1
|
Islam Sajib MS, Brunker K, Oravcova K, Everest P, Murphy ME, Forde T. Advances in Host Depletion and Pathogen Enrichment Methods for Rapid Sequencing-Based Diagnosis of Bloodstream Infection. J Mol Diagn 2024; 26:741-753. [PMID: 38925458 DOI: 10.1016/j.jmoldx.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Bloodstream infection is a major cause of morbidity and death worldwide. Timely and appropriate treatment can reduce mortality among critically ill patients. Current diagnostic methods are too slow to inform precise antibiotic choice, leading to the prescription of empirical antibiotics, which may fail to cover the resistance profile of the pathogen, risking poor patient outcomes. Additionally, overuse of broad-spectrum antibiotics may lead to more resistant organisms, putting further pressure on the dwindling pipeline of antibiotics, and risk transmission of these resistant organisms in the health care environment. Therefore, rapid diagnostics are urgently required to better inform antibiotic choice early in the course of treatment. Sequencing offers great promise in reducing time to microbiological diagnosis; however, the amount of host DNA compared with the pathogen in patient samples presents a significant obstacle. Various host-depletion and bacterial-enrichment strategies have been used in samples, such as saliva, urine, or tissue. However, these methods have yet to be collectively integrated and/or extensively explored for rapid bloodstream infection diagnosis. Although most of these workflows possess individual strengths, their lack of analytical/clinical sensitivity and/or comprehensiveness demands additional improvements or synergistic application. This review provides a distinctive classification system for various methods based on their working principles to guide future research, and discusses their strengths and limitations and explores potential avenues for improvement to assist the reader in workflow selection.
Collapse
Affiliation(s)
- Mohammad S Islam Sajib
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Kirstyn Brunker
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom; Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Katarina Oravcova
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul Everest
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Michael E Murphy
- Department of Microbiology, National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom; School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Taya Forde
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Tang X, Fan LP, Liu Y. Quantitative real-time PCR and magnetic separation strategy for specific detection of group B streptococcus in perinatal Women's urine. Pract Lab Med 2024; 38:e00348. [PMID: 38261874 PMCID: PMC10794924 DOI: 10.1016/j.plabm.2023.e00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Group B streptococcus(GBS)often causes adverse outcomes such as urinary system infection, intrauterine infection, premature birth, and stillbirth in perinatal women. Perinatal screening of GBS is conducive to guiding clinical scientific intervention and improving delivery outcomes.This study quantitative real-time PCR (RT-qPCR) combined with magnetic separation was used for GBS detection. Materials and methods Sample pre-treatment in this study involved the utilization of magnetic separation (MS) technology, aiming to expedite the detection process and enhance detection sensitivity, and the cfb gene of group B streptococcus was used as the target gene to establish quantitative real-time PCR (RT-qPCR) to detect group B streptococcus. Results It was found that penicillin-functionalized magnetic beads had a good ability to enrich and capture group B Streptococcus.The findings revealed an exceptional detection sensitivity, with the ability to detect B streptococcus in urine samples at levels as low as 102 CFU/mL. Conclusions The utilization of MS technology in conjunction with the RT-qPCR (MS-RT-qPCR) assay, as demonstrated in this study, offers a viable approach for prenatal screening of group B streptococcus among perinatal women.
