1
|
Liu H, Jiang J, An M, Li B, Xie Y, Xu C, Jiang L, Yan F, Wang Z, Wu Y. Bacillus velezensis SYL-3 suppresses Alternaria alternata and tobacco mosaic virus infecting Nicotiana tabacum by regulating the phyllosphere microbial community. Front Microbiol 2022; 13:840318. [PMID: 35966697 PMCID: PMC9366745 DOI: 10.3389/fmicb.2022.840318] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
The occurrence of plant diseases is closely associated with the imbalance of plant tissue microecological environment. The regulation of the phyllosphere microbial communities has become a new and alternative approach to the biological control of foliar diseases. In this study, Bacillus velezensis SYL-3 isolated from Luzhou exhibited an effective inhibitory effect against Alternaria alternata and tobacco mosaic virus (TMV). The analysis of phyllosphere microbiome by PacBio sequencing indicated that SYL-3 treatment significantly altered fungal and bacterial communities on the leaves of Nicotiana tabacum plants and reduced the disease index caused by A. alternata and TMV. Specifically, the abundance of P. seudomo, Sphingomonas, Massilia, and Cladosporium in the SYL-3 treatment group increased by 19.00, 9.49, 3.34, and 12.29%, respectively, while the abundances of Pantoea, Enterobacter, Sampaiozyma, and Rachicladosporium were reduced. Moreover, the abundance of beneficial bacteria, such as Pseudomonas and Sphingomonas, was negatively correlated with the disease indexes of A. alternata and TMV. The PICRUSt data also predicted the composition of functional genes, with significant differences being apparent between SYL-3 and the control treatment group. Further functional analysis of the microbiome also showed that SYL-3 may induce host disease resistance by motivating host defense-related pathways. These results collectively indicate that SYL-3 may suppress disease progression caused by A. alternata or TMV by improving the microbial community composition on tobacco leaves.
Collapse
Affiliation(s)
- He Liu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jun Jiang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Bin Li
- Sichuan Province Tobacco Company, Chengdu, China
| | - Yunbo Xie
- Sichuan Province Tobacco Company, Chengdu, China
| | - Chuantao Xu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Sichuan Province Tobacco Company, Luzhou, China
| | | | - Fangfang Yan
- Sichuan Province Tobacco Company, Panzhihua, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Zhiping Wang,
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Yuanhua Wu,
| |
Collapse
|
2
|
Gueidan C, Elix JA, McCarthy PM, Roux C, Mallen-Cooper M, Kantvilas G. PacBio amplicon sequencing for metabarcoding of mixed DNA samples from lichen herbarium specimens. MycoKeys 2019; 53:73-91. [PMID: 31205446 PMCID: PMC6557899 DOI: 10.3897/mycokeys.53.34761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
The detection and identification of species of fungi in the environment using molecular methods heavily depends on reliable reference sequence databases. However, these databases are largely incomplete in terms of taxon coverage, and a significant effort is required from herbaria and living fungal collections for the mass-barcoding of well-identified and well-curated fungal specimens or strains. Here, a PacBio amplicon sequencing approach is applied to recent lichen herbarium specimens for the sequencing of the fungal ITS barcode, allowing a higher throughput sample processing than Sanger sequencing, which often required the use of cloning. Out of 96 multiplexed samples, a full-length ITS sequence of the target lichenised fungal species was recovered for 85 specimens. In addition, sequences obtained for co-amplified fungi gave an interesting insight into the diversity of endolichenic fungi. Challenges encountered at both the laboratory and bioinformatic stages are discussed, and cost and quality are compared with Sanger sequencing. With increasing data output and reducing sequencing cost, PacBio amplicon sequencing is seen as a promising approach for the generation of reference sequences for lichenised fungi as well as the characterisation of lichen-associated fungal communities.
Collapse
Affiliation(s)
- Cécile Gueidan
- Australian National Herbarium, National Research Collections Australia, CSIRO-NCMI, Canberra, ACT, 2601, Australia Australian National Herbarium Canberra Australia
| | - John A Elix
- Research School of Chemistry, Building 137, Australian National University, Canberra, ACT, 2601, Australia Australian National University Canberra Australia
| | - Patrick M McCarthy
- 64 Broadsmith St, Scullin, ACT, 2614, Australia Unaffilaited Canberra Australia
| | - Claude Roux
- 390 chemin des Vignes vieilles, 84120 Mirabeau, France Unaffilaited Mirabeau France
| | - Max Mallen-Cooper
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Kensington, NSW, 2052, Australia University of New South Wales Sydney Sydney Australia
| | - Gintaras Kantvilas
- 64 Broadsmith St, Scullin, ACT, 2614, Australia Unaffilaited Canberra Australia
| |
Collapse
|
3
|
Pinning down the role of common luminal intestinal parasitic protists in human health and disease - status and challenges. Parasitology 2019; 146:695-701. [PMID: 30732665 DOI: 10.1017/s0031182019000039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
While some single-celled intestinal parasites are direct causes of diarrhoea and other types of intestinal pathology, the impact of other gut micro-eukaryotes on human health remains elusive. The fact that some common luminal intestinal parasitic protists (CLIPPs) have lately been found more often in healthy than in diseased individuals has fuelled the hypothesis that some parasites might in fact be protective against disease. To this end, the use of new DNA technologies has helped us investigate trans-kingdom relationships in the gut. However, research into these relationships is currently hampered by the limited data available on the genetic diversity within the CLIPPs genera, which results in limited efficacy of publicly available DNA sequence databases for taxonomic annotation of sequences belonging to the eukaryotic component of the gut microbiota. In this paper, I give a brief overview of the status on CLIPPs in human health and disease and challenges related to the mapping of intestinal eukaryotic diversity of the human gut.
