobacter sp. and subsequent experimental validation. These genes include an amidase gene, ipaH (previously reported in AEM e01150-18); a deacetylase gene, ddaH, which is responsible for hydantoin ring cleavage of N-(3,5-dichlorophenyl)-2,4-dioxoimidazolidine, and a hydrolase gene, duaH, which is responsible for cleavage of the urea side chain of (3,5-dichlorophenylurea)acetic acid, thus yielding 3,5-dichloroaniline as the end product. These iprodione-catabolic genes are distributed on three plasmids in strain YJN-5 and are highly conserved between the two iprodione-degrading Paenarthrobacter strains. However, only the ipaH gene is flanked by a mobile genetic element. Two iprodione degradation cassettes bearing ipaH-ddaH-duaH were constructed and expressed in strains Pseudomonas putida KT2440 and Bacillus subtilis SCK6 respectively. Our findings enhance the current understanding of the microbial degradation mechanism of iprodione.
Collapse
Affiliation(s)
- Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yijun Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wankui Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chenglong Wu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yidong Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hui Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qinqin Gao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaoan Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
7
|
Jiang W, Gao Q, Zhang L, Wang H, Zhang M, Liu X, Zhou Y, Ke Z, Wu C, Qiu J, Hong Q. Identification of the key amino acid sites of the carbofuran hydrolase CehA from a newly isolated carbofuran-degrading strain Sphingbium sp. CFD-1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109938. [PMID: 31759739 DOI: 10.1016/j.ecoenv.2019.109938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
A novel carbofuran-degrading strain CFD-1 was isolated and preliminarily identified as Sphingbium sp. This strain was able to utilize carbofuran as the sole carbon source for growth. The carbofuran hydrolase gene cehA was cloned from strain CFD-1 and expressed in Escherichia coli. CehA could hydrolyze carbamate pesticides including carbofuran and carbaryl efficiently, while it showed poor hydrolysis ability against isoprocarb, propoxur, oxamyl and aldicarb. CehA displayed maximal enzymatic activity at 40 °C and pH 7.0. The apparent Km and Kcat values of CehA for carbofuran were 133.22 ± 5.70 μM and 9.48 ± 0.89 s-1, respectively. The site-directed mutation experiment showed that His313, His315, His453 and His495 played important roles in the hydrolysis of carbofuran by CehA. Furthermore, the sequence of cehA is highly conserved among different carbofuran-degrading strains, and there are mobile elements around cehA, indicating that it may be transferred horizontally between different strains.
Collapse
Affiliation(s)
- Wankui Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Qinqin Gao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Lu Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Hui Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Xiaoan Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yidong Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Chenglong Wu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
8
|
Gheibi A, Khanahmad H, Kardar GA, Boshtam M, Rezaie S, Kazemi B, Khorramizadeh MR. Optimization and Comparison of Different Methods and Factors for Efficient Transformation of Brucella abortus RB51strain. Adv Biomed Res 2019; 8:37. [PMID: 31198771 PMCID: PMC6555225 DOI: 10.4103/abr.abr_14_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The development of protective vaccines for Brucella spp. has been hampered by the difficulty in transformation of Brucella cells with foreign DNA for genetic manipulation. It seems that the formation of Brucella spheroplasts would increase the efficiency of transformation. The aim of this study was to devise an efficient method for the transformation of Brucella spp. Materials and Methods: At first, spheroplast of Brucella was prepared by glycine and ampicillin induction and transformed using optimized protocols of CaCl2, electroporation, and lipofection methods. Then, the efficacy of transformation was compared between the three-mentioned methods. Results: Ampicillin-induced spheroplasts from early-log phase culture of brucella when incubated in a medium-containing 0.2 M sucrose during cell recovery had higher transformation efficiency in three different methods. Comparison of the transformation efficiency of Brucella abortus RB51 using the CaCl2, lipofection, and electroporation methods revealed that the transformation efficiency with the lipofection method was significantly higher than with other two methods (P < 0.05). Conclusions: Lipofection method by lipofectamine 2000 on ampicillin-induced spheroplasts can be a suitable approach for Brucella transformation.