Collapse
Affiliation(s)
- Xu Tang
- Department of Clinical Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, 330008, Jiangxi, China
| | - Lin-Ping Fan
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- China-Japan Friendship Jiang Xi Hospital, National Regional Center for Respiratory Medicine, Nanchang City, 330006, Jiangxi, China
| | - Yang Liu
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- China-Japan Friendship Jiang Xi Hospital, National Regional Center for Respiratory Medicine, Nanchang City, 330006, Jiangxi, China
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
3
|
Rduch T, Arn N, Kinkel J, Fischer T, Binet I, Hornung R, Herrmann IK. Magnetic blood purification-based soluble fms-like tyrosine kinase-1 removal in comparison with dextran sulfate apheresis and therapeutic plasma exchange. Artif Organs 2023; 47:1309-1318. [PMID: 36995348 DOI: 10.1111/aor.14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Preeclampsia remains one of the most serious complications of pregnancy. Effective therapies are yet to be developed. Recent research has identified an imbalance of angiogenic and antiangiogenic factors as a root cause of preeclampsia. In particular, soluble fms-like tyrosine kinase-1 (sFlt-1) has been shown to bind the angiogenic factors vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), reducing blood vessel growth. Increasing preclinical and clinical evidence suggests that removal of the sFlt-1 protein may benefit patients with early onset preeclampsia. sFlt-1 may be removed by conventional blood purification techniques, such as therapeutic plasma exchange (TPE) and dextran sulfate apheresis (DSA), or emerging technologies, including extracorporeal magnetic blood purification (MBP). METHODS We compare the performance and selectivity of TPE, DSA, and MBP for the therapeutic removal of sFlt-1. For MPB, we employ magnetic nanoparticles functionalized with either sFlt-1 antibodies or the sFlt-1-binding partner, vascular endothelial growth factor (VEGF). RESULTS We demonstrate that sFlt-1 removal by MBP is feasible and significantly more selective than TPE and DSA at comparable sFlt-1 removal efficiencies (MBP 96%, TPE 92%, DSA 78%). During both TPE and DSA, complement factors (incl. C3c and C4) are depleted to a considerable extent (-90% for TPE, -55% for DSA), while in MBP, complement factor concentrations remain unaltered. We further demonstrate that the removal efficacy of sFlt-1 in the MBP approach is strongly dependent on the nanoparticle type and dose and can be optimized to reach clinically feasible throughputs. CONCLUSIONS Taken together, the highly selective removal of sFlt-1 and potential other disease-causing factors by extracorporeal magnetic blood purification may offer new prospects for preeclamptic patients.
Collapse
Affiliation(s)
- Thomas Rduch
- Department of Gynaecology, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, St. Gallen, Switzerland
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, Switzerland
| | - Norbert Arn
- Clinic for Nephrology and Transplant Medicine, Cantonal Hospital St.Gallen, Rorschacherstrasse 95, St.Gallen, Switzerland
| | - Janis Kinkel
- Department of Gynaecology, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, St. Gallen, Switzerland
| | - Tina Fischer
- Department of Gynaecology, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, St. Gallen, Switzerland
| | - Isabelle Binet
- Clinic for Nephrology and Transplant Medicine, Cantonal Hospital St.Gallen, Rorschacherstrasse 95, St.Gallen, Switzerland
| | - René Hornung
- Department of Gynaecology, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, St. Gallen, Switzerland
| | - Inge K Herrmann
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, Switzerland
- Department of Mechanical and Process Engineering, ETH Zurich, Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Sonneggstrasse 3, Zurich, Switzerland
| |
Collapse
|
4
|
Costa SP, Cunha AP, Freitas PP, Carvalho CM. A Phage Receptor-Binding Protein as a Promising Tool for the Detection of Escherichia coli in Human Specimens. Front Microbiol 2022; 13:871855. [PMID: 35722298 PMCID: PMC9202026 DOI: 10.3389/fmicb.2022.871855] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli is a problematic pathogen that causes life-threatening diseases, being a frequent causative agent of several nosocomial infections such as urinary tract and bloodstream infections. Proper and rapid bacterial identification is critical for allowing prompt and targeted antimicrobial therapy. (Bacterio)phage receptor-binding proteins (RBPs) display high specificity for bacterial surface epitopes and, therefore, are particularly attractive as biorecognition elements, potentially conferring high sensitivity and specificity in bacterial detection. In this study, we elucidated, for the first time, the potential of a recombinant RBP (Gp17) to recognize E. coli at different viability states, such as viable but not culturable cells, which are not detected by conventional techniques. Moreover, by using a diagnostic method in which we combined magnetic and spectrofluorimetric approaches, we demonstrated the ability of Gp17 to specifically detect E. coli in various human specimens (e.g., whole blood, feces, urine, and saliva) in about 1.5 h, without requiring complex sample processing.
