1
|
Hu C, Garey KW. Microscopy methods for Clostridioides difficile. Anaerobe 2024; 86:102822. [PMID: 38341023 DOI: 10.1016/j.anaerobe.2024.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Microscopic technologies including light and fluorescent, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cryo-electron microscopy have been widely utilized to visualize Clostridioides difficile at the molecular, cellular, community, and structural biology level. This comprehensive review summarizes the microscopy tools (fluorescent and reporter system) in their use to study different aspects of C. difficile life cycle and virulence (sporulation, germination) or applications (detection of C. difficile or use of antimicrobials). With these developing techniques, microscopy tools will be able to find broader applications and address more challenging questions to study C. difficile and C. difficile infection.
Collapse
Affiliation(s)
- Chenlin Hu
- University of Houston College of Pharmacy, Houston, TX, USA
| | - Kevin W Garey
- University of Houston College of Pharmacy, Houston, TX, USA.
| |
Collapse
|
2
|
Zuo C, Qin Y, Zhang Y, Pan L, Tu K, Peng J. Oil addition increases the heat resistance of Clostridium sporogenes spores in braised sauce beef: Perspectives from spore surface characteristics and microstructure. Int J Food Microbiol 2024; 413:110608. [PMID: 38308875 DOI: 10.1016/j.ijfoodmicro.2024.110608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
During thermal processing of braised sauce beef, the lipid content of circularly used sauce increased accordingly because of lipid migration from beef to sauce, which may impact the bacterial heat resistance in the products. This study aims to characterize the heat resistance of Clostridium sporogenes spores in braised sauce beef, and investigate the effects of oil on the spore surface characteristics and microstructure. The results indicated that the heat resistance of C. sporogenes spores in beef was significantly higher than that in sauce. Oil addition remarkably enhanced the spore heat resistance in sauce, with D95°C value three times more than that without oil added, and even higher than that in beef. The results of spore surface characteristics indicated that oil addition led to an increase of hydrophobicity and a decrease of zeta potential, which ultimately increased spore heat resistance. Microstructure analysis indicated that exosporium maintenance and cortex expansion induced by oil addition might contribute to the increase of spore heat resistance. This study has sufficiently verified the importance of oil content on the heat resistance of C. sporogenes spores, which should be taken into consideration when developing thermal processes for controlling the spores in food matrices.
Collapse
Affiliation(s)
- Changzhou Zuo
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Yue Qin
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Yueyang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Jing Peng
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China.
| |
Collapse
|
3
|
Sidner B, Lerma A, Biswas B, Do TVT, Yu Y, Ronish LA, McCullough H, Auchtung JM, Piepenbrink KH. Flagellin is essential for initial attachment to mucosal surfaces by Clostridioides difficile. Microbiol Spectr 2023; 11:e0212023. [PMID: 37823657 PMCID: PMC10714722 DOI: 10.1128/spectrum.02120-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Clostridioides difficile is one of the leading causes of hospital-acquired infections worldwide and presents challenges in treatment due to recurrent gastrointestinal disease after treatment with antimicrobials. The mechanisms by which C. difficile colonizes the gut represent a key gap in knowledge, including its association with host cells and mucosa. Our results show the importance of flagellin for specific adhesion to mucosal hydrogels and can help to explain prior observations of adhesive defects in flagellin and pilin mutants.
Collapse
Affiliation(s)
- Ben Sidner
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Armando Lerma
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Baishakhi Biswas
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Thi Van Thanh Do
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yafan Yu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Leslie A. Ronish
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Hugh McCullough
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jennifer M. Auchtung
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kurt H. Piepenbrink
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
4
|
Marini E, Olivença C, Ramalhete S, Aguirre AM, Ingle P, Melo MN, Antunes W, Minton NP, Hernandez G, Cordeiro TN, Sorg JA, Serrano M, Henriques AO. A sporulation signature protease is required for assembly of the spore surface layers, germination and host colonization in Clostridioides difficile. PLoS Pathog 2023; 19:e1011741. [PMID: 37956166 PMCID: PMC10681294 DOI: 10.1371/journal.ppat.1011741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/27/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
A genomic signature for endosporulation includes a gene coding for a protease, YabG, which in the model organism Bacillus subtilis is involved in assembly of the spore coat. We show that in the human pathogen Clostridioidesm difficile, YabG is critical for the assembly of the coat and exosporium layers of spores. YabG is produced during sporulation under the control of the mother cell-specific regulators σE and σK and associates with the spore surface layers. YabG shows an N-terminal SH3-like domain and a C-terminal domain that resembles single domain response regulators, such as CheY, yet is atypical in that the conserved phosphoryl-acceptor residue is absent. Instead, the CheY-like domain carries residues required for activity, including Cys207 and His161, the homologues of which form a catalytic diad in the B. subtilis protein, and also Asp162. The substitution of any of these residues by Ala, eliminates an auto-proteolytic activity as well as interdomain processing of CspBA, a reaction that releases the CspB protease, required for proper spore germination. An in-frame deletion of yabG or an allele coding for an inactive protein, yabGC207A, both cause misassemby of the coat and exosporium and the formation of spores that are more permeable to lysozyme and impaired in germination and host colonization. Furthermore, we show that YabG is required for the expression of at least two σK-dependent genes, cotA, coding for a coat protein, and cdeM, coding for a key determinant of exosporium assembly. Thus, YabG also impinges upon the genetic program of the mother cell possibly by eliminating a transcriptional repressor. Although this activity has not been described for the B. subtilis protein and most of the YabG substrates vary among sporeformers, the general role of the protease in the assembly of the spore surface is likely to be conserved across evolutionary distance.
Collapse
Affiliation(s)
- Eleonora Marini
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Carmen Olivença
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Sara Ramalhete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Andrea Martinez Aguirre
- Texas A&M University, Department of Biology, College Station, Texas, United States of America
| | - Patrick Ingle
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Wilson Antunes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Nigel P Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Joseph A Sorg
- Texas A&M University, Department of Biology, College Station, Texas, United States of America
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| |
Collapse
|
5
|
Sidner B, Lerma A, Biswas B, Ronish LA, McCullough H, Auchtung JM, Piepenbrink KH. Flagellin is essential for initial attachment to mucosal surfaces by Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541533. [PMID: 37292962 PMCID: PMC10245794 DOI: 10.1101/2023.05.19.541533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mucins are glycoproteins which can be found in host cell membranes and as a gelatinous surface formed from secreted mucins. Mucosal surfaces in mammals form a barrier to invasive microbes, particularly bacteria, but are a point of attachment for others. Clostridioides difficile is anaerobic bacterium which colonizes the mammalian GI tract and is a common cause of acute GI inflammation leading to a variety of negative outcomes. Although C. difficile toxicity stems from secreted toxins, colonization is a prerequisite for C. difficile disease. While C. difficile is known to associate with the mucus layer and underlying epithelium, the mechanisms underlying these interactions that facilitate colonization are less well-understood. To understand the molecular mechanisms by which C. difficile interacts with mucins, we used ex vivo mucosal surfaces to test the ability of C. difficile to bind to mucins from different mammalian tissues. We found significant differences in C. difficile adhesion based upon the source of mucins, with highest levels of binding observed to mucins purified from the human colonic adenocarcinoma line LS174T and lowest levels of binding to porcine gastric mucin. We also observed that defects in adhesion by mutants deficient in flagella, but not type IV pili. These results imply that interactions between host mucins and C. difficile flagella facilitate the initial host attachment of C. difficile to host cells and secreted mucus.
Collapse
|
6
|
Tarrant J, Owen L, Jenkins R, Smith L, Laird K. Survival of Clostridioides difficile spores in thermal and chemo-thermal laundering processes and influence of the exosporium on their adherence to cotton bed sheets. Lett Appl Microbiol 2022; 75:1449-1459. [PMID: 35981120 PMCID: PMC9805185 DOI: 10.1111/lam.13811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 01/09/2023]
Abstract
Clostridioides difficile spores were previously demonstrated to survive industrial laundering. Understanding interactions between heat, disinfectants and soiling (e.g. bodily fluids) affecting C. difficile spore survival could inform the optimization of healthcare laundry processes. Reducing spore attachment to linen could also enhance laundering efficacy. This study aimed to compare the sensitivity of C. difficile spores to heat and detergent, with and without soiling and to investigate adherence to cotton. Survival of C. difficile spores exposed to industrial laundering temperatures (71-90°C), reference detergent and industrial detergent was quantified with and without soiling. The adherence to cotton after 0 and 24 h air drying was determined with the exosporium of C. difficile spores partially or fully removed. Clostridioides difficile spores were stable at 71°C for 20 min (≤0·37 log10 reduction) while 90°C was sporicidal (3 log10 reduction); soiling exerted a protective effect. Industrial detergent was more effective at 71°C compared to 25°C (2·81 vs 0·84 log10 reductions), however, specifications for sporicidal activity (>3 log10 reduction) were not met. Clostridioides difficile spores increasingly adhered to cotton over time, with 49% adherence after 24 h. Removal of the exosporium increased adherence by 19-23% compared to untreated spores. Further understanding of the role of the exosporium in attachment to cotton could enhance spore removal and aid decontamination of linen.