Collapse
|
4
|
Francis F, Dumas MD, Davis SB, Wisser RJ. Clustering of circular consensus sequences: accurate error correction and assembly of single molecule real-time reads from multiplexed amplicon libraries. BMC Bioinformatics 2018; 19:302. [PMID: 30126356 PMCID: PMC6102811 DOI: 10.1186/s12859-018-2293-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Targeted resequencing with high-throughput sequencing (HTS) platforms can be used to efficiently interrogate the genomes of large numbers of individuals. A critical issue for research and applications using HTS data, especially from long-read platforms, is error in base calling arising from technological limits and bioinformatic algorithms. We found that the community standard long amplicon analysis (LAA) module from Pacific Biosciences is prone to substantial bioinformatic errors that raise concerns about findings based on this pipeline, prompting the need for a new method. RESULTS A single molecule real-time (SMRT) sequencing-error correction and assembly pipeline, C3S-LAA, was developed for libraries of pooled amplicons. By uniquely leveraging the structure of SMRT sequence data (comprised of multiple low quality subreads from which higher quality circular consensus sequences are formed) to cluster raw reads, C3S-LAA produced accurate consensus sequences and assemblies of overlapping amplicons from single sample and multiplexed libraries. In contrast, despite read depths in excess of 100X per amplicon, the standard long amplicon analysis module from Pacific Biosciences generated unexpected numbers of amplicon sequences with substantial inaccuracies in the consensus sequences. A bootstrap analysis showed that the C3S-LAA pipeline per se was effective at removing bioinformatic sources of error, but in rare cases a read depth of nearly 400X was not sufficient to overcome minor but systematic errors inherent to amplification or sequencing. CONCLUSIONS C3S-LAA uses a divide and conquer processing algorithm for SMRT amplicon-sequence data that generates accurate consensus sequences and local sequence assemblies. Solving the confounding bioinformatic source of error in LAA allowed for the identification of limited instances of errors due to DNA amplification or sequencing of homopolymeric nucleotide tracts. For research and development in genomics, C3S-LAA allows meaningful conclusions and biological inferences to be made from accurately polished sequence output.
Collapse
Affiliation(s)
- Felix Francis
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, 19716, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, 19714, USA
| | - Michael D Dumas
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, 19716, USA
| | - Scott B Davis
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, 19716, USA
| | - Randall J Wisser
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, 19716, USA. .,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, 19714, USA.
| |
Collapse
|
5
|
Orr RJS, Zhao S, Klaveness D, Yabuki A, Ikeda K, Makoto WM, Shalchian-Tabrizi K. Enigmatic Diphyllatea eukaryotes: culturing and targeted PacBio RS amplicon sequencing reveals a higher order taxonomic diversity and global distribution. BMC Evol Biol 2018; 18:115. [PMID: 30021531 PMCID: PMC6052632 DOI: 10.1186/s12862-018-1224-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The class Diphyllatea belongs to a group of enigmatic unicellular eukaryotes that play a key role in reconstructing the morphological innovation and diversification of early eukaryotic evolution. Despite its evolutionary significance, very little is known about the phylogeny and species diversity of Diphyllatea. Only three species have described morphology, being taxonomically divided by flagella number, two or four, and cell size. Currently, one 18S rRNA Diphyllatea sequence is available, with environmental sequencing surveys reporting only a single partial sequence from a Diphyllatea-like organism. Accordingly, geographical distribution of Diphyllatea based on molecular data is limited, despite morphological data suggesting the class has a global distribution. We here present a first attempt to understand species distribution, diversity and higher order structure of Diphyllatea. RESULTS We cultured 11 new strains, characterised these morphologically and amplified their rRNA for a combined 18S-28S rRNA phylogeny. We sampled environmental DNA from multiple sites and designed new Diphyllatea-specific PCR primers for long-read PacBio RSII technology. Near full-length 18S rRNA sequences from environmental DNA, in addition to supplementary Diphyllatea sequence data mined from public databases, resolved the phylogeny into three deeply branching and distinct clades (Diphy I - III). Of these, the Diphy III clade is entirely novel, and in congruence with Diphy II, composed of species morphologically consistent with the earlier described Collodictyon triciliatum. The phylogenetic split between the Diphy I and Diphy II + III clades corresponds with a morphological division of Diphyllatea into bi- and quadriflagellate cell forms. CONCLUSIONS This altered flagella composition must have occurred early in the diversification of Diphyllatea and may represent one of the earliest known morphological transitions among eukaryotes. Further, the substantial increase in molecular data presented here confirms Diphyllatea has a global distribution, seemingly restricted to freshwater habitats. Altogether, the results reveal the advantage of combining a group-specific PCR approach and long-read high-throughput amplicon sequencing in surveying enigmatic eukaryote lineages. Lastly, our study shows the capacity of PacBio RS when targeting a protist class for increasing phylogenetic resolution.
Collapse
Affiliation(s)
- Russell J. S. Orr
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway
| | - Sen Zhao
- Department of Molecular Oncology, Institute of Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Medical Faculty, Center for Cancer Biomedicine, University of Oslo University Hospital, Oslo, Norway
| | - Dag Klaveness
- Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061 Japan
| | - Keiji Ikeda
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 Japan
| | - Watanabe M. Makoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 Japan
| | - Kamran Shalchian-Tabrizi
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway
| |
Collapse
|