1
|
Burgos FA, Cai W, Arias CR. Gut dysbiosis induced by florfenicol increases susceptibility to Aeromonas hydrophila infection in Zebrafish Danio rerio after the recommended withdrawal period. JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:113-127. [PMID: 38060422 DOI: 10.1002/aah.10211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/27/2023] [Accepted: 11/25/2023] [Indexed: 02/18/2024]
Abstract
OBJECTIVE Florfenicol (FFC) is a broad-spectrum antibiotic approved by the U.S. Food and Drug Administration to treat both systemic and external bacterial infections in food fish. The objective of this study was to evaluate the effect of FFC-medicated feed on the gut microbiota of Zebrafish Danio danio to determine (1) if the therapeutic dose of FFC-medicated feed induces dysbiosis and (2) if fish with altered gut microbiota were more susceptible to subsequent infection by the common opportunistic fish pathogen Aeromonas hydrophila. METHODS Zebrafish that were treated with regular and FFC-medicated feeds were artificially challenged with A. hydrophila at the end of the recommended 15-day antibiotic withdrawal period. The gut microbiota of the Zebrafish at different stages was analyzed using 16S ribosomal RNA gene sequencing. RESULT Our results found that FFC-medicated feed induced disruption of the gut microbiota. Dysbiosis was observed in all treated groups, with a significant increase in bacterial diversity, and was characterized by a remarkable bloom of Proteobacteria and a drastic decline of Mycoplasma and Cetobacterium in treated animals but without noticeable clinical signs or mortalities. In addition, the increase of Proteobacteria was not significantly reduced after the recommended 15-day withdrawal period, and the Zebrafish treated with FFC-medicated feed exhibited a significantly higher mortality rate when they were subsequently challenged with A. hydrophila compared to the control (regular feed) groups. Interestingly, the most dramatic changes in the gut microbiome composition occurred at the transition time between the late stage of the medicated treatment and the beginning of the withdrawal period instead of the time during the Aeromonas infection. CONCLUSION The administration of FFC-medicated feed at the recommended dose induced gut dysbiosis in Zebrafish, and fish did not recover to the baseline after the recommended withdrawal period. Our findings suggest that the use of antibiotics in fish elicits a response similar to those previously described in mammals and possibly makes the host more susceptible to subsequent infections of opportunistic pathogens. This study using a controlled model system suggests that antibiotics in aquaculture may have long-term effects on the general well-being of the fish.
Collapse
Affiliation(s)
- Francisca A Burgos
- Facultad de Ingeniería Marítima y Ciencias del Mar, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Covadonga R Arias
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
2
|
Aguado-Norese C, Cárdenas V, Gaete A, Mandakovic D, Vasquez-Dean J, Hodar C, Pfeiffer M, Gonzalez M. Topsoil and subsoil bacterial community assemblies across different drainage conditions in a mountain environment. Biol Res 2023; 56:35. [PMID: 37355658 DOI: 10.1186/s40659-023-00445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND High mountainous environments are of particular interest as they play an essential role for life and human societies, while being environments which are highly vulnerable to climate change and land use intensification. Despite this, our knowledge of high mountain soils in South America and their microbial community structure is strikingly scarce, which is of more concern considering the large population that depends on the ecosystem services provided by these areas. Conversely, the Central Andes, located in the Mediterranean region of Chile, has long been studied for its singular flora, whose diversity and endemism has been attributed to the particular geological history and pronounced environmental gradients in short distances. Here, we explore soil properties and microbial community structure depending on drainage class in a well-preserved Andean valley on the lower alpine vegetation belt (~2500 m a.s.l.) at 33.5˚S. This presents an opportunity to determine changes in the overall bacterial community structure across different types of soils and their distinct layers in a soil depth profile of a highly heterogeneous environment. METHODS Five sites closely located (<1.5 km) and distributed in a well preserved Andean valley on the lower alpine vegetation belt (~2500 m a.s.l.) at 33.5˚S were selected based on a pedological approach taking into account soil types, drainage classes and horizons. We analyzed 113 soil samples using high-throughput sequencing of the 16S rRNA gene to describe bacterial abundance, taxonomic composition, and co-occurrence networks. RESULTS Almost 18,427 Amplicon Sequence Variant (ASVs) affiliated to 55 phyla were detected. The bacterial community structure within the same horizons were very similar validating the pedological sampling approach. Bray-Curtis dissimilarity analysis revealed that the structure of bacterial communities in superficial horizons (topsoil) differed from those found in deep horizons (subsoil) in a site-specific manner. However, an overall closer relationship was observed between topsoil as opposed to between subsoil microbial communities. Alpha diversity of soil bacterial communities was higher in topsoil, which also showed more bacterial members interacting and with higher average connectivity compared to subsoils. Finally, abundances of specific taxa could be considered as biological markers in the transition from topsoil to subsoil horizons, like Fibrobacterota, Proteobacteria, Bacteroidota for shallower soils and Chloroflexi, Latescibacterota and Nitrospirota for deeper soils. CONCLUSIONS The results indicate the importance of the soil drainage conditions for the bacterial community composition, suggesting that information of both structure and their possible ecological relationships, might be useful in clarifying the location of the edge of the topsoil-subsoil transition in mountainous environments.