Collapse
Affiliation(s)
- J. Tarrant
- The Infectious Disease Research Group, School of PharmacyDe Montfort UniversityLeicesterUK
| | - L. Owen
- The Infectious Disease Research Group, School of PharmacyDe Montfort UniversityLeicesterUK
| | - R. Jenkins
- The Infectious Disease Research Group, School of PharmacyDe Montfort UniversityLeicesterUK
| | - L.J. Smith
- The Infectious Disease Research Group, School of PharmacyDe Montfort UniversityLeicesterUK
| | - K. Laird
- The Infectious Disease Research Group, School of PharmacyDe Montfort UniversityLeicesterUK
| |
Collapse
|
7
|
Role of the Spore Coat Proteins CotA and CotB, and the Spore Surface Protein CDIF630_02480, on the Surface Distribution of Exosporium Proteins in Clostridioides difficile 630 Spores. Microorganisms 2022; 10:microorganisms10101918. [DOI: 10.3390/microorganisms10101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridioides difficile is Gram-positive spore-former bacterium and the leading cause of nosocomial antibiotic-associated diarrhea. During disease, C. difficile forms metabolically dormant spores that persist in the host and contribute to recurrence of the disease. The outermost surface of C. difficile spores, termed the exosporium, plays an essential role in interactions with host surfaces and the immune system. The main exosporium proteins identified to date include three orthologues of the BclA family of collagen-like proteins, and three cysteine-rich proteins. However, how the underlying spore coat influences exosporium assembly remains unclear. In this work, we explore the contribution of spore coat proteins cotA and cotB, and the spore surface protein, CDIF630_02480, to the exosporium ultrastructure, formation of the polar appendage and the surface accessibility of exosporium proteins. Transmission electron micrographs of spores of insertional inactivation mutants demonstrate that while cotB contributes to the formation of thick-exosporium spores, cotA and CDIF630_02480 contribute to maintain proper thickness of the spore coat and exosporium layers, respectively. The effect of the absence of cotA, cotB and CDIF630_02480 on the surface accessibility of the exosporium proteins CdeA, CdeC, CdeM, BclA2 and BclA3 to antibodies was affected by the presence of the spore appendage, suggesting that different mechanisms of assembly of the exosporium layer might be implicated in each spore phenotype. Collectively, this work contributes to our understanding of the associations between spore coat and exosporium proteins, and how these associations affect the assembly of the spore outer layers. These results have implications for the development of anti-infecting agents targeting C. difficile spores.
Collapse
|
8
|
Paredes-Sabja D, Cid-Rojas F, Pizarro-Guajardo M. Assembly of the exosporium layer in Clostridioides difficile spores. Curr Opin Microbiol 2022; 67:102137. [PMID: 35182899 DOI: 10.1016/j.mib.2022.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
Clostridioides difficile is a Gram-positive, spore-forming obligate anaerobe and a major threat to the healthcare system world-wide. Because of its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. During infection, C. difficile produces spores that can persist in the host and are responsible for disease recurrence and transmission, especially between hospitalized patients. Although the C. difficile spore surface mediates critical interactions with host surfaces, this outermost layer, known as the exosporium, is poorly conserved when compared to members of the Bacillus genus. Notably, the exosporium has been shown to be important for the persistence of C. difficile in the host. In this review, the ultrastructural properties, composition, and morphogenesis of the exosporium will be discussed.
Collapse
Affiliation(s)
- Daniel Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile.
| | - Francisca Cid-Rojas
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
9
|
Simpson HL, Roberts CL, Thompson LM, Leiper CR, Gittens N, Trotter E, Duckworth CA, Papoutsopoulou S, Miyajima F, Roberts P, O'Kennedy N, Rhodes JM, Campbell BJ. Soluble Non-Starch Polysaccharides From Plantain ( Musa x paradisiaca L.) Diminish Epithelial Impact of Clostridioides difficile. Front Pharmacol 2021; 12:766293. [PMID: 34955836 PMCID: PMC8707065 DOI: 10.3389/fphar.2021.766293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile infection (CDI) is a leading cause of antibiotic-associated diarrhoea. Adhesion of this Gram-positive pathogen to the intestinal epithelium is a crucial step in CDI, with recurrence and relapse of disease dependent on epithelial interaction of its endospores. Close proximity, or adhesion of, hypervirulent strains to the intestinal mucosa are also likely to be necessary for the release of C. difficile toxins, which when internalized, result in intestinal epithelial cell rounding, damage, inflammation, loss of barrier function and diarrhoea. Interrupting these C. difficile-epithelium interactions could therefore represent a promising therapeutic strategy to prevent and treat CDI. Intake of dietary fibre is widely recognised as being beneficial for intestinal health, and we have previously shown that soluble non-starch polysaccharides (NSP) from plantain banana (Musa spp.), can block epithelial adhesion and invasion of a number of gut pathogens, such as E. coli and Salmonellae. Here, we assessed the action of plantain NSP, and a range of alternative soluble plant fibres, for inhibitory action on epithelial interactions of C. difficile clinical isolates, purified endospore preparations and toxins. We found that plantain NSP possessed ability to disrupt epithelial adhesion of C. difficile vegetative cells and spores, with inhibitory activity against C. difficile found within the acidic (pectin-rich) polysaccharide component, through interaction with the intestinal epithelium. Similar activity was found with NSP purified from broccoli and leek, although seen to be less potent than NSP from plantain. Whilst plantain NSP could not block the interaction and intracellular action of purified C. difficile toxins, it significantly diminished the epithelial impact of C. difficile, reducing both bacteria and toxin induced inflammation, activation of caspase 3/7 and cytotoxicity in human intestinal cell-line and murine intestinal organoid cultures. Dietary supplementation with soluble NSP from plantain may therefore confer a protective effect in CDI patients by preventing adhesion of C. difficile to the mucosa, i.e. a “contrabiotic” effect, and diminishing its epithelial impact. This suggests that plantain soluble dietary fibre may be a therapeutically effective nutritional product for use in the prevention or treatment of CDI and antibiotic-associated diarrhoea.