Collapse
Affiliation(s)
- Susana P Costa
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - Alexandra P Cunha
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Paulo P Freitas
- International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - Carla M Carvalho
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
5
|
Sorgenfrei M, Hürlimann LM, Remy MM, Keller PM, Seeger MA. Biomolecules capturing live bacteria from clinical samples. Trends Biochem Sci 2022; 47:673-688. [PMID: 35487808 DOI: 10.1016/j.tibs.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/04/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Rapid phenotypic antimicrobial susceptibility testing (AST) requires the enrichment of live bacteria from patient samples, which is particularly challenging in the context of life-threatening bloodstream infections (BSIs) due to low bacterial titers. Over two decades, an extensive array of pathogen-specific biomolecules has been identified to capture live bacteria. The prevailing biomolecules are immune proteins of the complement system, antibodies, aptamers, phage proteins, and antimicrobial peptides. These biomolecules differ by their binder generation technologies and exhibit highly variable specificities, ranging from bacterial strains to most pathogenic bacteria. Here, we summarize how these diverse biomolecules were identified, list examples of successfully reported capture assays, and provide an outlook on the use of nanobodies raised against conserved surface-accessible proteins as promising biomolecules for pathogen capture.
Collapse
Affiliation(s)
- Michèle Sorgenfrei
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Lea M Hürlimann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Mélissa M Remy
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Peter M Keller
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Vinayaka AC, Golabi M, Than TLQ, Wolff A, Bang DD. Point-of-care diagnosis of invasive non-typhoidal Salmonella enterica in bloodstream infections using immunomagnetic capture and loop-mediated isothermal amplification. N Biotechnol 2022; 66:1-7. [PMID: 34428583 DOI: 10.1016/j.nbt.2021.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022]
Abstract
Invasive non-typhoidal salmonellosis is gaining worldwide attention as an emerging disease cluster among bloodstream infections. The disease has the highest burden among immunocompromised and malnourished children in resource-limited areas due to poor access to reliable and rapid diagnostics. Point-of-care (POC) diagnostics are promising for use in such low infrastructure laboratory settings. However, there still remains a major challenge for POC testing to deal with the complexity of blood matrices in rapid detection of an extremely low concentration of blood-borne pathogens. In this work, the challenges were addressed by combining magnetic bead based pathogen concentration and Loop Mediated Isothermal Amplification (LAMP) technology. Sensitivity and performance of the combined approach were determined and compared with a direct PCR method. A direct visual detection strategy, adapted using SYTO-24 DNA intercalating dye, resulted in a limit of detection (LoD) as low as 14 CFU/mL in blood samples with a total analysis time of less than 2 h, including sample preparation. This approach has the potential for wide application as a high-throughput POC testing method to analyze pathogens in clinical, food, feed and environmental samples.
Collapse
Affiliation(s)
- Aaydha C Vinayaka
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Department of Bioengineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| | - Mohsen Golabi
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Department of Bioengineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Thi Linh Quyen Than
- Biolabchip Group, Department of Bioengineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Anders Wolff
- Biolabchip Group, Department of Bioengineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Dang D Bang
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Department of Bioengineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| |
Collapse
|
7
|
Krämer M, Kissmann AK, Raber HF, Xing H, Favella P, Müller I, Spellerberg B, Weil T, Kubiczek D, Sihler S, Ziener U, Rosenau F. BSA Hydrogel Beads Functionalized with a Specific Aptamer Library for Capturing Pseudomonas aeruginosa in Serum and Blood. Int J Mol Sci 2021; 22:ijms222011118. [PMID: 34681780 PMCID: PMC8537436 DOI: 10.3390/ijms222011118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Systemic blood stream infections are a major threat to human health and are dramatically increasing worldwide. Pseudomonas aeruginosa is a WHO-alerted multi-resistant pathogen of extreme importance as a cause of sepsis. Septicemia patients have significantly increased survival chances if sepsis is diagnosed in the early stages. Affinity materials can not only represent attractive tools for specific diagnostics of pathogens in the blood but can prospectively also serve as the technical foundation of therapeutic filtration devices. Based on the recently developed aptamers directed against P. aeruginosa, we here present aptamer-functionalized beads for specific binding of this pathogen in blood samples. These aptamer capture beads (ACBs) are manufactured by crosslinking bovine serum albumin (BSA) in an emulsion and subsequent functionalization with the amino-modified aptamers on the bead surface using the thiol- and amino-reactive bispecific crosslinker PEG4-SPDP. Specific and quantitative binding of P. aeruginosa as the dedicated target of the ACBs was demonstrated in serum and blood. These initial but promising results may open new routes for the development of ACBs as a platform technology for fast and reliable diagnosis of bloodstream infections and, in the long term, blood filtration techniques in the fight against sepsis.