Collapse
Affiliation(s)
- Constanza Aguado-Norese
- Millennium Institute Center for Genome Regulation, Santiago, 7830490, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Macul, Chile
| | - Valentina Cárdenas
- Departamento de Ingeniería y Suelos, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Alexis Gaete
- Millennium Institute Center for Genome Regulation, Santiago, 7830490, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Macul, Chile
| | - Dinka Mandakovic
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Santiago, Chile
| | - Javiera Vasquez-Dean
- Millennium Institute Center for Genome Regulation, Santiago, 7830490, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Macul, Chile
| | - Christian Hodar
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Macul, Chile
- Bioinformatic and Biostatistic Laboratory for Functional Genomics, INTA-Universidad de Chile, Macul, Chile
| | - Marco Pfeiffer
- Departamento de Ingeniería y Suelos, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile.
| | - Mauricio Gonzalez
- Millennium Institute Center for Genome Regulation, Santiago, 7830490, Chile.
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Macul, Chile.
| |
Collapse
|
3
|
Rojas-Jaimes J, Lindo-Seminario D, Correa-Núñez G, Diringer B. Characterization of the bacterial microbiome of Amblyomma scalpturatum and Amblyomma ovale collected from Tapirus terrestris and Amblyomma sabanerae collected from Chelonoidis denticulata, Madre de Dios- Peru. BMC Microbiol 2022; 22:305. [PMID: 36522631 PMCID: PMC9756467 DOI: 10.1186/s12866-022-02717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Ticks are arthropods that can host and transmit pathogens to wild animals, domestic animals, and even humans. The microbiome in ticks is an endosymbiotic, pathogenic and is yet to be fully understood. RESULTS Adult male Amblyomma scalpturatum (A. scalpturatum) and Amblyomma ovale (A. ovale) ticks were collected from Tapirus terrestris (T. terrestris) captured in the rural area of San Lorenzo Village, and males Amblyomma sabanerae were collected from Chelonoidis denticulate (C. denticulate) of the Gamita Farm in the Amazon region of Madre de Dios, Peru. The Chao1 and Shannon-Weaver analyses indicated a greater bacterial richness and diversity in male A. sabanerae (Amblyomma sabanerae; 613.65-2.03) compared to male A. scalpturatum and A. ovale (A. scalpturatum and A. ovale; 102.17-0.40). Taxonomic analyses identified 478 operational taxonomic units representing 220 bacterial genera in A. sabanerae and 86 operational taxonomic units representing 28 bacterial genera in A. scalpturatum and A. ovale. Of the most prevalent genera was Francisella (73.2%) in A. sabanerae, and Acinetobacter (96.8%) in A. scalpturatum and A. ovale to be considered as the core microbiome of A. sabanerae and A. scalpturatum/A. ovale respectively. CONCLUSIONS We found a high bacterial diversity in male of A. sabanerae collected from C. denticulata showed prevalence of Francisella and prevalence of Acinetobacter in male A. scalpturatum and A. ovale collected from T. terrestris. The greatest bacterial diversity and richness was found in males A. sabanerae. This is the first bacterial metagenomic study performed in A. scalpturatum/A. ovale and A. sabanerae collected from T. terrestris and C. denticulata in the Peruvian jungle.
Collapse
Affiliation(s)
- Jesús Rojas-Jaimes
- grid.441984.40000 0000 9092 8486Facultad de Ciencias de La Salud, Universidad Privada del Norte, Av. El Sol 461, San Juan de Lurigancho 15434, Lima, Peru
| | | | - Germán Correa-Núñez
- grid.440598.40000 0004 4648 8611Departamento Académico de Ciencias Básicas, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Peru
| | | |
Collapse
|
4
|
Pérez-Ramos DW, Ramos MM, Payne KC, Giordano BV, Caragata EP. Collection Time, Location, and Mosquito Species Have Distinct Impacts on the Mosquito Microbiota. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.896289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mosquito microbiota affects many aspects of mosquito biology including development and reproduction. It also strongly impacts interactions between the mosquito host and pathogens that cause important disease in humans, such as dengue and malaria. Critically, the mosquito microbiota is highly diverse and can vary in composition in response to multiple environmental variables, but these effects are not always consistent. Understanding how the environment shapes mosquito microbial diversity is a critical step in elucidating the ubiquity of key host-microbe-pathogen interactions in nature. To that end, we examined the role of time of collection, collection location and host species on mosquito microbial diversity by repeating collections at two-month intervals on a trapping grid spanning three distinct biomes. We then used 16S rRNA sequencing to compare the microbiomes of Aedes taeniorhynchus, Anopheles crucians, and Culex nigripalpus mosquitoes from those collections. We saw that mosquito diversity was strongly affected by both time and collection location. We also observed that microbial richness and diversity increased from March to May, and that An. crucians and Cx. nigripalpus had greater microbial diversity than Ae. taeniorhynchus. However, we also observed that collection location had no impact on microbial diversity except for significantly lower bacterial richness observed in mosquitoes collected from the mangrove wetlands. Our results highlight that collection time, collection location, and mosquito species each affect aspects of mosquito microbial diversity, but their importance is context dependent. We also demonstrate that these variables have differing impacts on mosquito diversity and mosquito microbial diversity. Our findings suggest that the environment likely plays an important but variable role in influencing the composition of the mosquito microbiota.
