1
|
Hudcovic T, Petr Hermanova P, Kozakova H, Benada O, Kofronova O, Schwarzer M, Srutkova D. Priority order of neonatal colonization by a probiotic or pathogenic Escherichia coli strain dictates the host response to experimental colitis. Front Microbiol 2024; 15:1393732. [PMID: 39206364 PMCID: PMC11349737 DOI: 10.3389/fmicb.2024.1393732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
The alarming prevalence of inflammatory bowel disease (IBD) in early childhood is associated with imbalances in the microbiome, the immune response, and environmental factors. Some pathogenic Escherichia coli (E. coli) strains have been found in IBD patients, where they may influence disease progression. Therefore, the discovery of new harmful bacterial strains that have the potential to drive the inflammatory response is of great importance. In this study, we compared the immunomodulatory properties of two E. coli strains of serotype O6: the probiotic E. coli Nissle 1917 and the uropathogenic E. coli O6:K13:H1. Using the epithelial Caco-2 cell line, we investigated the different abilities of the strains to adhere to and invade epithelial cells. We confirmed the potential of E. coli Nissle 1917 to modulate the Th1 immune response in a specific manner in an in vitro setting by stimulating mouse bone marrow-derived dendritic cells (BM-DCs). In gnotobiotic in vivo experiments, we demonstrated that neonatal colonization with E. coli Nissle 1917 achieves a stable high concentration in the intestine and protects mice from the progressive effect of E. coli O6:K13:H1 in developing ulcerative colitis in an experimental model. In contrast, a single-dose treatment with E. coli Nissle 1917 is ineffective in achieving such high concentrations and does not protect against DSS-induced ulcerative colitis in mice neonatally colonized with pathobiont E. coli O6:K13:H1. Despite the stable coexistence of both E. coli strains in the intestinal environment of the mice, we demonstrated a beneficial competitive interaction between the early colonizing E. coli Nissle 1917 and the late-arriving strain O6:K13:H1, suggesting its anti-inflammatory potential for the host. This study highlights the importance of the sequence of bacterial colonization, which influences the development of the immune response in the host gut and potentially impacts future quality of life.
Collapse
Affiliation(s)
- Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Petra Petr Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Olga Kofronova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| |
Collapse
|
2
|
Raskova Kafkova L, Brokesova D, Krupka M, Stehlikova Z, Dvorak J, Coufal S, Fajstova A, Srutkova D, Stepanova K, Hermanova P, Stepankova R, Uberall I, Skarda J, Novak Z, Vannucci L, Tlaskalova-Hogenova H, Jiraskova Zakostelska Z, Sinkora M, Mestecky J, Raska M. Secretory IgA N-glycans contribute to the protection against E. coli O55 infection of germ-free piglets. Mucosal Immunol 2021; 14:511-522. [PMID: 32973324 PMCID: PMC7946640 DOI: 10.1038/s41385-020-00345-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 02/04/2023]
Abstract
Mucosal surfaces are colonized by highly diverse commensal microbiota. Coating with secretory IgA (SIgA) promotes the survival of commensal bacteria while it inhibits the invasion by pathogens. Bacterial coating could be mediated by antigen-specific SIgA recognition, polyreactivity, and/or by the SIgA-associated glycans. In contrast to many in vitro studies, only a few reported the effect of SIgA glycans in vivo. Here, we used a germ-free antibody-free newborn piglets model to compare the protective effect of SIgA, SIgA with enzymatically removed N-glycans, Fab, and Fc containing the secretory component (Fc-SC) during oral necrotoxigenic E. coli O55 challenge. SIgA, Fab, and Fc-SC were protective, whereas removal of N-glycans from SIgA reduced SIgA-mediated protection as demonstrated by piglets' intestinal histology, clinical status, and survival. In vitro analyses indicated that deglycosylation of SIgA did not reduce agglutination of E. coli O55. These findings highlight the role of SIgA-associated N-glycans in protection. Further structural studies of SIgA-associated glycans would lead to the identification of those involved in the species-specific inhibition of attachment to corresponding epithelial cells.