Collapse
Affiliation(s)
- Hannah L Simpson
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carol L Roberts
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Louise M Thompson
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Cameron R Leiper
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nehana Gittens
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ellie Trotter
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carrie A Duckworth
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Stamatia Papoutsopoulou
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection Veterinary and Ecological Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom.,Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Fabio Miyajima
- Wolfson Centre for Personalised Medicine, Department of Molecular & Clinical Pharmacology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,Oswaldo Cruz Foundation (Fiocruz), Eusébio, Brazil
| | - Paul Roberts
- Department of Microbiology, Liverpool Clinical Laboratories, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom.,School for Medicine and Clinical Practice, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Niamh O'Kennedy
- Provexis PLC, c/o The University of Aberdeen, Aberdeen, United Kingdom
| | - Jonathan M Rhodes
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Barry J Campbell
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
Shen A. Clostridioides difficile Spore Formation and Germination: New Insights and Opportunities for Intervention. Annu Rev Microbiol 2021; 74:545-566. [PMID: 32905755 DOI: 10.1146/annurev-micro-011320-011321] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spore formation and germination are essential for the bacterial pathogen Clostridioides difficile to transmit infection. Despite the importance of these developmental processes to the infection cycle of C. difficile, the molecular mechanisms underlying how this obligate anaerobe forms infectious spores and how these spores germinate to initiate infection were largely unknown until recently. Work in the last decade has revealed that C. difficile uses a distinct mechanism for sensing and transducing germinant signals relative to previously characterized spore formers. The C. difficile spore assembly pathway also exhibits notable differences relative to Bacillus spp., where spore formation has been more extensively studied. For both these processes, factors that are conserved only in C. difficile or the related Peptostreptococcaceae family are employed, and even highly conserved spore proteins can have differential functions or requirements in C. difficile compared to other spore formers. This review summarizes our current understanding of the mechanisms controlling C. difficile spore formation and germination and describes strategies for inhibiting these processes to prevent C. difficile infection and disease recurrence.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA;
| |
Collapse
|
11
|
Bassères E, Endres BT, Montes-Bravo N, Pérez-Soto N, Rashid T, Lancaster C, Begum K, Alam MJ, Paredes-Sabja D, Garey KW. Visualization of fidaxomicin association with the exosporium layer of Clostridioides difficile spores. Anaerobe 2021; 69:102352. [PMID: 33640461 DOI: 10.1016/j.anaerobe.2021.102352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Fidaxomicin has novel pharmacologic effects on C. difficile spore formation including outgrowth inhibition and persistent spore attachment. However, the mechanism of fidaxomicin attachment on spores has not undergone rigorous microscopic studies. MATERIALS & METHODS Fidaxomicin attachment to C. difficile spores of three distinct ribotypes and C. difficile mutant spores with inactivation of exosporium or spore-coat protein-coding genes were visualized using confocal microscopy with a fidaxomicin-bodipy compound (green fluorescence). The pharmacologic effect of the fidaxomicin-bodipy compound was determined. Confocal microscopy experiments included direct effect on C. difficile wild-type and mutant spores, effect of exosporium removal, and direct attachment to a comparator spore forming organism, Bacillus subtilis. RESULTS The fidaxomicin-bodipy compound MIC was 1 mg/L compared to 0.06 mg/L for unlabeled fidaxomicin, a 16-fold increase. Using confocal microscopy, the intracellular localization of fidaxomicin into vegetative C. difficile cells was observed consistent with its RNA polymerase mechanism of action and inhibited spore outgrowth. The fidaxomicin-bodipy compound was visualized outside of the core of C. difficile spores with no co-localization with the membrane staining dye FM4-64. Exosporium removal reduced fidaxomicin-bodipy association with C. difficile spores. Reduced fidaxomicin-bodipy was observed in C. difficile mutant spores for the spore surface proteins CdeC and CotE. CONCLUSION This study visualized a direct attachment of fidaxomicin to C. difficile spores that was diminished with mutants of specific exosporium and spore coat proteins. These data provide advanced insight regarding the anti-spore properties of fidaxomicin.
Collapse
Affiliation(s)
| | | | - Nicolás Montes-Bravo
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Nicolás Pérez-Soto
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Tasnuva Rashid
- University of Houston College of Pharmacy, Houston, TX, USA
| | | | - Khurshida Begum
- University of Houston College of Pharmacy, Houston, TX, USA.
| | | | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile; Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Kevin W Garey
- University of Houston College of Pharmacy, Houston, TX, USA.
| |
Collapse
|
12
|
Nasal Immunization with the C-Terminal Domain of Bcla3 Induced Specific IgG Production and Attenuated Disease Symptoms in Mice Infected with Clostridioides difficile Spores. Int J Mol Sci 2020; 21:ijms21186696. [PMID: 32933117 PMCID: PMC7555657 DOI: 10.3390/ijms21186696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming bacterium that causes a severe intestinal infection. Spores of this pathogen enter in the human body through the oral route, interact with intestinal epithelial cells and persist in the gut. Once germinated, the vegetative cells colonize the intestine and produce toxins that enhance an immune response that perpetuate the disease. Therefore, spores are major players of the infection and ideal targets for new therapies. In this context, spore surface proteins of C. difficile, are potential antigens for the development of vaccines targeting C. difficile spores. Here, we report that the C-terminal domain of the spore surface protein BclA3, BclA3CTD, was identified as an antigenic epitope, over-produced in Escherichia coli and tested as an immunogen in mice. To increase antigen stability and efficiency, BclA3CTD was also exposed on the surface of B. subtilis spores, a mucosal vaccine delivery system. In the experimental conditions used in this study, free BclA3CTD induced antibody production in mice and attenuated some C. difficile infection symptoms after a challenge with the pathogen, while the spore-displayed antigen resulted less effective. Although dose regimen and immunization routes need to be optimized, our results suggest BclA3CTD as a potentially effective antigen to develop a new vaccination strategy targeting C. difficile spores.
Collapse
|
13
|
Abhyankar W, Zheng L, Brul S, de Koster CG, de Koning LJ. Vegetative Cell and Spore Proteomes of Clostridioides difficile Show Finite Differences and Reveal Potential Protein Markers. J Proteome Res 2019; 18:3967-3976. [PMID: 31557040 PMCID: PMC6832669 DOI: 10.1021/acs.jproteome.9b00413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Indexed: 12/22/2022]
Abstract
Clostridioides difficile-associated infection (CDI) is a health-care-associated infection caused, as the name suggests, by obligate anaerobic pathogen C. difficile and thus mainly transmitted via highly resistant endospores from one person to the other. In vivo, the spores need to germinate into cells prior to establishing an infection. Bile acids and glycine, both available in sufficient amounts inside the human host intestinal tract, serve as efficient germinants for the spores. It is therefore, for better understanding of C. difficile virulence, crucial to study both the cell and spore states with respect to their genetic, metabolic, and proteomic composition. In the present study, mass spectrometric relative protein quantification, based on the 14N/15N peptide isotopic ratios, has led to quantification of over 700 proteins from combined spore and cell samples. The analysis has revealed that the proteome turnover between a vegetative cell and a spore for this organism is moderate. Additionally, specific cell and spore surface proteins, vegetative cell proteins CD1228, CD3301 and spore proteins CD2487, CD2434, and CD0684 are identified as potential protein markers for C. difficile infection.
Collapse
Affiliation(s)
- Wishwas
R. Abhyankar
- Department
of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department
of Mass Spectrometry of Bio-Macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Linli Zheng
- Department
of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department
of Mass Spectrometry of Bio-Macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Department
of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Chris G. de Koster
- Department
of Mass Spectrometry of Bio-Macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Leo J. de Koning
- Department
of Mass Spectrometry of Bio-Macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
14
|
Pizarro-Guajardo M, Chamorro-Veloso N, Vidal RM, Paredes-Sabja D. New insights for vaccine development against Clostridium difficile infections. Anaerobe 2019; 58:73-79. [DOI: 10.1016/j.anaerobe.2019.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 02/08/2023]
|
15
|
Surface morphology differences in Clostridium difficile spores, based on different strains and methods of purification. Anaerobe 2019; 61:102078. [PMID: 31344453 DOI: 10.1016/j.anaerobe.2019.102078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 11/21/2022]
Abstract
Infections linked to Clostridium difficile are a significant cause of suffering. In hospitals, the organism is primarily acquired through the faecal-oral route as spores excreted by infected patients contaminate the healthcare environment. We previously reported that members of the C. difficile group varied widely in their ability to adhere to stainless steel and proposed that these differences were a consequence of variations in spore architecture. In this study of clinical isolates and spore coat protein mutants of C. difficile we identified three distinct spore surfaces morphotypes; smooth, bag-like and "pineapple-like" using scanning electron microscopy (SEM). The frequency of each morphotype in a spore population derived from a single isolate varied depending on the host strain and the method used to produce and purify the spores. Our results suggest that the inclusion of a sonication step in the purification process had a marked effect on spore structure. In an attempt to link differences in spore appearance with key structural spore proteins we compared the morphology of spores of CD630 to those produced by CD630 variants lacking either CotE or BclA. While SEM images revealed no obvious structural differences between CD630 and its mutants we did observe significant differences (p < 0.001) in relative hydrophobicity suggesting that modifications had occurred but not at a level to be detectable by SEM. In conclusion, we observed significant variation in the spore morphology of clinical isolates of C. difficile due in part to the methods used to produce them. Sonication in particular can markedly change spore appearance and properties. The results of this study highlight the importance of adopting "standard" methods when attempting to compare results between studies and to understand the significance of their differences.
Collapse
|
16
|
Alves Feliciano C, Douché T, Giai Gianetto Q, Matondo M, Martin-Verstraete I, Dupuy B. CotL, a new morphogenetic spore coat protein of Clostridium difficile. Environ Microbiol 2019; 21:984-1003. [PMID: 30556639 DOI: 10.1111/1462-2920.14505] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/07/2018] [Accepted: 12/13/2018] [Indexed: 01/01/2023]
Abstract
The strict anaerobe Clostridium difficile is the most common cause of antibiotic-associated diarrhoea. The oxygen-resistant C. difficile spores play a central role in the infectious cycle, contributing to transmission, infection and recurrence. The spore surface layers, the coat and exosporium, enable the spores to resist physical and chemical stress. However, little is known about the mechanisms of their assembly. In this study, we characterized a new spore protein, CotL, which is required for the assembly of the spore coat. The cotL gene was expressed in the mother cell compartment under the dual control of the RNA polymerase sigma factors, σE and σK . CotL was localized in the spore coat, and the spores of the cotL mutant had a major morphologic defect at the level of the coat/exosporium layers. Therefore, the mutant spores contained a reduced amount of several coat/exosporium proteins and a defect in their localization in sporulating cells. Finally, cotL mutant spores were more sensitive to lysozyme and were impaired in germination, a phenotype likely to be associated with the structurally altered coat. Collectively, these results strongly suggest that CotL is a morphogenetic protein essential for the assembly of the spore coat in C. difficile.