Collapse
Affiliation(s)
- Markus Krämer
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.K.); (A.-K.K.); (H.F.R.); (H.X.); (D.K.)
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.K.); (A.-K.K.); (H.F.R.); (H.X.); (D.K.)
| | - Heinz Fabian Raber
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.K.); (A.-K.K.); (H.F.R.); (H.X.); (D.K.)
| | - Hu Xing
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.K.); (A.-K.K.); (H.F.R.); (H.X.); (D.K.)
| | - Patrizia Favella
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, 72488 Sigmaringen, Germany; (P.F.); (I.M.)
| | - Ingrid Müller
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, 72488 Sigmaringen, Germany; (P.F.); (I.M.)
| | - Barbara Spellerberg
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany;
| | - Tanja Weil
- Department Synthesis of Macromolecules, Max-Planck-Institute of Polymer Science, 55128 Mainz, Germany;
| | - Dennis Kubiczek
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.K.); (A.-K.K.); (H.F.R.); (H.X.); (D.K.)
| | - Susanne Sihler
- Institute of Organic Chemistry III-Macromolecular Chemistry and Organic Materials, Ulm University, 89081 Ulm, Germany; (S.S.); (U.Z.)
| | - Ulrich Ziener
- Institute of Organic Chemistry III-Macromolecular Chemistry and Organic Materials, Ulm University, 89081 Ulm, Germany; (S.S.); (U.Z.)
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.K.); (A.-K.K.); (H.F.R.); (H.X.); (D.K.)
- Department Synthesis of Macromolecules, Max-Planck-Institute of Polymer Science, 55128 Mainz, Germany;
- Correspondence:
| |
Collapse
|
8
|
Wang Z, Xie G, Chen G, Gao X, Li J, Xie Z, Xu H. Triplex PCR combined with magnetic separation strategy for rapid and specific detection of methicillin-resistant Staphylococcus aureus in hospital samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Robertson J, McGoverin C, White JR, Vanholsbeeck F, Swift S. Rapid Detection of Escherichia coli Antibiotic Susceptibility Using Live/Dead Spectrometry for Lytic Agents. Microorganisms 2021; 9:924. [PMID: 33925816 PMCID: PMC8147107 DOI: 10.3390/microorganisms9050924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is a serious threat to public health. The empiric use of the wrong antibiotic occurs due to urgency in treatment combined with slow, culture-based diagnostic techniques. Inappropriate antibiotic choice can promote the development of antibiotic resistance. We investigated live/dead spectrometry using a fluorimeter (Optrode) as a rapid alternative to culture-based techniques through application of the LIVE/DEAD® BacLightTM Bacterial Viability Kit. Killing was detected by the Optrode in near real-time when Escherichia coli was treated with lytic antibiotics-ampicillin and polymyxin B-and stained with SYTO 9 and/or propidium iodide. Antibiotic concentration, bacterial growth phase, and treatment time used affected the efficacy of this detection method. Quantification methods of the lethal action and inhibitory action of the non-lytic antibiotics, ciprofloxacin and chloramphenicol, respectively, remain to be elucidated.
Collapse
Affiliation(s)
- Julia Robertson
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand; (J.R.W.); (S.S.)
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand; (C.M.); (F.V.)
| | - Cushla McGoverin
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand; (C.M.); (F.V.)
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
| | - Joni R. White
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand; (J.R.W.); (S.S.)
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand; (C.M.); (F.V.)
| | - Frédérique Vanholsbeeck
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand; (C.M.); (F.V.)