Collapse
Affiliation(s)
- Azam Gheibi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholam Ali Kardar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, Asthma and Allergy Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sassan Rezaie
- Department of Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Abstract
Although the pan and the core genome of Acinetobacter baumannii and its essential genes are relatively well characterized, functional characterization of these genes has not paralleled the genome-level studies. However, recently developed genetic tools and optimized protocols are poised to accelerate genetic manipulation of A. baumannii. Transferring exogenous DNA into the cytosol of bacteria cells is a critical step in genetic characterizations. Conjugation is restricted to the transfer of DNA from one bacterial cell to another, and only a portion of A. baumannii clinical isolates are naturally competent. Electroporation, which is thought to transiently create aqueous pores in the membrane, is a preferred method in transferring exogenous DNA as it does not have such limitations. Several factors contribute to efficiency of electroporation and often need to be empirically optimized to maximize efficiency of this procedure. Here we provide an optimized electroporation protocol and guidance for electroporation of clinical MDR isolates of A. baumannii.
Collapse
Affiliation(s)
- Mitchell G Thompson
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Süleyman Yildirim
- Department of Medical Microbiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
10
|
An Amidase Gene, ipaH, Is Responsible for the Initial Step in the Iprodione Degradation Pathway of Paenarthrobacter sp. Strain YJN-5. Appl Environ Microbiol 2018; 84:AEM.01150-18. [PMID: 30054359 DOI: 10.1128/aem.01150-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/20/2018] [Indexed: 11/20/2022] Open
Abstract
Iprodione [3-(3,5-dichlorophenyl) N-isopropyl-2,4-dioxoimidazolidine-1-carboxamide] is a highly effective broad-spectrum dicarboxamide fungicide. Several bacteria with iprodione-degrading capabilities have been reported; however, the enzymes and genes involved in this process have not been characterized. In this study, an iprodione-degrading strain, Paenarthrobacter sp. strain YJN-5, was isolated and characterized. Strain YJN-5 degraded iprodione through the typical pathway, with hydrolysis of its N-1 amide bond to N-(3,5-dichlorophenyl)-2,4-dioxoimidazolidine as the initial step. The ipaH gene, encoding a novel amidase responsible for this step, was cloned from strain YJN-5 by the shotgun method. IpaH shares the highest similarity (40%) with an indoleacetamide hydrolase (IAHH) from Bradyrhizobium diazoefficiens USDA 110. IpaH displayed maximal enzymatic activity at 35°C and pH 7.5, and it was not a metalloamidase. The kcat and Km of IpaH against iprodione were 22.42 s-1 and 7.33 μM, respectively, and the catalytic efficiency value (kcat/Km ) was 3.09 μM-1 s-1 IpaH has a Ser-Ser-Lys motif, which is conserved among members of the amidase signature family. The replacement of Lys82, Ser157, and Ser181 with alanine in IpaH led to the complete loss of enzymatic activity. Furthermore, strain YJN-5M lost the ability to degrade iprodione, suggesting that ipaH is the only gene responsible for the initial iprodione degradation step. The ipaH gene could also be amplified from another previously reported iprodione-degrading strain, Microbacterium sp. strain YJN-G. The sequence similarity between the two IpaHs at the amino acid level was 98%, indicating that conservation of IpaH exists in different strains.IMPORTANCE Iprodione is a widely used dicarboxamide fungicide, and its residue has been frequently detected in the environment. The U.S. Environmental Protection Agency has classified iprodione as moderately toxic to small animals and a probable carcinogen to humans. Bacterial degradation of iprodione has been widely investigated. Previous studies demonstrate that hydrolysis of its N-1 amide bond is the initial step in the typical bacterial degradation pathway of iprodione; however, enzymes or genes involved in iprodione degradation have yet to be reported. In this study, a novel ipaH gene encoding an amidase responsible for the initial degradation step of iprodione in Paenarthrobacter sp. strain YJN-5 was cloned. In addition, the characteristics and key amino acid sites of IpaH were investigated. These findings enhance our understanding of the microbial degradation mechanism of iprodione.