Collapse
Affiliation(s)
- Carolina Alves Feliciano
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Thibaut Douché
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour La Biologie, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Quentin Giai Gianetto
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour La Biologie, CNRS USR 2000, Institut Pasteur, Paris, France.,Bioinformatics and Biostatistics HUB, C3BI, CNRS USR 3756, Institut Pasteur, Paris, France
| | - Mariette Matondo
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour La Biologie, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
17
|
Setlow P. Observations on research with spores of Bacillales and Clostridiales species. J Appl Microbiol 2019; 126:348-358. [PMID: 30106202 PMCID: PMC6329651 DOI: 10.1111/jam.14067] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/06/2023]
Abstract
The purpose of this article is to highlight some areas of research with spores of bacteria of Firmicute species in which the methodology too commonly used is not optimal and generates misleading results. As a consequence, conclusions drawn from data obtained are often flawed or not appropriate. Topics covered in the article include the following: (i) the importance of using well-purified bacterial spores in studies on spore resistance, composition, killing, disinfection and germination; (ii) methods for obtaining good purification of spores of various species; (iii) appropriate experimental approaches to determine mechanisms of spore resistance and spore killing by a variety of agents, as well as known mechanisms of spore resistance and killing; (iv) common errors made in drawing conclusions about spore killing by various agents, including failure to neutralize chemical agents before plating for viable spore enumeration, and equating correlations between changes in spore properties accompanying spore killing with causation. It is hoped that a consideration of these topics will improve the quality of spore research going forward.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305 USA
| |
Collapse
|
18
|
Calderón-Romero P, Castro-Córdova P, Reyes-Ramírez R, Milano-Céspedes M, Guerrero-Araya E, Pizarro-Guajardo M, Olguín-Araneda V, Gil F, Paredes-Sabja D. Clostridium difficile exosporium cysteine-rich proteins are essential for the morphogenesis of the exosporium layer, spore resistance, and affect C. difficile pathogenesis. PLoS Pathog 2018; 14:e1007199. [PMID: 30089172 PMCID: PMC6101409 DOI: 10.1371/journal.ppat.1007199] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 08/20/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Clostridium difficile is a Gram-positive spore-former bacterium and the leading cause of nosocomial antibiotic-associated diarrhea that can culminate in fatal colitis. During the infection, C. difficile produces metabolically dormant spores, which persist in the host and can cause recurrence of the infection. The surface of C. difficile spores seems to be the key in spore-host interactions and persistence. The proteome of the outermost exosporium layer of C. difficile spores has been determined, identifying two cysteine-rich exosporium proteins, CdeC and CdeM. In this work, we explore the contribution of both cysteine-rich proteins in exosporium integrity, spore biology and pathogenesis. Using targeted mutagenesis coupled with transmission electron microscopy we demonstrate that both cysteine rich proteins, CdeC and CdeM, are morphogenetic factors of the exosporium layer of C. difficile spores. Notably, cdeC, but not cdeM spores, exhibited defective spore coat, and were more sensitive to ethanol, heat and phagocytic cells. In a healthy colonic mucosa (mouse ileal loop assay), cdeC and cdeM spore adherence was lower than that of wild-type spores; while in a mouse model of recurrence of the disease, cdeC mutant exhibited an increased infection and persistence during recurrence. In a competitive infection mouse model, cdeC mutant had increased fitness over wild-type. Through complementation analysis with FLAG fusion of known exosporium and coat proteins, we demonstrate that CdeC and CdeM are required for the recruitment of several exosporium proteins to the surface of C. difficile spores. CdeC appears to be conserved exclusively in related Peptostreptococcaeace family members, while CdeM is unique to C. difficile. Our results sheds light on how CdeC and CdeM affect the biology of C. difficile spores and the assembly of the exosporium layer and, demonstrate that CdeC affect C. difficile pathogenesis. We discovered a mechanism of assembly of the outer most layer of Clostridium difficile spores, the exosporium. While CdeC is conserved in several Peptostreptococcaeace family members, CdeM is unique to C. difficile. We show that two proteins that are rich in cysteine amino acid residues, CdeC and CdeM, are essential for the recruitment of additional spore coat and exosporium proteins. The absence of CdeC, had profound implications in the correct spore coat assembly which were related to decreased spore resistant properties that are relevant for in vivo infection such as lysozyme resistance, macrophage infection. Notably, the absence of either cysteine rich proteins leads to a decrease in spore adherence of C. difficile spores to healthy colonic mucosa; but only the absence of CdeC affected in vivo competitive fitness in a mouse model, recurrence of the disease in a mouse model of recurrent infection. Considering the importance of the outer layers of C. difficile spores in spore-host interactions, our findings have broad implications on the biology of C. difficile spores and to C. difficile pathogenesis.
Collapse
Affiliation(s)
- Paulina Calderón-Romero
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo Castro-Córdova
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo Reyes-Ramírez
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Mauro Milano-Céspedes
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Enzo Guerrero-Araya
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Valeria Olguín-Araneda
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
19
|
Rabi R, Larcombe S, Mathias R, McGowan S, Awad M, Lyras D. Clostridium sordellii outer spore proteins maintain spore structural integrity and promote bacterial clearance from the gastrointestinal tract. PLoS Pathog 2018; 14:e1007004. [PMID: 29668758 PMCID: PMC5927469 DOI: 10.1371/journal.ppat.1007004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/30/2018] [Accepted: 04/03/2018] [Indexed: 12/25/2022] Open
Abstract
Bacterial spores play an important role in disease initiation, transmission and persistence. In some species, the exosporium forms the outermost structure of the spore and provides the first point of contact between the spore and the environment. The exosporium may also be involved in spore adherence, protection and germination. Clostridium sordellii is a highly lethal, spore forming pathogen that causes soft-tissue infections, enteritis and toxic-shock syndrome. Despite the importance of C. sordellii spores in disease, spore proteins from this bacterium have not been defined or interrogated functionally. In this study, we identified the C. sordellii outer spore proteome and two of the identified proteins, CsA and CsB, were characterised using a genetic and phenotypic approach. Both proteins were essential for the correct formation and positioning of the C. sordellii spore coat and exosporium. The absence of CsA reduced sporulation levels and increased spore sensitivity to heat, sodium hydroxide and hydrochloric acid. By comparison, CsB was required for normal levels of spore adherence to cervical, but not vaginal, cells, with csB mutant spores having increased adherence properties. The establishment of a mouse infection model of the gastrointestinal tract for C. sordellii allowed the role of CsA and CsB to be interrogated in an infected host. Following the oral administration of spores to mice, the wild-type strain efficiently colonized the gastrointestinal tract, with the peak of bacterial numbers occurring at one day post-infection. Colonization was reduced by two logs at four days post-infection. By comparison, mice infected with the csB mutant did not show a reduction in bacterial numbers. We conclude that C. sordellii outer spore proteins are important for the structural and functional integrity of spores. Furthermore, outer spore proteins are required for wild-type levels of colonization during infection, possibly as a result of the role that the proteins play in spore structure and morphology.