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand; (J.R.W.); (S.S.)
| |
Collapse
|
10
|
Feng X, Meng X, Xiao F, Aguilar ZP, Xu H. Vancomycin-dendrimer based multivalent magnetic separation nanoplatforms combined with multiplex quantitative PCR assay for detecting pathogenic bacteria in human blood. Talanta 2021; 225:121953. [PMID: 33592708 DOI: 10.1016/j.talanta.2020.121953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/22/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Sepsis caused by bacteria has high morbidity and mortality, and it is neccerssay to establish a fast, convenient, and facility assays for detection of bacteria. In this study, we have developed established a simple, rapid, and ultrasensitive vancomycin (Van) and dendrimer nanoparticles-based method to isolate and detect bacteria in human blood using a multivalent binding strategy. The proposed Bio-den-Van multivalent capture nanoplatform combined with m-qPCR for simultaneous detection of two kinds of bacteria was demonstrated with rapid 2 min bacteria isolation with a linear range at 3.2 × 101-3.2 × 106 CFU·mL-1 for L. monocytogenes and 4.1 × 101-4.1 × 106 CFU·mL-1 for S. aureus, respectively. The limit of detection (LOD) for simultaneous detection of L. monocytogenes and S. aureus were 32 and 41 CFU·mL-1 in spiked human blood samples, respectively. Other bacteria had an insignificant interference with the test results. This Bio-den-Van multivalent capture nanoplatform combined with m-qPCR detection exhibited rapid, high sensitivity and specificity in simultaneous detection of various bacteria. To our knowledge, this is the first time that Bio-den-Van multivalent capture nanoplatform was used with Van as a recognition molecule for the simultaneous capture and subsequent detection of two bacteria from spiked human blood sample. This method holds great potential for future clinical applications.
Collapse
Affiliation(s)
- Xiaoyan Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Xiangyu Meng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Fangbin Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | | | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
11
|
Akrofi R, Zhang PL, Chen QY. Functional BOD-Ad-Cmyc@BSA complex nanosensor for Cu(II) and the detection of live E. coli. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118483. [PMID: 32454230 DOI: 10.1016/j.saa.2020.118483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Escherichia coli (E. coli) is abundantly present in nature. It is generally harmless to humans but some strains have been deemed very dangerous. Therefore, as an indicator of hygienic testing, the detection of E. coli is essential. In this work, a fluorescent assembly was synthesized and characterized by spectroscopic methods. It was found that the amantadine (Ad) conjugated dye (BOD-Ad) intercalated into Cmyc G4 (aptamer) forming a non-emission assembly (BOD-Ad-Cmyc), which could be lighted-up by BSA due to the formation of fluorescence nanoparticle BOD-Ad-Cmyc@BSA. Further, BOD-Ad-Cmyc@BSA can selectively bind Cu2+ forming non-emission species BOD-Ad-Cmyc@BSA-Cu2+. E. coli can turn-on the emission of BOD-Ad-Cmyc@BSA-Cu2+ system due to the copper accumulation or reduction by E. coli. Therefore, a fluorescence method for the determination of E. coli was built. The detection limit of BOD-Ad-Cmyc@BSA-Cu2+ of E. coli is 6.3 CFU/mL. Thus, this BOD-Ad-Cmyc@BSA-Cu2+ fluorescent assembly can be used for the detection of live E. coli in the environment.
Collapse
Affiliation(s)
- Robertson Akrofi
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jingkou District, Xuefu Road, 212013, People's Republic of China
| | - Peng-Li Zhang
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jingkou District, Xuefu Road, 212013, People's Republic of China
| | - Qiu-Yun Chen
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jingkou District, Xuefu Road, 212013, People's Republic of China.
