1
|
Rossello J, Rivera B, Anzibar Fialho M, Augusto I, Gil M, Forrellad MA, Bigi F, Rodríguez Taño A, Urdániz E, Piuri M, Miranda K, Wehenkel AM, Alzari PM, Malacrida L, Durán R. FhaA plays a key role in mycobacterial polar elongation and asymmetric growth. mBio 2025:e0252624. [PMID: 39835815 DOI: 10.1128/mbio.02526-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Mycobacteria, including pathogens like Mycobacterium tuberculosis, exhibit unique growth patterns and cell envelope structures that challenge our understanding of bacterial physiology. This study sheds light on FhaA, a conserved protein in Mycobacteriales, revealing its pivotal role in coordinating cell envelope biogenesis and asymmetric growth. The elucidation of the FhaA interactome in living mycobacterial cells reveals its participation in the protein network orchestrating cell envelope biogenesis and cell elongation/division. By manipulating FhaA levels, we uncovered its influence on cell morphology, cell envelope organization, and the localization of peptidoglycan biosynthesis machinery. Notably, fhaA deletion disrupted the characteristic asymmetric growth of mycobacteria, highlighting its importance in maintaining this distinctive feature. Our findings position FhaA as a key regulator in a complex protein network, orchestrating the asymmetric distribution and activity of cell envelope biosynthetic machinery. This work not only advances our understanding of mycobacterial growth mechanisms but also identifies FhaA as a potential target for future studies on cell envelope biogenesis and bacterial growth regulation. These insights into the fundamental biology of mycobacteria may pave the way for novel approaches to combat mycobacterial infections addressing the ongoing challenge of diseases like tuberculosis in global health. IMPORTANCE Mycobacterium tuberculosis, the bacterium responsible for tuberculosis, remains a global health concern. Unlike most well-studied model bacilli, mycobacteria possess a distinctive and complex cell envelope, as well as an asymmetric polar growth mode. However, the proteins and mechanisms that drive cell asymmetric elongation in these bacteria are still not well understood. This study sheds light on the role of the protein FhaA in this process. Our findings demonstrate that FhaA localizes at the septum and asymmetrically to the poles, with a preference for the fast-growing pole. Furthermore, we showed that FhaA is essential for population heterogeneity and asymmetric polar elongation and plays a role in the precise subcellular localization of the cell wall biosynthesis machinery. Mycobacterial asymmetric elongation results in a physiologically heterogeneous bacterial population which is important for pathogenicity and response to antibiotics, stressing the relevance of identifying new factors involved in these still poorly characterized processes.
Collapse
Affiliation(s)
- Jessica Rossello
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable and Institut Pasteur de Montevideo, Montevideo, Uruguay
- Advanced Bioimaging Unit, UdelaR and Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Bernardina Rivera
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable and Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Ingrid Augusto
- Precision Medicine Research Centre, Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Magdalena Gil
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable and Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marina Andrea Forrellad
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, CICVyA, Hurlingham, Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, CICVyA, Hurlingham, Buenos Aires, Argentina
| | - Azalia Rodríguez Taño
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable and Institut Pasteur de Montevideo, Montevideo, Uruguay
- Programa de Posgrado, Facultad de Química, UdelaR, Montevideo, Uruguay
| | - Estefanía Urdániz
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Kildare Miranda
- Precision Medicine Research Centre, Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anne Marie Wehenkel
- Institut Pasteur, Université Paris Cité, Bacterial Cell Cycle Mechanisms Unit, Paris, France
| | - Pedro M Alzari
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, Paris, France
| | - Leonel Malacrida
- Advanced Bioimaging Unit, UdelaR and Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - Rosario Durán
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable and Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
2
|
Listeria monocytogenes requires the RsbX protein to prevent SigB-activation under non-stressed conditions. J Bacteriol 2021; 204:e0048621. [PMID: 34694900 PMCID: PMC8765406 DOI: 10.1128/jb.00486-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The survival of microbial cells under changing environmental conditions requires an efficient reprogramming of transcription, often mediated by alternative sigma factors. The Gram-positive human pathogen Listeria monocytogenes senses and responds to environmental stress mainly through the alternative sigma factor σB (SigB), which controls expression of the general stress response regulon. SigB activation is achieved through a complex series of phosphorylation/dephosphorylation events culminating in the release of SigB from its anti-sigma factor RsbW. At the top of the signal transduction pathway lies a large