Collapse
Affiliation(s)
- Rebecca Rabi
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Sarah Larcombe
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Rommel Mathias
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Sheena McGowan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Milena Awad
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
20
|
Gil F, Lagos-Moraga S, Calderón-Romero P, Pizarro-Guajardo M, Paredes-Sabja D. Updates on Clostridium difficile spore biology. Anaerobe 2017; 45:3-9. [DOI: 10.1016/j.anaerobe.2017.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 02/08/2023]
|
21
|
Survival of Clostridium difficile spores at low water activity. Food Microbiol 2017; 65:274-278. [PMID: 28400013 DOI: 10.1016/j.fm.2017.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/28/2017] [Accepted: 03/15/2017] [Indexed: 02/03/2023]
Abstract
Clostridium difficile is frequently found in meat and meat products. Germination efficiency, defined as colony formation, was previously investigated at temperatures found in meat handling and processing for spores of strain M120 (animal isolate), R20291 (human isolate), and DK1 (beef isolate). In this study, germination efficiency of these spore strains was assessed in phosphate buffered saline (PBS, aw ∼1.00), commercial beef jerky (aw ∼0.82/0.72), and aw-adjusted PBS (aw ∼0.82/0.72). Surface hydrophobicity was followed for spores stored in PBS. After three months and for all PBS aw levels tested, M120 and DK1 spores showed a ∼1 decimal reduction in colony formation but this was not the case when kept in beef jerky suggesting a protective food matrix effect. During storage, and with no significant aw effect, an increase in colony formation was observed for R20291 spores kept in PBS (∼2 decimal log increase) and beef jerky (∼1 decimal log increase) suggesting a loss of spore superdormancy. For all strains, no significant changes in spore surface hydrophobicity were observed after storage. Collectively, these results indicate that depending on the germination properties of C. difficile spores and the media properties, their germination efficiency may increase or decrease during long term food storage.
Collapse
|
22
|
Mora-Uribe P, Miranda-Cárdenas C, Castro-Córdova P, Gil F, Calderón I, Fuentes JA, Rodas PI, Banawas S, Sarker MR, Paredes-Sabja D. Characterization of the Adherence of Clostridium difficile Spores: The Integrity of the Outermost Layer Affects Adherence Properties of Spores of the Epidemic Strain R20291 to Components of the Intestinal Mucosa. Front Cell Infect Microbiol 2016; 6:99. [PMID: 27713865 PMCID: PMC5031699 DOI: 10.3389/fcimb.2016.00099] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is the causative agent of the most frequently reported nosocomial diarrhea worldwide. The high incidence of recurrent infection is the main clinical challenge of C. difficile infections (CDI). Formation of C. difficile spores of the epidemic strain R20291 has been shown to be essential for recurrent infection and transmission of the disease in a mouse model. However, the underlying mechanisms of how these spores persist in the colonic environment remains unclear. In this work, we characterized the adherence properties of epidemic R20291 spores to components of the intestinal mucosa, and we assessed the role of the exosporium integrity in the adherence properties by using cdeC mutant spores with a defective exosporium layer. Our results showed that spores and vegetative cells of the epidemic R20291 strain adhered at high levels to monolayers of Caco-2 cells and mucin. Transmission electron micrographs of Caco-2 cells demonstrated that the hair-like projections on the surface of R20291 spores are in close proximity with the plasma membrane and microvilli of undifferentiated and differentiated monolayers of Caco-2 cells. Competitive-binding assay in differentiated Caco-2 cells suggests that spore-adherence is mediated by specific binding sites. By using spores of a cdeC mutant we demonstrated that the integrity of the exosporium layer determines the affinity of adherence of C. difficile spores to Caco-2 cells and mucin. Binding of fibronectin and vitronectin to the spore surface was concentration-dependent, and depending on the concentration, spore-adherence to Caco-2 cells was enhanced. In the presence of an aberrantly-assembled exosporium (cdeC spores), binding of fibronectin, but not vitronectin, was increased. Notably, independent of the exosporium integrity, only a fraction of the spores had fibronectin and vitronectin molecules binding to their surface. Collectively, these results demonstrate that the integrity of the exosporium layer of strain R20291 contributes to selective spore adherence to components of the intestinal mucosa.
Collapse
Affiliation(s)
- Paola Mora-Uribe
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile
| | - Camila Miranda-Cárdenas
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Pablo Castro-Córdova
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Iván Calderón
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Paula I Rodas
- Facultad de Medicina, Center for Integrative Medicine and Innovative Sciences, Universidad Andres Bello Santiago, Chile
| | - Saeed Banawas
- Department of Biomedical Sciences, Oregon State UniversityCorvallis, OR, USA; Medical Laboratories Department, College of Science Al-Zulfi, Majmaah UniversityAl Majma'ah, Saudi Arabia
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, Oregon State University Corvallis, OR, USA
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile
| |
Collapse
|
23
|
Ultrastructure Variability of the Exosporium Layer of Clostridium difficile Spores from Sporulating Cultures and Biofilms. Appl Environ Microbiol 2016; 82:5892-8. [PMID: 27474709 DOI: 10.1128/aem.01463-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The anaerobic sporeformer Clostridium difficile is the leading cause of nosocomial antibiotic-associated diarrhea in developed and developing countries. The metabolically dormant spore form is considered the morphotype responsible for transmission, infection, and persistence, and the outermost exosporium layer is likely to play a major role in spore-host interactions during recurrent infections, contributing to the persistence of the spore in the host. A recent study (M. Pizarro-Guajardo, P. Calderón-Romero, P. Castro-Córdova, P. Mora-Uribe, and D. Paredes-Sabja, Appl Environ Microbiol 82:2202-2209, 2016, http://dx.doi.org/10.1128/AEM.03410-15) demonstrated by transmission electron microscopy the presence of two ultrastructural morphotypes of the exosporium layer in spores formed from the same sporulating culture. However, whether these distinct morphotypes appeared due to purification techniques and whether they appeared during biofilm development remain unclear. In this communication, we demonstrate through transmission electron microscopy that these two exosporium morphotypes are formed under sporulation conditions and are also present in spores formed during biofilm development. In summary, this work provides definitive evidence that in a population of sporulating cells, spores with a thick outermost exosporium layer and spores with a thin outermost exosporium layer are formed. IMPORTANCE Clostridium difficile spores are recognized as the morphotype of persistence and transmission of C. difficile infections. Spores of C. difficile are intrinsically resistant to all known antibiotic therapies. Development of spore-based removal strategies requires a detailed knowledge of the spore surface for proper antigen selection. In this context, in this work we provide definitive evidence that two types of spores, those with a thick outermost exosporium layer and those with a thin outermost exosporium layer, are formed in the same C. difficile sporulating culture or during biofilm development.
Collapse
|
24
|
The Exosporium Layer of Bacterial Spores: a Connection to the Environment and the Infected Host. Microbiol Mol Biol Rev 2016; 79:437-57. [PMID: 26512126 DOI: 10.1128/mmbr.00050-15] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Much of what we know regarding bacterial spore structure and function has been learned from studies of the genetically well-characterized bacterium Bacillus subtilis. Molecular aspects of spore structure, assembly, and function are well defined. However, certain bacteria produce spores with an outer spore layer, the exosporium, which is not present on B. subtilis spores. Our understanding of the composition and biological functions of the exosporium layer is much more limited than that of other aspects of the spore. Because the bacterial spore surface is important for the spore's interactions with the environment, as well as being the site of interaction of the spore with the host's innate immune system in the case of spore-forming bacterial pathogens, the exosporium is worthy of continued investigation. Recent exosporium studies have focused largely on members of the Bacillus cereus family, principally Bacillus anthracis and Bacillus cereus. Our understanding of the composition of the exosporium, the pathway of its assembly, and its role in spore biology is now coming into sharper focus. This review expands on a 2007 review of spore surface layers which provided an excellent conceptual framework of exosporium structure and function (A. O. Henriques and C. P. Moran, Jr., Annu Rev Microbiol 61:555-588, 2007, http://dx.doi.org/10.1146/annurev.micro.61.080706.093224). That review began a process of considering outer spore layers as an integrated, multilayered structure rather than simply regarding the outer spore components as independent parts.
Collapse
|
25
|
Kevorkian Y, Shirley DJ, Shen A. Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain. Biochimie 2016; 122:243-54. [PMID: 26231446 PMCID: PMC4732931 DOI: 10.1016/j.biochi.2015.07.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/24/2015] [Indexed: 12/18/2022]
Abstract
Clostridium difficile is a spore-forming obligate anaerobe that is a leading cause of healthcare-associated infections. C. difficile infections begin when its metabolically dormant spores germinate in the gut of susceptible individuals. Binding of bile salt germinants to the Csp family pseudoprotease CspC triggers a proteolytic signaling cascade consisting of the Csp family protease CspB and the cortex hydrolase SleC. Conserved across many of the Clostridia, Csp proteases are subtilisin-like serine proteases that activate pro-SleC by cleaving off its inhibitory pro-peptide. Active SleC degrades the protective cortex layer, allowing spores to resume metabolism and growth. This signaling pathway, however, is differentially regulated in C. difficile, since CspC functions both as a germinant receptor and regulator of CspB activity. CspB is also produced as a fusion to a catalytically inactive CspA domain that subsequently undergoes interdomain processing during spore formation. In this study, we investigated the role of the CspA pseudoprotease domain in regulating C. difficile spore germination. Mutational analyses revealed that the CspA domain controls CspC germinant receptor levels in mature spores and is required for optimal spore germination, particularly when CspA is fused to the CspB protease. During spore formation, the YabG protease separates these domains, although YabG itself is dispensable for germination. Bioinformatic analyses of Csp family members suggest that the CspC-regulated signaling pathway characterized in C. difficile is conserved in related Peptostreptococcaceae family members but not in the Clostridiaceae or Lachnospiraceae. Our results indicate that pseudoproteases play critical roles in regulating C. difficile spore germination and highlight that diverse mechanisms control spore germination in the Clostridia.