Collapse
|
11
|
Deutch CE. l-Proline catabolism by the high G + C Gram-positive bacterium Paenarthrobacter aurescens strain TC1. Antonie van Leeuwenhoek 2018; 112:237-251. [DOI: 10.1007/s10482-018-1148-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
|
12
|
Development of an efficient electroporation method for rhizobacterial Bacillus mycoides strains. J Microbiol Methods 2017; 133:82-86. [DOI: 10.1016/j.mimet.2016.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 11/22/2022]
|
13
|
Yildirim S, Thompson MG, Jacobs AC, Zurawski DV, Kirkup BC. Evaluation of Parameters for High Efficiency Transformation of Acinetobacter baumannii. Sci Rep 2016; 6:22110. [PMID: 26911658 PMCID: PMC4766488 DOI: 10.1038/srep22110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/03/2016] [Indexed: 11/09/2022] Open
Abstract
Acinetobacter baumannii is an emerging, nosocomial pathogen that is poorly characterized due to a paucity of genetic tools and methods. While whole genome sequence data from several epidemic and environmental strains have recently become available, the functional characterization of genes is significantly lagging. Efficient transformation is one of the first steps to develop molecular tools that can be used to address these shortcomings. Here we report parameters allowing high efficiency transformation of A. baumannii. Using a multi-factorial experimental design we found that growth phase, voltage, and resistance all significantly contribute to transformation efficiency. The highest efficiency (4.3 × 10(8) Transformants/μg DNA) was obtained at the stationary growth phase of the bacterium (OD 6.0) using 25 ng of plasmid DNA under 100 Ohms resistance and 1.7 kV/cm voltage. The optimized electroporation parameters reported here provide a useful tool for genetic manipulation of A. baumannii.
Collapse
Affiliation(s)
- Suleyman Yildirim
- Department of Wound Infections, Bacterial Diseases Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mitchell G Thompson
- Department of Wound Infections, Bacterial Diseases Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anna C Jacobs
- Department of Wound Infections, Bacterial Diseases Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Daniel V Zurawski
- Department of Wound Infections, Bacterial Diseases Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Benjamin C Kirkup
- Department of Wound Infections, Bacterial Diseases Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Department of Medicine, Infectious Diseases Division, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Chen X, Zhang B, Xiao J, Ju F, Li S, Ren C, An L, Chen T, Liu G, Facey P, Mullins JG, Dyson P. RfiA, a novel PAP2 domain-containing polytopic membrane protein that confers resistance to the FtsZ inhibitor PC190723. Future Microbiol 2016; 10:325-35. [PMID: 25812456 DOI: 10.2217/fmb.14.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND As an essential protein for bacterial cell division, the tubulin-like FtsZ protein has been selected as a target for development of next generation antimicrobials. PC190723 is a fluoride-containing benzamide compound developed as a FtsZ inhibitor that selectively inhibits growth of multidrug resistant Gram-positive bacteria. AIM Our aim was to investigate the mechanism of resistance to PC109723 conferred by over-expression of a gene, rfiA, in an environmental bacterium Arthrobacter A3. MATERIALS & METHODS The investigations included analysis of the effect of PC109723 on wild-type Arthrobacter A3 and a recombinant strain over-expressing rfiA, in vivo localization of RfiA, in vitro measurements of fluorine release from PC109723 by membrane extracts from the over-expression strain combined with mass spectrophotometric analysis of reaction products, and modelling of RfiA structure. RESULTS We describe a novel protein, RfiA, from Arthrobacter A3 that confers PC190723 resistance. RfiA is a PAP2 domain-containing polytopic transmembrane protein that can modify the fluoridated benzamide ring that is critical for high affinity binding of PC190723 with FtsZ. CONCLUSION RfiA-mediated modification of PC190723 is the first reported instance of resistance to this antibiotic involving a change to its structure. We predict that adoption of PC190723 or related benzamides as antimicrobials in clinical practice will lead to the acquisition by resistant pathogens of a gene encoding this subfamily of proteins.