Collapse
|
5
|
Shi Y, Wang G, Lau HCH, Yu J. Metagenomic Sequencing for Microbial DNA in Human Samples: Emerging Technological Advances. Int J Mol Sci 2022; 23:ijms23042181. [PMID: 35216302 PMCID: PMC8877284 DOI: 10.3390/ijms23042181] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Whole genome metagenomic sequencing is a powerful platform enabling the simultaneous identification of all genes from entirely different kingdoms of organisms in a complex sample. This technology has revolutionised multiple areas from microbiome research to clinical diagnoses. However, one of the major challenges of a metagenomic study is the overwhelming non-microbial DNA present in most of the host-derived specimens, which can inundate the microbial signals and reduce the sensitivity of microorganism detection. Various host DNA depletion methods to facilitate metagenomic sequencing have been developed and have received considerable attention in this context. In this review, we present an overview of current host DNA depletion approaches along with explanations of their underlying principles, advantages and disadvantages. We also discuss their applications in laboratory microbiome research and clinical diagnoses and, finally, we envisage the direction of the further perfection of metagenomic sequencing in samples with overabundant host DNA.
Collapse
Affiliation(s)
| | | | | | - Jun Yu
- Correspondence: ; Tel.: +852-37636099; Fax:+852-21445330
| |
Collapse
|
6
|
Caragata EP, Otero LM, Tikhe CV, Barrera R, Dimopoulos G. Microbial Diversity of Adult Aedes aegypti and Water Collected from Different Mosquito Aquatic Habitats in Puerto Rico. MICROBIAL ECOLOGY 2022; 83:182-201. [PMID: 33860847 PMCID: PMC11328149 DOI: 10.1007/s00248-021-01743-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/19/2021] [Indexed: 05/06/2023]
Abstract
Mosquitoes, the major vectors of viruses like dengue, are naturally host to diverse microorganisms, which play an important role in their development, fecundity, immunity, and vector competence. The composition of their microbiota is strongly influenced by the environment, particularly their aquatic larval habitat. In this study, we used 2×300 bp 16s Illumina sequencing to compare the microbial profiles of emerging adult Aedes aegypti mosquitoes and the water collected from common types of aquatic habitat containers in Puerto Rico, which has endemic dengue transmission. We sequenced 141 mosquito and 46 water samples collected from plastic containers, septic tanks, discarded tires, underground trash cans, tree holes, or water meters. We identified 9 bacterial genera that were highly prevalent in the mosquito microbiome, and 77 for the microbiome of the aquatic habitat. The most abundant mosquito-associated bacterial OTUs were from the families Burkholderiaceae, Pseudomonadaceae, Comamonadaceae, and Xanthomonadaceae. Microbial profiles varied greatly between mosquitoes, and there were few major differences explained by container type; however, the microbiome of mosquitoes from plastic containers was more diverse and contained more unique taxa than the other groups. Container water was significantly more diverse than mosquitoes, and our data suggest that mosquitoes filter out many bacteria, with Alphaproteobacteria in particular being far more abundant in water. These findings provide novel insight into the microbiome of mosquitoes in the region and provide a platform to improve our understanding of the fundamental mosquito-microbe interactions.