| |
Collapse
|
12
|
Nguyen T, Chidambara VA, Andreasen SZ, Golabi M, Huynh VN, Linh QT, Bang DD, Wolff A. Point-of-care devices for pathogen detections: The three most important factors to realise towards commercialization. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Costa SP, Dias NM, Melo LDR, Azeredo J, Santos SB, Carvalho CM. A novel flow cytometry assay based on bacteriophage-derived proteins for Staphylococcus detection in blood. Sci Rep 2020; 10:6260. [PMID: 32277078 PMCID: PMC7148305 DOI: 10.1038/s41598-020-62533-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023] Open
Abstract
Bloodstream infections (BSIs) are considered a major cause of death worldwide. Staphylococcus spp. are one of the most BSIs prevalent bacteria, classified as high priority due to the increasing multidrug resistant strains. Thus, a fast, specific and sensitive method for detection of these pathogens is of extreme importance. In this study, we have designed a novel assay for detection of Staphylococcus in blood culture samples, which combines the advantages of a phage endolysin cell wall binding domain (CBD) as a specific probe with the accuracy and high-throughput of flow cytometry techniques. In order to select the biorecognition molecule, three different truncations of the C-terminus of Staphylococcus phage endolysin E-LM12, namely the amidase (AMI), SH3 and amidase+SH3 (AMI_SH3) were cloned fused with a green fluorescent protein. From these, a higher binding efficiency to Staphylococcus cells was observed for AMI_SH3, indicating that the amidase domain possibly contributes to a more efficient binding of the SH3 domain. The novel phage endolysin-based flow cytometry assay provided highly reliable and specific detection of 1-5 CFU of Staphylococcus in 10 mL of spiked blood, after 16 hours of enrichment culture. Overall, the method developed herein presents advantages over the standard BSIs diagnostic methods, potentially contributing to an early and effective treatment of BSIs.
Collapse
Affiliation(s)
- Susana P Costa
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Nicolina M Dias
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Luís D R Melo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sílvio B Santos
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Carla M Carvalho
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal.
| |
Collapse
|
14
|
Yoo HJ, Baek C, Lee MH, Min J. Integrated microsystems for the in situ genetic detection of dengue virus in whole blood using direct sample preparation and isothermal amplification. Analyst 2020; 145:2405-2411. [PMID: 32053125 DOI: 10.1039/c9an02435b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Owing to the frequent outbreak of dengue fever worldwide, a highly sensitive but in situ simple process diagnostic device is required to detect the dengue virus. However, the current immune affinity-based methods have sensitivity issues and nucleic acid-based diagnostic devices have not been suitable for field diagnosis due to the complexity in sample preparation. Here, a simple and fast nucleic acid-based diagnostic tool to directly detect dengue viruses in whole blood is demonstrated using a microbead-assisted direct sample preparation buffer (MB-buffer) and isothermal amplification (loop-mediated isothermal amplification, LAMP). To maximize the performance of the sample preparation process in the microfluidic chip platform, the chemical composition of the sample preparation buffer is simplified and combined with physical tools (heating and bead beating). The entire serial processes consisted of only (1) sample (whole blood) loading, (2) stirring for 90 s, (3) heating at 70 °C for 10 min, and (4) LAMP amplification in the simply designed microfluidic chip cartridge. A single syringe was utilized for sample loading and microfluidic solution transfer. Consequently, dengue viruses were qualitatively detected and discriminated with high sensitivity (LOD: 102 PFU per 200 μL of whole blood) in less than 1 hour without the use of any sophisticated system.
Collapse
Affiliation(s)
- Hyun Jin Yoo
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea.
| | | | | | | |
Collapse
|
15
|
Vinayaka AC, Ngo TA, Nguyen T, Bang DD, Wolff A. Pathogen Concentration Combined Solid-Phase PCR on Supercritical Angle Fluorescence Microlens Array for Multiplexed Detection of Invasive Nontyphoidal Salmonella Serovars. Anal Chem 2020; 92:2706-2713. [DOI: 10.1021/acs.analchem.9b04863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Pitt WG, Alizadeh M, Blanco R, Hunter AK, Bledsoe CG, McClellan DS, Wood ME, Wood RL, Ravsten TV, Hickey CL, Cameron Beard W, Stepan JR, Carter A, Husseini GA, Robison RA, Welling E, Torgesen RN, Anderson CM. Factors affecting sedimentational separation of bacteria from blood. Biotechnol Prog 2019; 36:e2892. [PMID: 31425635 DOI: 10.1002/btpr.2892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/19/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022]
Abstract
Rapid diagnosis of blood infections requires fast and efficient separation of bacteria from blood. We have developed spinning hollow disks that separate bacteria from blood cells via the differences in sedimentation velocities of these particles. Factors affecting separation included the spinning speed and duration, and disk size. These factors were varied in dozens of experiments for which the volume of separated plasma, and the concentration of bacteria and red blood cells (RBCs) in separated plasma were measured. Data were correlated by a parameter of characteristic sedimentation length, which is the distance that an idealized RBC would travel during the entire spin. Results show that characteristic sedimentation length of 20 to 25 mm produces an optimal separation and collection of bacteria in plasma. This corresponds to spinning a 12-cm-diameter disk at 3,000 rpm for 13 s. Following the spin, a careful deceleration preserves the separation of cells from plasma and provides a bacterial recovery of about 61 ± 5%.