Collapse
Affiliation(s)
- Ximing Chen
- Key Laboratory of Extreme Environmental Microbial Resources & Engineering of Gansu Province, Lanzhou University, Lanzhou, Gansu, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Development of an efficient electroporation method for iturin A-producing Bacillus subtilis ZK. Int J Mol Sci 2015; 16:7334-51. [PMID: 25837631 PMCID: PMC4425020 DOI: 10.3390/ijms16047334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 01/05/2023] Open
Abstract
In order to efficiently introduce DNA into B. subtilis ZK, which produces iturin A at a high level, we optimized seven electroporation conditions and explored an efficient electroporation method. Using the optimal conditions, the electroporation efficiency was improved to 1.03 × 107 transformants/μg of DNA, an approximately 10,000-fold increase in electroporation efficiency. This efficiency is the highest electroporation efficiency for B. subtilis and enables the construction of a directed evolution library or the knockout of a gene in B. subtilis ZK for molecular genetics studies. In the optimization process, the combined effects of three types of wall-weakening agents were evaluated using a response surface methodology (RSM) design, which led to a two orders of magnitude increase in electroporation efficiency. To the best of our limited knowledge, this study provides the first demonstration of using an RSM design for optimization of the electroporation conditions for B. subtilis. To validate the electroporation efficiency, a case study was performed and a gene (rapC) was inactivated in B. subtilis ZK using a suicide plasmid pMUTIN4. Moreover, we found that the rapC mutants exhibited a marked decrease in iturin A production, suggesting that the rapC gene was closely related to the iturin A production.
Collapse
|
16
|
Lu S, Nie Y, Tang YQ, Xiong G, Wu XL. A critical combination of operating parameters can significantly increase the electrotransformation efficiency of a gram-positive Dietzia strain. J Microbiol Methods 2014; 103:144-51. [DOI: 10.1016/j.mimet.2014.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022]
|
17
|
Ma Z, Liu J, Shentu X, Bian Y, Yu X. Optimization of electroporation conditions for toyocamycin producer Streptomyces diastatochromogenes 1628. J Basic Microbiol 2013; 54:278-84. [PMID: 23775805 DOI: 10.1002/jobm.201200489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/06/2012] [Indexed: 11/07/2022]
Abstract
Because of its structural similarity to nucleoside, toyocamycin exhibits potential of wide application and various biological activities. Streptomyces diastatochromogenes 1628, capable of producing toyocamycin, has exhibited a potential biocontrol effect in inhibiting the development of phytopathogens in the agriculture field. An efficient transformation system is a prerequisite for genetic and molecular study of S. diastatochromogenes 1628. In this study, we optimized experimental factors involved in the electroporation transformation process. Key features of this procedure, including collection of cells at the mid-log phase stage and the treatment of cells with lysozyme and penicillin G prior to the electroporation and recovery medium and time, produced the greatest increase in the efficiency and consistency of results. The transformation efficiency also depends on field strength, cell concentration, and plasmid DNA quantity. Under the optimal conditions, a maximal efficiency of (3 ± 0.4) × 10(4) µg(-1) DNA was obtained. The development of transformation method for S. diastatochromogenes 1628 will foster genetic manipulation of this important strain.
Collapse
Affiliation(s)
- Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | | | | | | | | |
Collapse
|
18
|
Pyne ME, Moo-Young M, Chung DA, Chou CP. Development of an electrotransformation protocol for genetic manipulation of Clostridium pasteurianum. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:50. [PMID: 23570573 PMCID: PMC3658993 DOI: 10.1186/1754-6834-6-50] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/04/2013] [Indexed: 05/13/2023]
Abstract
BACKGROUND Reducing the production cost of, and increasing revenues from, industrial biofuels will greatly facilitate their proliferation and co-integration with fossil fuels. The cost of feedstock is the largest cost in most fermentation bioprocesses and therefore represents an important target for cost reduction. Meanwhile, the biorefinery concept advocates revenue growth through complete utilization of by-products generated during biofuel production. Taken together, the production of biofuels from low-cost crude glycerol, available in oversupply as a by-product of bioethanol production, in the form of thin stillage, and biodiesel production, embodies a remarkable opportunity to advance affordable biofuel development. However, few bacterial species possess the natural capacity to convert glycerol as a sole source of carbon