Collapse
Affiliation(s)
- E P Caragata
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - L M Otero
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Entomology and Ecology Team, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - C V Tikhe
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - R Barrera
- Entomology and Ecology Team, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - G Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Rojas-Jaimes J, Lindo-Seminario D, Correa-Núñez G, Diringer B. Characterization of the bacterial microbiome of Rhipicephalus (Boophilus) microplus collected from Pecari tajacu "Sajino" Madre de Dios, Peru. Sci Rep 2021; 11:6661. [PMID: 33758359 PMCID: PMC7988070 DOI: 10.1038/s41598-021-86177-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/08/2021] [Indexed: 01/05/2023] Open
Abstract
Ticks are arthropods that can host and transmit pathogens to wild animals, domestic animals, and even humans. The bacterial microbiome of adult (males and females) and nymph Rhipicephalus microplus ticks collected from a collared peccary, Pecari tajacu, captured in the rural area of Botijón Village in the Amazon region of Madre de Dios, Peru, was evaluated using metagenomics. The Chao1 and Shannon-Weaver analyses indicated greater bacterial richness and diversity in female ticks (GARH; 375-4.15) and nymph ticks (GARN; 332-4.75) compared to that in male ticks (GARM; 215-3.20). Taxonomic analyses identified 185 operational taxonomic units representing 147 bacterial genera. Of the 25 most prevalent genera, Salmonella (17.5%) and Vibrio (15.0%) showed the highest relative abundance followed by several other potentially pathogenic genera, such as Paracoccus (7.8%), Staphylococcus (6.8%), Pseudomonas (6.6%), Corynebacterium (5.0%), Cloacibacterium (3.6%), and Acinetobacter (2.5%). In total, 19.7% of the detected genera are shared by GARH, GARM, and GARN, and they can be considered as the core microbiome of R. microplus. To the best of our knowledge, this study is the first to characterize the microbiome of ticks collected from P. tajacu and to report the presence of Salmonella and Vibrio in R. microplus. The pathogenic potential and the role of these bacteria in the physiology of R. microplus should be further investigated due to the possible implications for public health and animal health in populations neighboring the habitat of P. tajacu.
Collapse
Affiliation(s)
- Jesús Rojas-Jaimes
- Facultad de Ciencias de la Salud, Universidad Privada del Norte, Av. El Sol 461, San Juan de Lurigancho, 15434, Lima, Peru.
| | | | - Germán Correa-Núñez
- Departamento Académico de Ciencias Básicas, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Peru
| | | |
Collapse
|
8
|
Sharma M, Sudheer S, Usmani Z, Rani R, Gupta P. Deciphering the Omics of Plant-Microbe Interaction: Perspectives and New Insights. Curr Genomics 2020; 21:343-362. [PMID: 33093798 PMCID: PMC7536805 DOI: 10.2174/1389202921999200515140420] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/29/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Plants do not grow in isolation, rather they are hosts to a variety of microbes in their natural environments. While, few thrive in the plants for their own benefit, others may have a direct impact on plants in a symbiotic manner. Unraveling plant-microbe interactions is a critical component in recognizing the positive and negative impacts of microbes on plants. Also, by affecting the environment around plants, microbes may indirectly influence plants. The progress in sequencing technologies in the genomics era and several omics tools has accelerated in biological science. Studying the complex nature of plant-microbe interactions can offer several strategies to increase the productivity of plants in an environmentally friendly manner by providing better insights. This review brings forward the recent works performed in building omics strategies that decipher the interactions between plant-microbiome. At the same time, it further explores other associated mutually beneficial aspects of plant-microbe interactions such as plant growth promotion, nitrogen fixation, stress suppressions in crops and bioremediation; as well as provides better insights on metabolic interactions between microbes and plants through omics approaches. It also aims to explore advances in the study of Arabidopsis as an important avenue to serve as a baseline tool to create models that help in scrutinizing various factors that contribute to the elaborate relationship between plants and microbes. Causal relationships between plants and microbes can be established through systematic gnotobiotic experimental studies to test hypotheses on biologically derived interactions. Conclusion This review will cover recent advances in the study of plant-microbe interactions keeping in view the advantages of these interactions in improving nutrient uptake and plant health.
Collapse
Affiliation(s)
- Minaxi Sharma
- 1Department of Food Technology, ACA, Eternal University, Baru Sahib (173001), Himachal Pradesh, India; 2Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, Estonia; 3Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn12612, Estonia; 4Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Surya Sudheer
- 1Department of Food Technology, ACA, Eternal University, Baru Sahib (173001), Himachal Pradesh, India; 2Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, Estonia; 3Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn12612, Estonia; 4Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Zeba Usmani
- 1Department of Food Technology, ACA, Eternal University, Baru Sahib (173001), Himachal Pradesh, India; 2Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, Estonia; 3Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn12612, Estonia; 4Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Rupa Rani
- 1Department of Food Technology, ACA, Eternal University, Baru Sahib (173001), Himachal Pradesh, India; 2Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, Estonia; 3Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn12612, Estonia; 4Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Pratishtha Gupta
- 1Department of Food Technology, ACA, Eternal University, Baru Sahib (173001), Himachal Pradesh, India; 2Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, Estonia; 3Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn12612, Estonia; 4Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| |
Collapse
|
9
|