Collapse
Affiliation(s)
- William G Pitt
- Chemical Engineering Department, Brigham Young University, Provo, Utah
| | - Mahsa Alizadeh
- Chemical Engineering Department, Brigham Young University, Provo, Utah
| | - Rae Blanco
- Chemical Engineering Department, Brigham Young University, Provo, Utah
| | - Alex K Hunter
- Chemical Engineering Department, Brigham Young University, Provo, Utah
| | - Colin G Bledsoe
- Chemical Engineering Department, Brigham Young University, Provo, Utah
| | | | - Madison E Wood
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah
| | - Ryan L Wood
- Chemical Engineering Department, Brigham Young University, Provo, Utah
| | - Tanner V Ravsten
- Chemical Engineering Department, Brigham Young University, Provo, Utah
| | - Caroline L Hickey
- Chemical Engineering Department, Brigham Young University, Provo, Utah
| | | | - Jacob R Stepan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Alexandra Carter
- Chemical Engineering Department, Brigham Young University, Provo, Utah
| | - Ghaleb A Husseini
- Chemical Engineering Department, American University of Sharjah, Sharjah, United Arab Emirates
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah
| | - Evelyn Welling
- Chemical Engineering Department, Brigham Young University, Provo, Utah
| | | | | |
Collapse
|
17
|
Oeschger T, McCloskey D, Kopparthy V, Singh A, Erickson D. Point of care technologies for sepsis diagnosis and treatment. LAB ON A CHIP 2019; 19:728-737. [PMID: 30724931 PMCID: PMC6392004 DOI: 10.1039/c8lc01102h] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sepsis is a rapidly progressing, life threatening immune response triggered by infection that affects millions worldwide each year. Current clinical diagnosis relies on broad physiological parameters and time consuming lab-based cell culture. If proper treatment is not provided, cases of sepsis can drastically increase in severity over the course of a few hours. Development of new point of care tools for sepsis has the potential to improve diagnostic speed and accuracy, leading to prompt administration of appropriate therapeutics, thereby reducing healthcare costs and improving patient outcomes. In this review we examine developing and commercially available technologies to assess the feasibility of rapid, accurate sepsis diagnosis, with emphasis on point of care.
Collapse
Affiliation(s)
- Taylor Oeschger
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Duncan McCloskey
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Varun Kopparthy
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Kim Y, Lee J, Park S. A 3D-Printed Millifluidic Platform Enabling Bacterial Preconcentration and DNA Purification for Molecular Detection of Pathogens in Blood. MICROMACHINES 2018; 9:mi9090472. [PMID: 30424405 PMCID: PMC6187281 DOI: 10.3390/mi9090472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022]
Abstract
Molecular detection of pathogens in clinical samples often requires pretreatment techniques, including immunomagnetic separation and magnetic silica-bead-based DNA purification to obtain the purified DNA of pathogens. These two techniques usually rely on handling small tubes containing a few millilitres of the sample and manual operation, implying that an automated system encompassing both techniques is needed for larger quantities of the samples. Here, we report a three-dimensional (3D)-printed millifluidic platform that enables bacterial preconcentration and genomic DNA (gDNA) purification for improving the molecular detection of target pathogens in blood samples. The device consists of two millichannels and one chamber, which can be used to preconcentrate pathogens bound to antibody-conjugated magnetic nanoparticles (Ab-MNPs) and subsequently extract gDNA using magnetic silica beads (MSBs) in a sequential manner. The platform was able to preconcentrate very low concentrations (1–1000 colony forming units (CFU)) of Escherichia coli O157:H7 and extract their genomic DNA in 10 mL of buffer and 10% blood within 30 min. The performance of the platform was verified by detecting as low as 1 CFU of E. coli O157:H7 in 10% blood using either polymerase chain reaction (PCR) with post gel electrophoresis or quantitative PCR. The results suggest that the 3D-printed millifluidic platform is highly useful for lowering the limitations on molecular detection in blood by preconcentrating the target pathogen and isolating its DNA in a large volume of the sample.
