1
|
Osorio-González A, Álvarez N, Realpe T, Robledo J. Protocol for the selection of Mycobacterium tuberculosis spontaneous resistant mutants to d-cycloserine. MethodsX 2024; 12:102690. [PMID: 38638452 PMCID: PMC11024651 DOI: 10.1016/j.mex.2024.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
Mycobacterium tuberculosis (MTB) is known for its adaptive capability in developing resistance to antibiotics, through the selection of spontaneous mutations that arise during treatment. Generating spontaneous antibiotic-resistant mutants in vitro is challenging but necessary for studying this phenomenon. A protocol was designed and tested to select stable, MTB spontaneous, d-cycloserine (DCS) resistant mutants. Twenty-four colonies resistant to DCS were selected, demonstrating an increase between 1 and 4 times the Minimum Inhibitory Concentration (MIC) set for Mycobacterium tuberculosis H37Rv ATCC 27294 reference strain.
Collapse
Affiliation(s)
- Alejandra Osorio-González
- Unidad de Bacteriología y Micobacterias. Corporación para Investigaciones Biológicas, Medellín, Colombia
- Escuela de Ciencias de la Salud. Universidad Pontificia Bolivariana, Medellín, Colombia
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología (Maestría en biología), Universidad de Antioquia, Medellín, Colombia
| | - Nataly Álvarez
- Unidad de Bacteriología y Micobacterias. Corporación para Investigaciones Biológicas, Medellín, Colombia
- Escuela de Ciencias de la Salud. Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Teresa Realpe
- Unidad de Bacteriología y Micobacterias. Corporación para Investigaciones Biológicas, Medellín, Colombia
- Escuela de Ciencias de la Salud. Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Jaime Robledo
- Unidad de Bacteriología y Micobacterias. Corporación para Investigaciones Biológicas, Medellín, Colombia
- Escuela de Ciencias de la Salud. Universidad Pontificia Bolivariana, Medellín, Colombia
| |
Collapse
|
2
|
Shi J, Liu Y, Wu T, Li L, Han S, Peng X, Shang Y, Guo Y, Pang Y, Gao M, Lu J. Spontaneous mutational patterns and novel mutations for bedaquiline and clofazimine resistance in Mycobacterium tuberculosis. Microbiol Spectr 2023; 11:e0009023. [PMID: 37646524 PMCID: PMC10581187 DOI: 10.1128/spectrum.00090-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/17/2023] [Indexed: 09/01/2023] Open
Abstract
The 2022 World Health Organization guidelines recommend use of two core anti-tuberculosis (TB) drugs, bedaquiline (BDQ) and clofazimine (CFZ), for treatment of drug-resistant (DR)-TB. However, several mutated Mycobacterium tuberculosis (MTB) genes, conferring BDQ and CFZ resistance, have been reported that predominantly arose from sporadic mutations that have not been comprehensively characterized. Herein, MTB clinical isolates collected from drug-susceptible (DS)-, multidrug-resistant (MDR)-, and extensively drug-resistant (XDR)-TB patients were cultured in vitro with BDQ or CFZ to generate progeny strains with resistance to these drugs. Progeny strains exposed to CFZ exhibited increased CFZ minimum inhibitory concentrations (MICs) that exceeded MIC increases of BDQ-exposed progeny strains. Notably, mmpR and pepQ mutations accounted for 83% and 17% of BDQ-induced spontaneous gene mutations, respectively, and 86% and 14% of CFZ-induced spontaneous gene mutations, respectively. Analyses of predicted mutation-induced changes in amino acid sequences and structures of MmpR and PepQ mutants revealed several point mutations affected sequence conversation and functionality as an underlying mechanism for observed acquired BDQ/CFZ resistance. Moreover, our results revealed differences in patterns of BDQ- and CFZ-induced acquired spontaneous mutations that may enhance our understanding of MTB BDQ/CFZ-resistance mechanisms. IMPORTANCE This study of MTB drug resistance mechanisms revealed patterns of spontaneous MTB mutations associated with acquired BDQ and CFZ resistance that arose after clinical MTB isolates were cultured in vitro with BDQ or CFZ. Results of protein sequence and structural analyses provided insights into potential mechanisms underlying associations between MTB gene mutations and DR phenotypes. Taken together, these results revealed differences in acquired BDQ and CFZ resistance mechanisms as a new perspective that may enhance our understanding of BDQ/CFZ resistance mechanisms and facilitate the development of new methods for detecting MTB drug resistance genes.