Travis J, Malone M, Hu H, Baten A, Johani K, Huygens F, Vickery K, Benkendorff K. The microbiome of diabetic foot ulcers: a comparison of swab and tissue biopsy wound sampling techniques using 16S rRNA gene sequencing. BMC Microbiol 2020; 20:163. [PMID: 32546123 PMCID: PMC7296698 DOI: 10.1186/s12866-020-01843-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022] Open
Abstract
Background Health-care professionals need to collect wound samples to identify potential pathogens that contribute to wound infection. Obtaining appropriate samples from diabetic foot ulcers (DFUs) where there is a suspicion of infection is of high importance. Paired swabs and tissue biopsies were collected from DFUs and both sampling techniques were compared using 16S rRNA gene sequencing. Results Mean bacterial abundance determined using quantitative polymerase chain reaction (qPCR) was significantly lower in tissue biopsies (p = 0.03). The mean number of reads across all samples was significantly higher in wound swabs \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Big(\overline{X} $$\end{document}(X¯ = 32,014) compared to tissue (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{X} $$\end{document}X¯ = 15,256, p = 0.001). Tissue biopsies exhibited greater overall diversity of bacteria relative to swabs (Shannon’s H diversity p = 0.009). However, based on a presence/absence analysis of all paired samples, the frequency of occurrence of bacteria from genera of known and potential pathogens was generally higher in wound swabs than tissue biopsies. Multivariate analysis identified significantly different bacterial communities in swabs compared to tissue (p = 0.001). There was minimal correlation between paired wound swabs and tissue biopsies in the number and types of microorganisms. RELATE analysis revealed low concordance between paired DFU swab and tissue biopsy samples (Rho = 0.043, p = 0.34). Conclusions Using 16S rRNA gene sequencing this study identifies the potential for using less invasive swabs to recover high relative abundances of known and potential pathogen genera from DFUs when compared to the gold standard collection method of tissue biopsy.
Collapse
Affiliation(s)
- J Travis
- School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - M Malone
- Limb Preservation and Wound Research Academic Unit, Western Sydney LHD, Liverpool, Sydney, NSW, 2170, Australia.,Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Campbelltown Campus, Liverpool, Sydney, 2170, Australia.,Ingham Institute of Applied Medical Research, Liverpool, Sydney, NSW, 2170, Australia
| | - H Hu
- Surgical Infection Research Group Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - A Baten
- Agresearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - K Johani
- Ingham Institute of Applied Medical Research, Liverpool, Sydney, NSW, 2170, Australia.,Central Military Laboratories and Blood Bank, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - F Huygens
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, Australia
| | - K Vickery
- Surgical Infection Research Group Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - K Benkendorff
- School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia. .,National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW, Australia.
| |
Collapse
|
10
|
Nelson MT, Pope CE, Marsh RL, Wolter DJ, Weiss EJ, Hager KR, Vo AT, Brittnacher MJ, Radey MC, Hayden HS, Eng A, Miller SI, Borenstein E, Hoffman LR. Human and Extracellular DNA Depletion for Metagenomic Analysis of Complex Clinical Infection Samples Yields Optimized Viable Microbiome Profiles. Cell Rep 2020; 26:2227-2240.e5. [PMID: 30784601 PMCID: PMC6435281 DOI: 10.1016/j.celrep.2019.01.091] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/20/2018] [Accepted: 01/25/2019] [Indexed: 01/27/2023] Open
Abstract
Metagenomic sequencing is a promising approach for identifying and characterizing organisms and their functional characteristics in complex, polymicrobial infections, such as airway infections in people with cystic fibrosis. These analyses are often hampered, however, by overwhelming quantities of human DNA, yielding only a small proportion of microbial reads for analysis. In addition, many abundant microbes in respiratory samples can produce large quantities of extracellular bacterial DNA originating either from biofilms or dead cells. We describe a method for simultaneously depleting DNA from intact human cells and extracellular DNA (human and bacterial) in sputum, using selective lysis of eukaryotic cells and endonuclease digestion. We show that this method increases microbial sequencing depth and, consequently, both the number of taxa detected and coverage of individual genes such as those involved in antibiotic resistance. This finding underscores the substantial impact of DNA from sources other than live bacteria in micro-biological analyses of complex, chronic infection specimens. Nelson et al. describe a method for reducing both human cellular DNA and extracellular DNA (human and bacterial) in a complex respiratory sample using hypotonic lysis and endonuclease digestion. This method increases effective microbial sequencing depth and minimizes bias introduced into subsequent phylogenetic analysis by bacterial extracellular DNA.
Collapse
Affiliation(s)
- Maria T Nelson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA; Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Christopher E Pope
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Robyn L Marsh
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Casuarina, NT 0811, Australia
| | - Daniel J Wolter
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA; Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Eli J Weiss
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Kyle R Hager
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Anh T Vo
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Mitchell J Brittnacher
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Matthew C Radey
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Hillary S Hayden
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Alexander Eng
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Samuel I Miller
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Computer Science and Engineering, University of Washington School of Medicine, Seattle, WA 98105, USA; Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 6997801, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Lucas R Hoffman
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA; Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA.