Collapse
Affiliation(s)
- Yuzo Kevorkian
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - David J Shirley
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Aimee Shen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
26
|
Ultrastructural Variability of the Exosporium Layer of Clostridium difficile Spores. Appl Environ Microbiol 2016; 82:2202-2209. [PMID: 26850296 DOI: 10.1128/aem.03410-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/18/2016] [Indexed: 01/05/2023] Open
Abstract
The anaerobic sporeformer Clostridium difficile is the leading cause of nosocomial antibiotic-associated diarrhea in developed and developing countries. The metabolically dormant spore form is considered the transmission, infectious, and persistent morphotype, and the outermost exosporium layer is likely to play a major role in spore-host interactions during the first contact of C. difficile spores with the host and for spore persistence during recurrent episodes of infection. Although some studies on the biology of the exosporium have been conducted (J. Barra-Carrasco et al., J Bacteriol 195:3863-3875, 2013, http://dx.doi.org/10.1128/JB.00369-13; J. Phetcharaburanin et al., Mol Microbiol 92:1025-1038, 2014, http://dx.doi.org/10.1111/mmi.12611), there is a lack of information on the ultrastructural variability and stability of this layer. In this work, using transmission electron micrographs, we analyzed the variability of the spore's outermost layers in various strains and found distinctive variability in the ultrastructural morphotype of the exosporium within and between strains. Through transmission electron micrographs, we observed that although this layer was stable during spore purification, it was partially lost after 6 months of storage at room temperature. These observations were confirmed by indirect immunofluorescence microscopy, where a significant decrease in the levels of two exosporium markers, the N-terminal domain of BclA1 and CdeC, was observed. It is also noteworthy that the presence of the exosporium marker CdeC on spores obtained from C. difficile biofilms depended on the biofilm culture conditions and the strain used. Collectively, these results provide information on the heterogeneity and stability of the exosporium surface of C. difficile spores. These findings have direct implications and should be considered in the development of novel methods to diagnose and/or remove C. difficile spores by using exosporium proteins as targets.
Collapse
|
27
|
Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy. J Bacteriol 2015; 197:2361-73. [PMID: 25939833 DOI: 10.1128/jb.00200-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The Gram-positive spore-forming anaerobe Clostridium difficile is a leading cause of nosocomial diarrhea. Spores of C. difficile initiate infection when triggered to germinate by bile salts in the gastrointestinal tract. We analyzed germination kinetics of individual C. difficile spores using Raman spectroscopy and differential interference contrast (DIC) microscopy. Similar to Bacillus spores, individual C. difficile spores germinating with taurocholate plus glycine began slow leakage of a ∼15% concentration of a chelate of Ca(2+) and dipicolinic acid (CaDPA) at a heterogeneous time T1, rapidly released CaDPA at Tlag, completed CaDPA release at Trelease, and finished peptidoglycan cortex hydrolysis at Tlysis. T1 and Tlag values for individual spores were heterogeneous, but ΔTrelease periods (Trelease - Tlag) were relatively constant. In contrast to Bacillus spores, heat treatment did not stimulate spore germination in the two C. difficile strains tested. C. difficile spores did not germinate with taurocholate or glycine alone, and different bile salts differentially promoted spore germination, with taurocholate and taurodeoxycholate being best. Transient exposure of spores to taurocholate plus glycine was sufficient to commit individual spores to germinate. C. difficile spores did not germinate with CaDPA, in contrast to B. subtilis and C. perfringens spores. However, the detergent dodecylamine induced C. difficile spore germination, and rates were increased by spore coat removal although cortex hydrolysis did not follow Trelease, in contrast with B. subtilis. C. difficile spores lacking the cortex-lytic enzyme, SleC, germinated extremely poorly, and cortex hydrolysis was not observed in the few sleC spores that partially germinated. Overall, these findings indicate that C. difficile and B. subtilis spore germination exhibit key differences. IMPORTANCE Spores of the Gram-positive anaerobe Clostridium difficile are responsible for initiating infection by this important nosocomial pathogen. When exposed to germinants such as bile salts, C. difficile spores return to life through germination in the gastrointestinal tract and cause disease, but their germination has been studied only with population-wide measurements. In this work we used Raman spectroscopy and DIC microscopy to monitor the kinetics of germination of individual C. difficile spores, the commitment of spores to germination, and the effect of germinant type and concentration, sublethal heat shock, and spore decoating on germination. Our data suggest that the order of germination events in C. difficile spores differs from that in Bacillus spores and provide new insights into C. difficile spore germination.
Collapse
|
28
|
Díaz-González F, Milano M, Olguin-Araneda V, Pizarro-Cerda J, Castro-Córdova P, Tzeng SC, Maier CS, Sarker MR, Paredes-Sabja D. Protein composition of the outermost exosporium-like layer of Clostridium difficile 630 spores. J Proteomics 2015; 123:1-13. [PMID: 25849250 DOI: 10.1016/j.jprot.2015.03.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/23/2015] [Accepted: 03/29/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Clostridium difficile spores are considered the morphotype of infection, transmission and persistence of C. difficile infections. There is a lack of information on the composition of the outermost exosporium layer of C. difficile spores. Using recently developed exosporium removal methods combined with MS/MS, we have established a gel-free approach to analyze the proteome of the exosporium of C. difficile spores of strain 630. A total of 184 proteins were found in the exosporium layer of C. difficile spores. We identified 7 characterized spore coat and/or exosporium proteins; 6 proteins likely to be involved in spore resistance; 6 proteins possibly involved in pathogenicity; 13 uncharacterized proteins; and 146 cytosolic proteins that might have been encased into the exosporium during assembly, similarly as reported for Bacillus anthracis and Bacillus cereus spores. We demonstrate through Flag-fusions that CotA and CotB are mainly located in the spore coat, while the exosporium collagen-like glycoproteins (i.e. BclA1, BclA2 and BclA3), the exosporium morphogenetic proteins CdeC and CdeM, and the uncharacterized exosporium proteins CdeA and CdeB are mainly located in the exosporium layer of C. difficile 630 spores. This study offers novel candidates of C. difficile exosporium proteins as suitable targets for detection, removal and spore-based therapies. BIOLOGICAL SIGNIFICANCE This study offers a novel strategy to identify proteins of the exosporium layer of C. difficile spores and complements previous proteomic studies on the entire C. difficile spores and spore coat since it defines the proteome of the outermost layer of C. difficile spores, the exosporium. This study suggests that C. difficile spores have several proteins involved in protection against environmental stress as well as putative virulence factors that might play a role during infection. Spore exosporium structural proteins were also identified providing the ground basis for further functional studies of these proteins. Overall this work provides new protein target for the diagnosis and/or therapeutics that may contribute to combat C. difficile infections.
Collapse
Affiliation(s)
- Fernando Díaz-González
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Mauro Milano
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Valeria Olguin-Araneda
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Jaime Pizarro-Cerda
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Pablo Castro-Córdova
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Shin-Chen Tzeng
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA; Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Daniel Paredes-Sabja
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
29
|
Ambush of Clostridium difficile spores by ramoplanin: activity in an in vitro model. Antimicrob Agents Chemother 2015; 59:2525-30. [PMID: 25691641 DOI: 10.1128/aac.04853-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/30/2015] [Indexed: 11/20/2022] Open
Abstract
Clostridium difficile infection (CDI) is a gastrointestinal disease caused by C. difficile, a spore-forming bacterium that in its spore form is tolerant to standard antimicrobials. Ramoplanin is a glycolipodepsipeptide antibiotic that is active against C. difficile with MICs ranging from 0.25 to 0.50 μg/ml. The activity of ramoplanin against the spores of C. difficile has not been well characterized; such activity, however, may hold promise, since posttreatment residual intraluminal spores are likely elements of disease relapse, which can impact more than 20% of patients who are successfully treated. C. difficile spores were found to be stable in deionized water for 6 days. In vitro spore counts were consistently below the level of detection for 28 days after even brief (30-min) exposure to ramoplanin at concentrations found in feces (300 μg/ml). In contrast, suppression of spore counts was not observed for metronidazole or vancomycin at human fecal concentrations during treatment (10 μg/ml and 500 μg/ml, respectively). Removal of the C. difficile exosporium resulted in an increase in spore counts after exposure to 300 μg/ml of ramoplanin. Therefore, we propose that rather than being directly sporicidal, ramoplanin adheres to the exosporium for a prolonged period, during which time it is available to attack germinating cells. This action, in conjunction with its already established bactericidal activity against vegetative C. difficile forms, supports further evaluation of ramoplanin for the prevention of relapse after C. difficile infection in patients.