Collapse
Affiliation(s)
- Yonghee Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Jinyeop Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
19
|
Templier V, Roupioz Y. On the challenges of detecting whole Staphylococcus aureus cells with biosensors. J Appl Microbiol 2017; 123:1056-1067. [PMID: 28609570 DOI: 10.1111/jam.13510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/15/2022]
Abstract
Due to the increasing number of nosocomial infections and multidrug-resistant bacterial strains, Staphylococcus aureus is now a major worldwide concern. Rapid detection and characterization of this bacterium has become an important issue for biomedical applications. Biosensors are increasingly appearing as low-cost, easy-to-operate and fast alternatives for rapid detection. In this review, we will introduce the main characteristics of S. aureus and will focus on the interest of biosensors for a faster detection of whole S. aureus cells. In particular, we will review the most promising strategies in the choice of ligand for the design of selective and efficient biosensors. Their specific characteristics as well as their advantages and/or disadvantages will also be commented.
Collapse
Affiliation(s)
- V Templier
- CNRS, CEA, INAC, SYMMES, Univ. Grenoble Alpes, Grenoble, France
| | - Y Roupioz
- CNRS, CEA, INAC, SYMMES, Univ. Grenoble Alpes, Grenoble, France
| |
Collapse
|
20
|
Alizadeh M, Wood RL, Buchanan CM, Bledsoe CG, Wood ME, McClellan DS, Blanco R, Ravsten TV, Husseini GA, Hickey CL, Robison RA, Pitt WG. Rapid separation of bacteria from blood - Chemical aspects. Colloids Surf B Biointerfaces 2017; 154:365-372. [PMID: 28365426 DOI: 10.1016/j.colsurfb.2017.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
Abstract
To rapidly diagnose infectious organisms causing blood sepsis, bacteria must be rapidly separated from blood, a very difficult process considering that concentrations of bacteria are many orders of magnitude lower than concentrations of blood cells. We have successfully separated bacteria from red and white blood cells using a sedimentation process in which the separation is driven by differences in density and size. Seven mL of whole human blood spiked with bacteria is placed in a 12-cm hollow disk and spun at 3000rpm for 1min. The red and white cells sediment more than 30-fold faster than bacteria, leaving much of the bacteria in the plasma. When the disk is slowly decelerated, the plasma flows to a collection site and the red and white cells are trapped in the disk. Analysis of the recovered plasma shows that about 36% of the bacteria is recovered in the plasma. The plasma is not perfectly clear of red blood cells, but about 94% have been removed. This paper describes the effects of various chemical aspects of this process, including the influence of anticoagulant chemistry on the separation efficiency and the use of wetting agents and platelet aggregators that may influence the bacterial recovery. In a clinical scenario, the recovered bacteria can be subsequently analyzed to determine their species and resistance to various antibiotics.
Collapse
Affiliation(s)
- Mahsa Alizadeh
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, United States
| | - Ryan L Wood
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, United States
| | - Clara M Buchanan
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, United States
| | - Colin G Bledsoe
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, United States
| | - Madison E Wood
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, United States
| | - Daniel S McClellan
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, United States
| | - Rae Blanco
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, United States
| | - Tanner V Ravsten
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, United States
| | - Ghaleb A Husseini
- Chemical Engineering Department, American University of Sharjah, Sharjah, United Arab Emirates
| | - Caroline L Hickey
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, United States
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, United States
| | - William G Pitt
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|