| |
Collapse
|
11
|
Ding Q, Liu K, Song Z, Sun R, Zhang J, Yin L, Pu Y. Effects of Microcystin-LR on Metabolic Functions and Structure Succession of Sediment Bacterial Community under Anaerobic Conditions. Toxins (Basel) 2020; 12:toxins12030183. [PMID: 32183408 PMCID: PMC7150748 DOI: 10.3390/toxins12030183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/05/2020] [Accepted: 03/14/2020] [Indexed: 01/02/2023] Open
Abstract
Microcystins (MCs), which are produced by harmful cyanobacteria blooms, pose a serious threat to environmental health. However, the effect of MCs on the bacterial community under anaerobic conditions is still unclear. This study examined the dynamic changes of MC-degrading capacity, metabolic activity, and structure of the bacterial community in lake sediment repeatedly treated with 1 mg/L microcystin-LR (MC-LR) under anaerobic conditions. The results showed that the MC-degrading capacity of the bacterial community was increased nearly three-fold with increased treatment frequency. However, the metabolic profile behaved in exactly opposite trend, in which the overall carbon metabolic activity was inhibited by repeated toxin addition. Microbial diversity was suppressed by the first addition of MC-LR and then gradually recovered. The 16S amplicon sequencing showed that the dominant genera were changed from Exiguobacterium and Acinetobacter to Prosthecobacter, Dechloromonas, and Agrobacterium. Furthermore, the increase in the relative abundance of Dechloromonas, Pseudomonas, Hydrogenophaga, and Agrobacterium was positively correlated with the MC-LR treatment times. This indicates that they might be responsible for MC degradation under anaerobic conditions. Our findings reveal the relationship between MC-LR and the sediment bacterial community under anaerobic conditions and indicate that anaerobic biodegradation is an effective and promising method to remediate MCs pollution.
Collapse
Affiliation(s)
- Qin Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
| | - Kaiyan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
| | - Zhiquan Song
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
- Correspondence: ; Tel.: +86-25-83272582
| |
Collapse
|
12
|
Wagner Mackenzie B, Baker J, Douglas RG, Taylor MW, Biswas K. Detection and quantification of Staphylococcus in chronic rhinosinusitis. Int Forum Allergy Rhinol 2019; 9:1462-1469. [PMID: 31483577 DOI: 10.1002/alr.22425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND The sinonasal microbiota has been implicated in chronic rhinosinusitis (CRS) pathogenesis, particularly related to the presence of Staphylococcus aureus. Staphylococcus epidermidis is also prevalent within the sinonasal microbiota and may inhibit S. aureus colonization. We investigated polymerase chain reaction (PCR) primer pairs for measuring absolute abundances of S. aureus and S. epidermidis, then compared bacterial community composition and absolute abundances of these species between CRS patients and controls. METHODS Six candidate Staphylococcus species-specific primer pairs were tested in silico and in vitro against pure bacterial isolates. Quantitative PCR (qPCR) for absolute quantification of S. aureus, S. epidermidis, and overall bacterial load were assessed in 40 CRS (CRS without nasal polyposis [CRSsNP] = 22, CRS with nasal polyposis [CRSwNP] = 18) patients and 14 controls. Amplicon sequencing of the V3-V4 hypervariable regions of the 16S ribosomal RNA (rRNA) bacterial gene were conducted to investigate community composition. RESULTS Primer pairs targeting the gmk gene of S. aureus and nrd gene from S. epidermidis were the most specific and sensitive primers. S. aureus (CRSsNP = 81.8% occurrence, CRSwNP = 83%, control = 92.9%) and S. epidermidis (CRSsNP = 95.5%, CRSwNP = 100%, control = 92.9%) were very prevalent, as indicated by qPCR results. Both CRSsNP and CRSwNP had significantly (p < 0.05) higher bacterial load when compared with controls (p < 0.05 for both). No significant correlation was observed between S. aureus and S. epidermidis abundances (p > 0.05). CONCLUSION Bacterial community sequencing detected Staphylococcus-assigned sequences in nearly all patients; however, it could not differentiate between S. aureus and S. epidermidis. Here, we present primer pairs that can distinguish between these species. We report a very high prevalence of S. aureus in both CRS patients and controls.
Collapse
Affiliation(s)
| | - Jesse Baker
- Department of Surgery, The University of Auckland, Auckland, New Zealand.,School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Richard G Douglas
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Michael W Taylor
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Kristi Biswas
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Wolfson SJ, Porter AW, Villani TS, Simon JE, Young LY. Pharmaceuticals and Personal Care Products Can Be Transformed by Anaerobic Microbiomes in the Environment and in Waste-Treatment Processes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1585-1593. [PMID: 30883883 DOI: 10.1002/etc.4406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/18/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are emerging environmental contaminants that can be transformed by anaerobic microorganisms in anoxic environments. The present study examined 2 consortia, enriched under methanogenic and sulfate-rich conditions, that demethylate the phenylmethyl ether anti-inflammatory drug naproxen to 6-O-desmethylnaproxen. Both enriched consortia were also able to demethylate a range of phenylmethyl ether compounds of plant-based origin or used as PPCPs. Results from 16S rRNA gene sequencing showed that the 2 communities were very different despite sharing the same PPCP metabolism. In most cases, the demethylated metabolite was not further degraded but rather accumulated in the culture medium. For the expectorant guaifenesin, this resulted in a novel microbial metabolite. Furthermore, to our knowledge, this is the first report of methylparaben metabolism under methanogenic conditions. The wide range of phenylmethyl ether substrates that underwent O-demethylation in both methanogenic and sulfate-rich conditions suggests that there are potentially bioactive transformation products in the environment that have not yet been quantified. Environ Toxicol Chem 2019;38:1585-1593. © 2019 SETAC.