Collapse
Affiliation(s)
- Leona Raskova Kafkova
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Diana Brokesova
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Michal Krupka
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Zuzana Stehlikova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Dvorak
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stepan Coufal
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Fajstova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dagmar Srutkova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Katerina Stepanova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Petra Hermanova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Renata Stepankova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Ivo Uberall
- grid.10979.360000 0001 1245 3953Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jozef Skarda
- grid.10979.360000 0001 1245 3953Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Zdenek Novak
- grid.265892.20000000106344187Department of Surgery, University of Alabama at Birmingham, Birmingham, AL USA
| | - Luca Vannucci
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic ,grid.418800.50000 0004 0555 4846Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Jiraskova Zakostelska
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Sinkora
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Jiri Mestecky
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic ,grid.265892.20000000106344187Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Milan Raska
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
3
|
Splichalova A, Pechar R, Killer J, Splichalova Z, Bunesova VN, Vlkova E, Salmonova HS, Splichal I. Colonization of Germ-Free Piglets with Mucinolytic and Non-Mucinolytic Bifidobacterium boum Strains Isolated from the Intestine of Wild Boar and Their Interference with Salmonella Typhimurium. Microorganisms 2020; 8:microorganisms8122002. [PMID: 33333934 PMCID: PMC7765441 DOI: 10.3390/microorganisms8122002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
Non-typhoidal Salmonella serovars are worldwide spread foodborne pathogens that cause diarrhea in humans and animals. Colonization of gnotobiotic piglet intestine with porcine indigenous mucinolytic Bifidobacterium boum RP36 strain and non-mucinolytic strain RP37 and their interference with Salmonella Typhimurium infection were compared. Bacterial interferences and impact on the host were evaluated by clinical signs of salmonellosis, bacterial translocation, goblet cell count, mRNA expression of mucin 2, villin, claudin-1, claudin-2, and occludin in the ileum and colon, and plasmatic levels of inflammatory cytokines IL-8, TNF-α, and IL-10. Both bifidobacterial strains colonized the intestine comparably. Neither RP36 nor RP37 B. boum strains effectively suppressed signs of salmonellosis. Both B. boum strains suppressed the growth of S. Typhimurium in the ileum and colon. The mucinolytic RP36 strain increased the translocation of S. Typhimurium into the blood, liver, and spleen.
Collapse
Affiliation(s)
- Alla Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.S.)
| | - Radko Pechar
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (R.P.); (J.K.); (V.N.B.); (E.V.); (H.S.S.)
- Department of Research, Food Research Institute Prague, 102 00 Prague, Czech Republic
| | - Jiri Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (R.P.); (J.K.); (V.N.B.); (E.V.); (H.S.S.)
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Zdislava Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.S.)
| | - Vera Neuzil Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (R.P.); (J.K.); (V.N.B.); (E.V.); (H.S.S.)
| | - Eva Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (R.P.); (J.K.); (V.N.B.); (E.V.); (H.S.S.)
| | - Hana Subrtova Salmonova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (R.P.); (J.K.); (V.N.B.); (E.V.); (H.S.S.)
| | - Igor Splichal
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.S.)
- Correspondence: ; Tel.: +420-491-418-539; Fax: +420-491-478-264
| |
Collapse
|
4
|
Zhang X, Shen J, Ma H, Jiang Y, Huang C, Han E, Yao B, He Y. Optimized dendrimer-encapsulated gold nanoparticles and enhanced carbon nanotube nanoprobes for amplified electrochemical immunoassay of E. coli in dairy product based on enzymatically induced deposition of polyaniline. Biosens Bioelectron 2016; 80:666-673. [PMID: 26908184 DOI: 10.1016/j.bios.2016.02.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 01/08/2023]
Abstract
A highly sensitive immunosensor was reported for Escherichia coli assay in dairy product based on electrochemical measurement of polyaniline (PAn) that was catalytically deposited by horseradish peroxidase (HRP) labels. Herein, the immunosensor was developed by using poly(amidoamine) dendrimer-encapsulated gold nanoparticles (PAMAM(Au)) as sensing platform. Importantly, the optimal HAuCl4/PAMAM ratio was investigated to design the efficient PAMAM(Au) nanocomposites. The nanocomposites were proven to not only increase the amount of immobilized capture antibody (cAb), but also accelerate the electron transfer process. Moreover, the {dAb-CNT-HRP} nanoprobes were prepared by exploiting the amplification effect of multiwalled carbon nanotubes (CNTs) for loading detection antibody (dAb) and enormous HRP labels. After a sandwich immunoreaction, the quantitatively captured nanoprobes could catalyze oxidation aniline to produce electroactive PAn for electrochemical measurement. On the basis of signal amplification of the PAMAM(Au)-based immunosensor and the {dAb-CNT-HRP} nanoprobes, the proposed strategy exhibited a linear relationship between the peak current of PAn and the logarithmic value of E. coli concentration ranging from 1.0 × 10(2) to 1.0 × 10(6) cfu mL(-1) with a detection limit of 50 cfu mL(-1) (S/N=3), and the electrochemical detection of E. coli could be achieved in 3h. The electrochemical immunosensor was also used to determine E. coli in dairy product (pure fresh milk, infant milk powder, yogurt in shelf-life and expired yogurt), and the recoveries of standard additions were in the range of 96.8-108.7%. Overall, this method gave a useful protocol for E. coli assay with high sensitivity, acceptable accuracy and satisfying stability, and thus provided a powerful tool to estimate the quality of dairy product.
Collapse
Affiliation(s)
- Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Jianzhong Shen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yuxiang Jiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chenyong Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - En Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Boshui Yao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yunyao He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|