and energy into value-added bioproducts. Of particular interest is the anaerobe Clostridium pasteurianum, the only microorganism known to convert glycerol alone directly into butanol, which currently holds immense promise as a high-energy biofuel and bulk chemical. Unfortunately, genetic and metabolic engineering of C. pasteurianum has been fundamentally impeded due to lack of an efficient method for deoxyribonucleic acid (DNA) transfer. RESULTS This work reports the development of an electrotransformation protocol permitting high-level DNA transfer to C. pasteurianum ATCC 6013 together with accompanying selection markers and vector components. The CpaAI restriction-modification system was found to be a major barrier to DNA delivery into C. pasteurianum which we overcame by in vivo methylation of the recognition site (5'-CGCG-3') using the M.FnuDII methyltransferase. With proper selection of the replication origin and antibiotic-resistance marker, we initially electroporated methylated DNA into C. pasteurianum at a low efficiency of 2.4 × 101 transformants μg-1 DNA by utilizing conditions common to other clostridial electroporations. Systematic investigation of various parameters involved in the cell growth, washing and pulse delivery, and outgrowth phases of the electrotransformation procedure significantly elevated the electrotransformation efficiency, up to 7.5 × 104 transformants μg-1 DNA, an increase of approximately three order of magnitude. Key factors affecting the electrotransformation efficiency include cell-wall-weakening using glycine, ethanol-mediated membrane solubilization, field strength of the electric pulse, and sucrose osmoprotection. CONCLUSIONS C. pasteurianum ATCC 6013 can be electrotransformed at a high efficiency using appropriately methylated plasmid DNA. The electrotransformation method and tools reported here should promote extensive genetic manipulation and metabolic engineering of this biotechnologically important bacterium.
Collapse
Affiliation(s)
- Michael E Pyne
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Duane A Chung
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Centurion Biofuels, Corp., Rm. 5113 Michael G. DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
19
|
Development of a high-efficient transformation system of Bacillus pumilus strain DX01 to facilitate gene isolation via gfp-tagged insertional mutagenesis and visualize bacterial colonization of rice roots. Folia Microbiol (Praha) 2013; 58:409-17. [DOI: 10.1007/s12223-013-0223-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 01/09/2013] [Indexed: 01/21/2023]
|
20
|
Li YT, Zhang HH, Sheng HM, An LZ. Cloning, expression and characterization of trehalose-6-phosphate phosphatase from a psychrotrophic bacterium, Arthrobacter strain A3. World J Microbiol Biotechnol 2012; 28:2713-21. [PMID: 22806197 DOI: 10.1007/s11274-012-1082-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 05/14/2012] [Indexed: 11/26/2022]
Abstract
A trehalose-6-phosphate phosphatase (TPP) gene, otsB, from a psychrotrophic bacterium, Arthrobacter strain A3, was identified. The product of this otsB gene is 266 amino acids in length with a calculated molecular weight of 27,873 Da. The protein was expressed in Escherichia coli and purified to apparent homogeneity. The purified recombinant TPP catalyzed the dephosphorylation of trehalose-6-phosphate to form trehalose and showed a broad optimum pH range from 5.0 to 7.5. This enzyme also showed an absolute requirement for Mg(2+) or Co(2+) for catalytic activity. The recombinant TPP had a maximum activity at 30 °C and maintained activity over a temperature range of 4-30 °C. TPP was generally heat-labile, losing 70 % of its activity when subjected to heat treatment at 50 °C for 6 min. Kinetic analysis of the Arthrobacter strain A3 TPP showed ~tenfold lower K (m) values when compared with values derived from other bacterial TPP enzymes. The highest k (cat)/K (m) value was 37.5 mM(-1) s(-1) (repeated three times), which is much higher than values published for mesophilic E. coli TPP, indicating that the Arthrobacter strain A3 TPP possessed excellent catalytic activity at low temperatures. Accordingly, these characteristics suggest that the TPP from the Arthrobacter strain A3 is a new cold-adapted enzyme. In addition, this is the first report characterizing the enzymatic properties of a TPP from a psychrotrophic organism.
Collapse
Affiliation(s)
- Yuan-Ting Li
- Key Laboratory of Arid and Grassland Agroecology of the Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | | | | | | |
Collapse
|
21
|
Chen XM, Jiang Y, Li YT, Zhang HH, Li J, Chen X, Zhao Q, Zhao J, Si J, Lin ZW, Zhang H, Dyson P, An LZ. Regulation of expression of trehalose-6-phosphate synthase during cold shock in Arthrobacter strain A3. Extremophiles 2011; 15:499-508. [DOI: 10.1007/s00792-011-0380-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
|