Collapse
Affiliation(s)
- Sarah J Wolfson
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Abigail W Porter
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Thomas S Villani
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - James E Simon
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Lily Y Young
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
14
|
Performance of Microbiome Sequence Inference Methods in Environments with Varying Biomass. mSystems 2019; 4:mSystems00163-18. [PMID: 30801029 PMCID: PMC6381225 DOI: 10.1128/msystems.00163-18] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023] Open
Abstract
Microbial communities have important ramifications for human health, but determining their impact requires accurate characterization. Current technology makes microbiome sequence data more accessible than ever. However, popular software methods for analyzing these data are based on algorithms developed alongside older sequencing technology and smaller data sets and thus may not be adequate for modern, high-throughput data sets. Additionally, samples from environments where microbes are scarce present additional challenges to community characterization relative to high-biomass environments, an issue that is often ignored. We found that a new class of microbiome sequence processing tools, called amplicon sequence variant (ASV) methods, outperformed conventional methods. In samples representing low-biomass communities, where sample contamination becomes a significant confounding factor, the improved accuracy of ASV methods may allow more-robust computational identification of contaminants. Microbiome community composition plays an important role in human health, and while most research to date has focused on high-microbial-biomass communities, low-biomass communities are also important. However, contamination and technical noise make determining the true community signal difficult when biomass levels are low, and the influence of varying biomass on sequence processing methods has received little attention. Here, we benchmarked six methods that infer community composition from 16S rRNA sequence reads, using samples of varying biomass. We included two operational taxonomic unit (OTU) clustering algorithms, one entropy-based method, and three more-recent amplicon sequence variant (ASV) methods. We first compared inference results from high-biomass mock communities to assess baseline performance. We then benchmarked the methods on a dilution series made from a single mock community—samples that varied only in biomass. ASVs/OTUs inferred by each method were classified as representing expected community, technical noise, or contamination. With the high-biomass data, we found that the ASV methods had good sensitivity and precision, whereas the other methods suffered in one area or in both. Inferred contamination was present only in small proportions. With the dilution series, contamination represented an increasing proportion of the data from the inferred communities, regardless of the inference method used. However, correlation between inferred contaminants and sample biomass was strongest for the ASV methods and weakest for the OTU methods. Thus, no inference method on its own can distinguish true community sequences from contaminant sequences, but ASV methods provide the most accurate characterization of community and contaminants. IMPORTANCE Microbial communities have important ramifications for human health, but determining their impact requires accurate characterization. Current technology makes microbiome sequence data more accessible than ever. However, popular software methods for analyzing these data are based on algorithms developed alongside older sequencing technology and smaller data sets and thus may not be adequate for modern, high-throughput data sets. Additionally, samples from environments where microbes are scarce present additional challenges to community characterization relative to high-biomass environments, an issue that is often ignored. We found that a new class of microbiome sequence processing tools, called amplicon sequence variant (ASV) methods, outperformed conventional methods. In samples representing low-biomass communities, where sample contamination becomes a significant confounding factor, the improved accuracy of ASV methods may allow more-robust computational identification of contaminants.
Collapse
|
15
|
Wally N, Schneider M, Thannesberger J, Kastner MT, Bakonyi T, Indik S, Rattei T, Bedarf J, Hildebrand F, Law J, Jovel J, Steininger C. Plasmid DNA contaminant in molecular reagents. Sci Rep 2019; 9:1652. [PMID: 30733546 PMCID: PMC6367390 DOI: 10.1038/s41598-019-38733-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Background noise in metagenomic studies is often of high importance and its removal requires extensive post-analytic, bioinformatics filtering. This is relevant as significant signals may be lost due to a low signal-to-noise ratio. The presence of plasmid residues, that are frequently present in reagents as contaminants, has not been investigated so far, but may pose a substantial bias. Here we show that plasmid sequences from different sources are omnipresent in molecular biology reagents. Using a metagenomic approach, we identified the presence of the (pol) of equine infectious anemia virus in human samples and traced it back to the expression plasmid used for generation of a commercial reverse transcriptase. We found fragments of multiple other expression plasmids in human samples as well as commercial polymerase preparations. Plasmid contamination sources included production chain of molecular biology reagents as well as contamination of reagents from environment or human handling of samples and reagents. Retrospective analyses of published metagenomic studies revealed an inaccurate signal-to-noise differentiation. Hence, the plasmid sequences that seem to be omnipresent in molecular biology reagents may misguide conclusions derived from genomic/metagenomics datasets and thus also clinical interpretations. Critical appraisal of metagenomic data sets for the possibility of plasmid background noise is required to identify reliable and significant signals.