Collapse
|
30
|
Lund BM, Peck MW. A possible route for foodborne transmission of Clostridium difficile? Foodborne Pathog Dis 2015; 12:177-82. [PMID: 25599421 DOI: 10.1089/fpd.2014.1842] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Spores of toxigenic Clostridium difficile and spores of food-poisoning strains of Clostridium perfringens show a similar prevalence in meats. Spores of both species are heat resistant and can survive cooking of foods. C. perfringens is a major cause of foodborne illness; studies are needed to determine whether C. difficile transmission by a similar route is a cause of infection.
Collapse
Affiliation(s)
- Barbara M Lund
- Institute of Food Research , Norwich Research Park, Colney, Norwich, United Kingdom
| | | |
Collapse
|
31
|
Barra-Carrasco J, Paredes-Sabja D. Clostridium difficile spores: a major threat to the hospital environment. Future Microbiol 2014; 9:475-86. [PMID: 24810347 DOI: 10.2217/fmb.14.2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clostridium difficile is a Gram-positive, anaerobic spore former and is an important nosocomial and community-acquired pathogenic bacterium. C. difficile infections (CDI) are a leading cause of infections worldwide with elevated rates of morbidity. Despite the fact that two major virulence factors, the enterotoxin TcdA and the cytotoxin TcdB, are essential in the development of CDI, C. difficile spores are the main vehicle of infection, and persistence and transmission of CDI and are thought to play an essential role in episodes of CDI recurrence and horizontal transmission. Recent research has unmasked several properties of C. difficile's unique strategy to form highly transmissible spores and to persist in the colonic environment. Therefore, the aim of this article is to summarize recent advances in the biological properties of C. difficile spores, which might be clinically relevant to improve the management of CDI in hospital environments.
Collapse
Affiliation(s)
- Jonathan Barra-Carrasco
- Laboratorio de Mecanismos de Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, República 217, Santiago, Chile
| | | |
Collapse
|
32
|
Pishdadian K, Fimlaid KA, Shen A. SpoIIID-mediated regulation of σK function during Clostridium difficile sporulation. Mol Microbiol 2014; 95:189-208. [PMID: 25393584 DOI: 10.1111/mmi.12856] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2014] [Indexed: 02/04/2023]
Abstract
The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health-care-associated diarrhea worldwide. Although C. difficile spore formation is essential for disease transmission, the regulatory pathways that control this developmental process have only been partially characterized. In the well-studied spore-former Bacillus subtilis, the highly conserved σ(E) , SpoIIID and σ(K) regulatory proteins control gene expression in the mother cell to ensure proper spore formation. To define the precise requirement for SpoIIID and σ(K) during C. difficile sporulation, we analyzed spoIIID and sigK mutants using heterologous expression systems and RNA-Seq transcriptional profiling. These analyses revealed that expression of sigK from a SpoIIID-independent promoter largely bypasses the need for SpoIIID to produce heat-resistant spores. We also observed that σ(K) is active upon translation, suggesting that SpoIIID primarily functions to activate sigK. SpoIIID nevertheless plays auxiliary roles during sporulation, as it enhances levels of the exosporium morphogenetic protein CdeC in a σ(K) -dependent manner. Analyses of purified spores further revealed that SpoIIID and σ(K) control the adherence of the CotB coat protein to C. difficile spores, indicating that these proteins regulate multiple stages of spore formation. Collectively, these results highlight that diverse mechanisms control spore formation in the Firmicutes.
Collapse
Affiliation(s)
- Keyan Pishdadian
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, 05405, USA
| | | | | |
Collapse
|
33
|
Awad MM, Johanesen PA, Carter GP, Rose E, Lyras D. Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen. Gut Microbes 2014; 5:579-93. [PMID: 25483328 PMCID: PMC4615314 DOI: 10.4161/19490976.2014.969632] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The worldwide emergence of epidemic strains of Clostridium difficile linked to increased disease severity and mortality has resulted in greater research efforts toward determining the virulence factors and pathogenesis mechanisms used by this organism to cause disease. C. difficile is an opportunist pathogen that employs many factors to infect and damage the host, often with devastating consequences. This review will focus on the role of the 2 major virulence factors, toxin A (TcdA) and toxin B (TcdB), as well as the role of other putative virulence factors, such as binary toxin, in C. difficile-mediated infection. Consideration is given to the importance of spores in both the initiation of disease and disease recurrence and also to the role that surface proteins play in host interactions.
Collapse
Key Words
- AAD, antibiotic associated diarrhea
- C. difficile,Clostridium difficile
- CDI, C. difficile infection
- CDT, Clostridium difficile transferase
- CDTLoc, CDT locus
- CDTa, CDT enzymatic component
- CDTb, CDT binding/translocation component
- CST, Clostridium spiroforme toxin
- CWPs, cell wall protein
- Clostridium
- ECF, extracytoplasmic function
- HMW, high molecular weight
- LMW, low molecular weight
- LSR, lipolysis-stimulated lipoprotein receptor
- PCR, polymerase chain reaction
- PFGE, pulsed field gel electrophoresis
- PaLoc, pathogenicity locus
- REA, restriction endonuclease analysis
- S-layer, surface layer
- SLPs, S-layer proteins
- TcdA, toxin A
- TcdB, toxin B
- antibiotic
- colitis
- difficile
- infection
- nosocomial
- toxin
- virulence factor
- ι-toxin, iota toxin
Collapse
Affiliation(s)
- Milena M Awad
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | | | - Glen P Carter
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | - Edward Rose
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | - Dena Lyras
- Department of Microbiology; Monash University; Clayton, Victoria, Australia,Correspondence to: Dena Lyras;
| |
Collapse
|
34
|
Survival of Clostridium difficile spores at low temperatures. Food Microbiol 2014; 46:218-221. [PMID: 25475288 DOI: 10.1016/j.fm.2014.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 01/05/2023]
Abstract
Clostridium difficile's presence has been reported in meat products stored typically at low temperatures. This study evaluated the viability in phosphate buffer saline (PBS) of spores from epidemic C. difficile strain R20291 (4.6 log CFU/ml) and M120 (7.8 log CFU/ml). Viability was assessed during 4 months at -80 °C, -20 °C, 4 °C (refrigeration), and 23 °C (room temperature), and after 10 freeze (-20 °C)/thaw (+23 °C) cycles. Although spore viability decreased, significant viability was still observed after 4 months at -20 °C, i.e., 3.5 and 3.9 log CFU/ml and -80 °C, i.e., 6.0 and 6.1 log CFU/ml for strains R20291 and M120, respectively. The same trend was observed for M120 at 4 °C and 23 °C, while for R20291 the viability change was non-significant at 4 °C but increased significantly at 23 °C (p > 0.05). After 10 freeze-thaw cycles, viability of both strains decreased but a significant fraction remained viable (4.3 and 6.3 log CFU/ml for strain R20291 and M120, respectively). Strikingly, both strains showed higher viability in a meat model than in PBS. A small but significant decrease (p < 0.05) from 6.7 to 6.3 log CFU/ml in M120 viability was observed after 2-month storage in the meat model while the decrease from an initial 3.4 log CFU/ml observed for R20291 was non-significant (p = 0.12). In summary, C. difficile spores can survive low-temperature conditions for up to 4 months.
Collapse
|
35
|
Olguín-Araneda V, Banawas S, Sarker MR, Paredes-Sabja D. Recent advances in germination of Clostridium spores. Res Microbiol 2014; 166:236-43. [PMID: 25132133 DOI: 10.1016/j.resmic.2014.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 12/23/2022]
Abstract
Members of Clostridium genus are a diverse group of anaerobic spore-formers that includes several pathogenic species. Their anaerobic requirement enhances the importance of the dormant spore morphotype during infection, persistence and transmission. Bacterial spores are metabolically inactive and may survive for long times in the environment and germinate in presence of nutrients termed germinants. Recent progress with spores of several Clostridium species has identified the germinant receptors (GRs) involved in nutrient germinant recognition and initiation of spore germination. Signal transduction from GRs to the downstream effectors remains poorly understood but involves the release of dipicolinic acid. Two mechanistically different cortex hydrolytic machineries are present in Clostridium spores. Recent studies have also shed light into novel biological events that occur during spore formation (accumulation of transcriptional units) and transcription during early spore outgrowth. In summary, this review will cover all of the recent advances in Clostridium spore germination.