multiprotein complex known as the stressosome that is believed to act as a sensory hub for stresses. Following signal detection, stressosome proteins become phosphorylated. Resetting of the stressosome is hypothesized to be exerted by a putative phosphatase, RsbX, which presumably removes phosphate groups from stressosome proteins poststress. We addressed the role of the RsbX protein in modulating the activity of the stressosome and consequently regulating SigB activity in L. monocytogenes. We show that RsbX is required to reduce SigB activation levels under nonstress conditions and that it is required for appropriate SigB-mediated stress adaptation. A strain lacking RsbX displayed impaired motility and biofilm formation and also an increased survival at low pH. Our results could suggest that absence of RsbX alters the multiprotein composition of the stressosome without dramatically affecting its phosphorylation status. Overall, the data show that RsbX plays a critical role in modulating the signal transduction pathway by blocking SigB activation under nonstressed conditions. IMPORTANCE Pathogenic bacteria need to sense and respond to stresses to survive harsh environments and also to turn off the response when no longer facing stress. Activity of the stress sigma factor SigB in the human pathogen Listeria monocytogenes is controlled by a hierarchic system having a large stress-sensing multiprotein complex known as the stressosome at the top. Following stress exposure, proteins in the stressosome become phosphorylated, leading to SigB activation. We have studied the role of a putative phosphatase, RsbX, which is hypothesized to dephosphorylate stressosome proteins. RsbX is critical not only to switch off the stress response poststress but also to keep the activity of SigB low at nonstressed conditions to prevent unnecessary gene expression and save energy.
Collapse
|
3
|
Drabinska J, Steczkiewicz K, Kujawa M, Kraszewska E. Searching for Biological Function of the Mysterious PA2504 Protein from Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:ijms22189833. [PMID: 34575996 PMCID: PMC8466066 DOI: 10.3390/ijms22189833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
For nearly half of the proteome of an important pathogen, Pseudomonas aeruginosa, the function has not yet been recognised. Here, we characterise one such mysterious protein PA2504, originally isolated by us as a sole partner of the RppH RNA hydrolase involved in transcription regulation of multiple genes. This study aims at elucidating details of PA2504 function and discussing its implications for bacterial biology. We show that PA2504 forms homodimers and is evenly distributed in the cytoplasm of bacterial cells. Molecular modelling identified the presence of a Tudor-like domain in PA2504. Transcriptomic analysis of a ΔPA2504 mutant showed that 42 transcripts, mainly coding for proteins involved in sulphur metabolism, were affected by the lack of PA2504. In vivo crosslinking of cellular proteins in the exponential and stationary phase of growth revealed several polypeptides that bound to PA2504 exclusively in the stationary phase. Mass spectrometry analysis identified them as the 30S ribosomal protein S4, the translation elongation factor TufA, and the global response regulator GacA. These results indicate that PA2504 may function as a tether for several important cellular factors.
Collapse
|
4
|
Garcia DC, Dinglasan JLN, Shrestha H, Abraham PE, Hettich RL, Doktycz MJ. A lysate proteome engineering strategy for enhancing cell-free metabolite production. Metab Eng Commun 2021; 12:e00162. [PMID: 33552897 PMCID: PMC7851839 DOI: 10.1016/j.mec.2021.e00162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/02/2023] Open
Abstract
Cell-free systems present a significant opportunity to harness the metabolic potential of diverse organisms. Removing the cellular context provides the ability to produce biological products without the need to maintain cell viability and enables metabolic engineers to explore novel chemical transformation systems. Crude extracts maintain much of a cell’s capabilities. However, only limited tools are available for engineering the contents of the extracts used for cell-free systems. Thus, our ability to take full advantage of the potential of crude extracts for cell-free metabolic engineering is constrained. Here, we employ Multiplex Automated Genomic Engineering (MAGE) to tag proteins for selective depletion from crude extracts so as to specifically direct chemical production. Specific edits to central metabolism are possible without significantly impacting cell growth. Selective removal of pyruvate degrading enzymes resulted in engineered crude lysates that are capable of up to 40-fold increases in pyruvate production when compared to the non-engineered extract. The described approach melds the tools of systems and synthetic biology to showcase the effectiveness of cell-free metabolic engineering for applications like bioprototyping and bioproduction. A method of engineering cell-free metabolism in lysates is described. Method enables design of cell lysates for enhancing specific metabolic processes. Pyruvate consuming enzymes tagged with 6xHis tags have minimal impact on growth. Post-lysis pull-down of tagged enzymes enables cell-free pyruvate pooling. Lysate engineering strategy permits metabolic states not possible in living cells.