Collapse
Affiliation(s)
- N Wally
- Division of Infectious Diseases, Department of Medicine 1, Medical University of Vienna, Vienna, Austria
| | - M Schneider
- Division of Infectious Diseases, Department of Medicine 1, Medical University of Vienna, Vienna, Austria
| | - J Thannesberger
- Division of Infectious Diseases, Department of Medicine 1, Medical University of Vienna, Vienna, Austria
| | - M T Kastner
- Division of Infectious Diseases, Department of Medicine 1, Medical University of Vienna, Vienna, Austria
| | - T Bakonyi
- University of Veterinary Medicine, Department of Virology, Vienna, Austria
| | - S Indik
- University of Veterinary Medicine, Department of Virology, Vienna, Austria
| | - T Rattei
- CUBE-Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - J Bedarf
- German Centre for neurodegenerative disease research (DZNE), Department of Neurology, University of Bonn, Bonn, Germany
| | - F Hildebrand
- European Molecular Biology Laboratory, EMBL, Heidelberg, Germany
| | - J Law
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - J Jovel
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - C Steininger
- Division of Infectious Diseases, Department of Medicine 1, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Wolfson SJ, Porter AW, Villani TS, Simon JE, Young LY. The antihistamine diphenhydramine is demethylated by anaerobic wastewater microorganisms. CHEMOSPHERE 2018; 202:460-466. [PMID: 29579680 DOI: 10.1016/j.chemosphere.2018.03.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
While emerging pharmaceutical contaminants are monitored in wastewater treatment and the environment, there is little information concerning their microbial metabolites. The transformation of diphenhydramine by microorganisms in anaerobic digester sludge was investigated using anaerobic cultures amended with 1 mM diphenhydramine as the sole carbon source. Complete transformation of the parent compound to a persistent metabolite occurred within 191 days. Using GC/MS analysis, the metabolite was identified as N-desmethyl diphenhydramine. Loss of the parent compound diphenhydramine followed a first order rate constant of 0.013 day-1. There was no observed decrease in metabolite concentration even after a further 12 months of incubation, suggesting that the metabolite resists further degradation during wastewater treatment. Bacterial community diversity in the diphenhydramine transforming assay cultures showed enrichment in Comamonadaceae, Symbiobacteriaceae, Anaerolineaceae, and Prevotellaceae relative to unamended background controls. An anaerobic toxicity assay demonstrated that diphenhydramine has an inhibitory effect on both fermentative bacteria and methanogenic archaea in the wastewater community. In contrast, the metabolite N-desmethyl diphenhydramine partially suppressed methanogens but did not impact the fermenting community. To our knowledge, this is the first report of diphenhydramine metabolism by a bacterial community. The limited transformation of diphenhydramine by wastewater microorganisms indicates that N-desmethyl diphenhydramine will enter the environment along with unmetabolized diphenhydramine.
Collapse
Affiliation(s)
- Sarah J Wolfson
- Department of Environmental Sciences, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Abigail W Porter
- Department of Environmental Sciences, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Thomas S Villani
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - James E Simon
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Lily Y Young
- Department of Environmental Sciences, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
17
|
Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathog 2016; 8:24. [PMID: 27239228 PMCID: PMC4882852 DOI: 10.1186/s13099-016-0103-7] [Citation(s) in RCA: 337] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022] Open
Abstract
Background The advent and use of highly sensitive molecular biology techniques to explore the microbiota and microbiome in environmental and tissue samples have detected the presence of contaminating microbial DNA within reagents. These microbial DNA contaminants may distort taxonomic distributions and relative frequencies in microbial datasets, as well as contribute to erroneous interpretations and identifications. Results We herein report on the occurrence of bacterial DNA contamination within commonly used DNA extraction kits and PCR reagents and the effect of these contaminates on data interpretation. When compared to previous reports, we identified an additional 88 bacterial genera as potential contaminants of molecular biology grade reagents, bringing the total number of known contaminating microbes to 181 genera. Many of the contaminants detected are considered normal inhabitants of the human gastrointestinal tract and the environment and are often indistinguishable from those genuinely present in the sample. Conclusions Laboratories working on bacterial populations need to define contaminants present in all extraction kits and reagents used in the processing of DNA. Any unusual and/or unexpected findings need to be viewed as possible contamination as opposed to unique findings. Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0103-7) contains supplementary material, which is available to authorized users.
Collapse
|