Collapse
Affiliation(s)
- Valeria Olguín-Araneda
- Laboratorio de Mecanismos de Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Saeed Banawas
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, OR, USA; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA; Medical Laboratories Department, College of Science Al-Zulfi, Majmaah University, Saudi Arabia
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, OR, USA; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA
| | - Daniel Paredes-Sabja
- Laboratorio de Mecanismos de Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile; Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, OR, USA.
| |
Collapse
|
36
|
Identification and characterization of glycoproteins on the spore surface of Clostridium difficile. J Bacteriol 2014; 196:2627-37. [PMID: 24816601 DOI: 10.1128/jb.01469-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this study, we identify a major spore surface protein, BclA, and provide evidence that this protein is glycosylated. Following extraction of the spore surface, solubilized proteins were separated by one-dimensional PAGE and stained with glycostain to reveal a reactive high-molecular-mass region of approximately 600 kDa. Tandem mass spectrometry analysis of in-gel digests showed this band to contain peptides corresponding to a putative exosporangial glycoprotein (BclA3) and identified a number of glycopeptides modified with multiple N-acetyl hexosamine moieties and, in some cases, capped with novel glycans. In addition, we demonstrate that the glycosyltransferase gene sgtA (gene CD3350 in strain 630 and CDR3194 in strain R20291), which is located immediately upstream of the bclA3 homolog, is involved in the glycosylation of the spore surface, and is cotranscribed with bclA3. The presence of anti-β-O-GlcNAc-reactive material was demonstrated on the surface of spores by immunofluorescence and in surface extracts by Western blotting, although each strain produced a distinct pattern of reactivity. Reactivity of the spore surface with the anti-β-O-GlcNAc antibody was abolished in the 630 and R20291 glycosyltransferase mutant strains, while complementation with a wild-type copy of the gene restored the β-O-GlcNAc reactivity. Phenotypic testing of R20291 glycosyltransferase mutant spores revealed no significant change in sensitivity to ethanol or lysozyme. However, a change in the resistance to heat of R20291 glycosyltransferase mutant spores compared to R20291 spores was observed, as was the ability to adhere to and be internalized by macrophages.
Collapse
|
37
|
Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol 2014; 22:406-16. [PMID: 24814671 DOI: 10.1016/j.tim.2014.04.003] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/27/2014] [Accepted: 04/07/2014] [Indexed: 02/06/2023]
Abstract
Clostridium difficile is a Gram-positive, spore-forming obligate anaerobe and a major nosocomial pathogen of worldwide concern. Owing to its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. In susceptible patients, C. difficile spores germinate in the colon to form the vegetative cells that initiate Clostridium difficile infections (CDI). During CDI, C. difficile induces a sporulation pathway that produces more spores; these spores are responsible for the persistence of C. difficile in patients and horizontal transmission between hospitalized patients. Although important to the C. difficile lifecycle, the C. difficile spore proteome is poorly conserved when compared to members of the Bacillus genus. Further, recent studies have revealed significant differences between C. difficile and Bacillus subtilis at the level of sporulation, germination, and spore coat and exosporium morphogenesis. In this review, the regulation of the sporulation and germination pathways and the morphogenesis of the spore coat and exosporium will be discussed.
Collapse
|
38
|
Phetcharaburanin J, Hong HA, Colenutt C, Bianconi I, Sempere L, Permpoonpattana P, Smith K, Dembek M, Tan S, Brisson MC, Brisson AR, Fairweather NF, Cutting SM. The spore-associated protein BclA1 affects the susceptibility of animals to colonization and infection by Clostridium difficile. Mol Microbiol 2014; 92:1025-38. [PMID: 24720767 DOI: 10.1111/mmi.12611] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 01/05/2023]
Abstract
The BclA protein is a major component of the outermost layer of spores of a number of bacterial species and Clostridium difficile carries three bclA genes. Using insertional mutagenesis each gene was characterized and spores devoid of these proteins had surface aberrations, reduced hydrophobicity and germinated faster than wild-type spores. Therefore the BclA proteins were likely major components of the spore surface and when absent impaired the protective shield effect of this outermost layer. Analysis of infection and colonization in mice and hamsters revealed that the 50% infectious dose (ID50 ) of spores was significantly higher (2-logs) in the bclA1(-) mutant compared to the isogenic wild-type control, but that levels of toxins (A and B) were indistinguishable from animals dosed with wild-type spores. bclA1(-) spores germinated faster than wild-type spores yet mice were less susceptible to infection suggesting that BclA1 must play a key role in the initial (i.e. pre-spore germination) stages of infection. We also show that the ID50 was higher in mice infected with R20291, a 'hypervirulent' 027 strain, that carries a truncated BclA1 protein.
Collapse
Affiliation(s)
- Jutarop Phetcharaburanin
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pizarro-Guajardo M, Olguín-Araneda V, Barra-Carrasco J, Brito-Silva C, Sarker MR, Paredes-Sabja D. Characterization of the collagen-like exosporium protein, BclA1, of Clostridium difficile spores. Anaerobe 2014; 25:18-30. [DOI: 10.1016/j.anaerobe.2013.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/07/2013] [Accepted: 11/14/2013] [Indexed: 01/05/2023]
|
40
|
Semenyuk EG, Laning ML, Foley J, Johnston PF, Knight KL, Gerding DN, Driks A. Spore formation and toxin production in Clostridium difficile biofilms. PLoS One 2014; 9:e87757. [PMID: 24498186 PMCID: PMC3907560 DOI: 10.1371/journal.pone.0087757] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 01/02/2014] [Indexed: 01/05/2023] Open
Abstract
The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.
Collapse
Affiliation(s)
- Ekaterina G. Semenyuk
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Michelle L. Laning
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Jennifer Foley
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Pehga F. Johnston
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Katherine L. Knight
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Dale N. Gerding
- Hines Veterans Affairs Hospital, Hines, Illinois, United States of America
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abhyankar W, Hossain AH, Djajasaputra A, Permpoonpattana P, Ter Beek A, Dekker HL, Cutting SM, Brul S, de Koning LJ, de Koster CG. In Pursuit of Protein Targets: Proteomic Characterization of Bacterial Spore Outer Layers. J Proteome Res 2013; 12:4507-21. [DOI: 10.1021/pr4005629] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Patima Permpoonpattana
- School
of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | | - Simon M. Cutting
- School
of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | | | |
Collapse
|
42
|
The Clostridium difficile exosporium cysteine (CdeC)-rich protein is required for exosporium morphogenesis and coat assembly. J Bacteriol 2013; 195:3863-75. [PMID: 23794627 DOI: 10.1128/jb.00369-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is an important nosocomial pathogen that has become a major cause of antibiotic-associated diarrhea. There is a general consensus that C. difficile spores play an important role in C. difficile pathogenesis, contributing to infection, persistence, and transmission. Evidence has demonstrated that C. difficile spores have an outermost layer, termed the exosporium, that plays some role in adherence to intestinal epithelial cells. Recently, the protein encoded by CD1067 was shown to be present in trypsin-exosporium extracts of C. difficile 630 spores. In this study, we renamed the CD1067 protein Clostridium difficile exosporium cysteine-rich protein (CdeC) and characterized its role in the structure and properties of C. difficile spores. CdeC is expressed under sporulation conditions and localizes to the C. difficile spore. Through the construction of an ΔcdeC isogenic knockout mutant derivative of C. difficile strain R20291, we demonstrated that (i) the distinctive nap layer is largely missing in ΔcdeC spores; (ii) CdeC is localized in the exosporium-like layer and is accessible to IgGs; (iii) ΔcdeC spores were more sensitive to lysozyme, ethanol, and heat treatment than wild-type spores; and (iv) despite the almost complete absence of the exosporium layer, ΔcdeC spores adhered at higher levels than wild-type spores to intestinal epithelium cell lines (i.e., HT-29 and Caco-2 cells). Collectively, these results indicate that CdeC is essential for exosporium morphogenesis and the correct assembly of the spore coat of C. difficile.
Collapse
|