Collapse
Affiliation(s)
- David C Garcia
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, USA
| | - Jaime Lorenzo N Dinglasan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Him Shrestha
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Paul E Abraham
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Robert L Hettich
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, USA.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, USA.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
5
|
Veyron-Churlet R, Locht C. In Vivo Methods to Study Protein-Protein Interactions as Key Players in Mycobacterium Tuberculosis Virulence. Pathogens 2019; 8:pathogens8040173. [PMID: 31581602 PMCID: PMC6963305 DOI: 10.3390/pathogens8040173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Studies on protein–protein interactions (PPI) can be helpful for the annotation of unknown protein functions and for the understanding of cellular processes, such as specific virulence mechanisms developed by bacterial pathogens. In that context, several methods have been extensively used in recent years for the characterization of Mycobacterium tuberculosis PPI to further decipher tuberculosis (TB) pathogenesis. This review aims at compiling the most striking results based on in vivo methods (yeast and bacterial two-hybrid systems, protein complementation assays) for the specific study of PPI in mycobacteria. Moreover, newly developed methods, such as in-cell native mass resonance and proximity-dependent biotinylation identification, will have a deep impact on future mycobacterial research, as they are able to perform dynamic (transient interactions) and integrative (multiprotein complexes) analyses.
Collapse
Affiliation(s)
- Romain Veyron-Churlet
- Institut Pasteur de Lille, CHU Lille, CNRS, Inserm, Université de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Camille Locht
- Institut Pasteur de Lille, CHU Lille, CNRS, Inserm, Université de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
6
|
Grant SS, Wellington S, Kawate T, Desjardins CA, Silvis MR, Wivagg C, Thompson M, Gordon K, Kazyanskaya E, Nietupski R, Haseley N, Iwase N, Earl AM, Fitzgerald M, Hung DT. Baeyer-Villiger Monooxygenases EthA and MymA Are Required for Activation of Replicating and Non-replicating Mycobacterium tuberculosis Inhibitors. Cell Chem Biol 2016; 23:666-77. [PMID: 27321573 DOI: 10.1016/j.chembiol.2016.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 04/12/2016] [Accepted: 05/06/2016] [Indexed: 01/21/2023]
Abstract
Successful treatment of Mycobacterium tuberculosis infection typically requires a complex regimen administered over at least 6 months. Interestingly, many of the antibiotics used to treat M. tuberculosis are prodrugs that require intracellular activation. Here, we describe three small molecules, active against both replicating and non-replicating M. tuberculosis, that require activation by Baeyer-Villiger monooxygenases (BVMOs). Two molecules require BVMO EthA (Rv3854c) for activation and the third molecule requires the BVMO MymA (Rv3083). While EthA is known to activate the antitubercular drug ethionamide, this is the first description of MymA as an activating enzyme of a prodrug. Furthermore, we found that MymA also plays a role in activating ethionamide, with loss of MymA function resulting in ethionamide-resistant M. tuberculosis. These findings suggest overlap in function and specificity of the BVMOs in M. tuberculosis.
Collapse
Affiliation(s)
- Sarah Schmidt Grant
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Samantha Wellington
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomohiko Kawate
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Carl Wivagg
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | | | | | - Nathan Haseley
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Noriaki Iwase
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ashlee M Earl
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Deborah T Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Itri F, Monti DM, Della Ventura B, Vinciguerra R, Chino M, Gesuele F, Lombardi A, Velotta R, Altucci C, Birolo L, Piccoli R, Arciello A. Femtosecond UV-laser pulses to unveil protein-protein interactions in living cells. Cell Mol Life Sci 2016; 73:637-48. [PMID: 26265182 PMCID: PMC11108384 DOI: 10.1007/s00018-015-2015-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/30/2015] [Accepted: 08/06/2015] [Indexed: 12/30/2022]
Abstract
A hallmark to decipher bioprocesses is to characterize protein-protein interactions in living cells. To do this, the development of innovative methodologies, which do not alter proteins and their natural environment, is particularly needed. Here, we report a method (LUCK, Laser UV Cross-linKing) to in vivo cross-link proteins by UV-laser irradiation of living cells. Upon irradiation of HeLa cells under controlled conditions, cross-linked products of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were detected, whose yield was found to be a linear function of the total irradiation energy. We demonstrated that stable dimers of GAPDH were formed through intersubunit cross-linking, as also observed when the pure protein was irradiated by UV-laser in vitro. We proposed a defined patch of aromatic residues located at the enzyme subunit interface as the cross-linking sites involved in dimer formation. Hence, by this technique, UV-laser is able to photofix protein surfaces that come in direct contact. Due to the ultra-short time scale of UV-laser-induced cross-linking, this technique could be extended to weld even transient protein interactions in their native context.
Collapse
Affiliation(s)
- Francesco Itri
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Daria M Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome, Italy
| | | | - Roberto Vinciguerra
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Felice Gesuele
- Department of Physics, University of Naples Federico II, 80126, Naples, Italy
| | - Angelina Lombardi
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Raffaele Velotta
- Department of Physics, University of Naples Federico II, 80126, Naples, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), UdR, Naples, Italy
| | - Carlo Altucci
- Department of Physics, University of Naples Federico II, 80126, Naples, Italy.
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), UdR, Naples, Italy.
| | - Leila Birolo
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.
| | - Renata Piccoli
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome, Italy.
| |
Collapse
|
8
|
Srinivasa S, Ding X, Kast J. Formaldehyde cross-linking and structural proteomics: Bridging the gap. Methods 2015; 89:91-8. [PMID: 25979347 DOI: 10.1016/j.ymeth.2015.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field.
Collapse
Affiliation(s)
- Savita Srinivasa
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xuan Ding
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, United States
| | - Juergen Kast
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
9
|
Bashiri G, Baker EN. Production of recombinant proteins in Mycobacterium smegmatis for structural and functional studies. Protein Sci 2014; 24:1-10. [PMID: 25303009 DOI: 10.1002/pro.2584] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 11/11/2022]
Abstract
Protein production using recombinant DNA technology has a fundamental impact on our understanding of biology through providing proteins for structural and functional studies. Escherichia coli (E. coli) has been traditionally used as the default expression host to over-express and purify proteins from many different organisms. E. coli does, however, have known shortcomings for obtaining soluble, properly folded proteins suitable for downstream studies. These shortcomings are even more pronounced for the mycobacterial pathogen Mycobacterium tuberculosis, the bacterium that causes tuberculosis, with typically only one third of proteins expressed in E. coli produced as soluble proteins. Mycobacterium smegmatis (M. smegmatis) is a closely related and non-pathogenic species that has been successfully used as an expression host for production of proteins from various mycobacterial species. In this review, we describe the early attempts to produce mycobacterial proteins in alternative expression hosts and then focus on available expression systems in M. smegmatis. The advantages of using M. smegmatis as an expression host, its application in structural biology and some practical aspects of protein production are also discussed. M. smegmatis provides an effective expression platform for enhanced understanding of mycobacterial biology and pathogenesis and for developing novel and better therapeutics and diagnostics.
Collapse
Affiliation(s)
- Ghader Bashiri
- Structural Biology Laboratory, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, 1010, New Zealand
| | | |
Collapse
|