Collapse
Affiliation(s)
- Jin Shi
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Yuanyuan Liu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Tuoya Wu
- Department of Tuberculosis Diseases, Tongliao Infectious Disease Hospital, Tongliao, Inner Mongolia, China
| | - Lu Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Shujing Han
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xiao Peng
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Mengqiu Gao
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
3
|
Dokrungkoon T, Tulyaprawat O, Suwannakarn K, Ngamskulrungroj P. In vitro modeling of isoniazid resistance mechanisms in Mycobacterium tuberculosis H37Rv. Front Microbiol 2023; 14:1171861. [PMID: 37492259 PMCID: PMC10364472 DOI: 10.3389/fmicb.2023.1171861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/06/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis, has been a global threat to human beings for several decades. Treating tuberculosis has become more difficult as the prevalence of drug-resistant tuberculosis has increased globally. Evidence suggests that the comprehensive landscape of resistance mechanisms in MTB is ambiguous. More importantly, little is known regarding the series of events connected to resistance mechanisms in MTB before exposure to anti-TB drugs, during exposure to the drugs, and finally, when the MTB becomes resistant after exposure, upon analyses of its genome. Methods We used the wild-type strain of MTB (H37Rv) in an in vitro model for generating induced resistance using a sub-inhibitory concentration of isoniazid, and the generated resistance-associated variants (RAVs) were identified using the whole genome sequencing method. Results The detection of an inhA promoter mutation (fabG1-15C>T), which results in increased production of InhA protein, was found to be a major mechanism for developing resistance to isoniazid in the first place. We observed adaptation of MTB resistance mechanisms in high isoniazid stress by alteration and abolishment of KatG due to the detection of katG S315N, the common region of mutation that confers isoniazid resistance, along with katG K414N, katG N138S, and katG A162E. Furthermore, we detected the ahpC-72C>T and ahpC 21C>A mutations, but further investigation is needed to determine their role in compensating for the loss of KatG activity. Discussion This suggests that increased InhA production is the main mechanism where there are low levels of isoniazid, whereas the alteration of KatG was found to be utilized in mycobacterium with a high concentration of isoniazid. Our work demonstrates that this in vitro approach of generating induced resistance could provide clinically relevant information after the fabG1-15C>T mutation, which is the common mutation found in clinical isolates. Moreover, other mutations detected in this work can also be found in clinical isolates. These findings may shed light on the impact of isoniazid in generating RAV and the resistance mechanism scenario that mycobacterium used under various isoniazid-pressuring conditions. More research is needed to understand better the role of RAV and mechanical resistance events within the mycobacterium genome in promoting a promising drug prediction platform that could lead to the right treatment for patients with MDR-TB and XDR-TB.
Collapse
|
4
|
Snobre J, Villellas MC, Coeck N, Mulders W, Tzfadia O, de Jong BC, Andries K, Rigouts L. Bedaquiline- and clofazimine- selected Mycobacterium tuberculosis mutants: further insights on resistance driven largely by Rv0678. Sci Rep 2023; 13:10444. [PMID: 37369740 DOI: 10.1038/s41598-023-36955-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Drug-resistant tuberculosis is a serious global health threat. Bedaquiline (BDQ) is a relatively new core drug, targeting the respiratory chain in Mycobacterium tuberculosis (Mtb). While mutations in the BDQ target gene, atpE, are rare in clinical isolates, mutations in the Rv0678 gene, a transcriptional repressor regulating the efflux pump MmpS5-MmpL5, are increasingly observed, and have been linked to worse treatment outcomes. Nevertheless, underlying mechanisms of (cross)-resistance remain incompletely resolved. Our study aims to distinguish resistance associated variants from other polymorphisms, by assessing the in vitro onset of mutations under drug pressure, combined with their impact on minimum inhibitory concentrations (MICs) and on protein stability. For this purpose, isolates were exposed in vitro to sub-lethal concentrations of BDQ or clofazimine (CFZ). Selected colonies had BDQ- and CFZ-MICs determined on 7H10 and 7H11 agar. Sanger sequencing and additional Deeplex Myc-TB and whole genome sequencing (WGS) for a subset of isolates were used to search for mutations in Rv0678, atpE and pepQ. In silico characterization of relevant mutations was performed using computational tools. We found that colonies that grew on BDQ medium had mutations in Rv0678, atpE or pepQ, while CFZ-exposed isolates presented mutations in Rv0678 and pepQ, but none in atpE. Twenty-eight Rv0678 mutations had previously been described among in vitro selected mutants or in patients' isolates, while 85 were new. Mutations were scattered across the Rv0678 gene without apparent hotspot. While most Rv0678 mutations led to an increased BDQ- and/or CFZ-MIC, only a part of them surpassed the critical concentration (69.1% for BDQ and 87.9% for CFZ). Among the mutations leading to elevated MICs for BDQ and CFZ, we report a synonymous Val1Val mutation in the Rv0678 start codon. Finally, in silico characterization of Rv0678 mutations suggests that especially the C46R mutant may render Rv0678 less stable.
Collapse
Affiliation(s)
- J Snobre
- Mycobacteriology Unit, Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Internal Medicine Department, UZ Brussel, Brussels, Belgium
- Doctoral School of Life Sciences & Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - M C Villellas
- Department of Infectious Diseases, Janssen Pharmaceutica, Beerse, Belgium
| | - N Coeck
- Mycobacteriology Unit, Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - W Mulders
- Mycobacteriology Unit, Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - O Tzfadia
- Mycobacteriology Unit, Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - B C de Jong
- Mycobacteriology Unit, Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - K Andries
- Department of Infectious Diseases, Janssen Pharmaceutica, Beerse, Belgium
| | - L Rigouts
- Mycobacteriology Unit, Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
| |
Collapse
|
5
|
Ismail N, Dippenaar A, Warren RM, Peters RPH, Omar SV. Emergence of Canonical and Noncanonical Genomic Variants following In Vitro Exposure of Clinical Mycobacterium tuberculosis Strains to Bedaquiline or Clofazimine. Antimicrob Agents Chemother 2023; 67:e0136822. [PMID: 36892309 PMCID: PMC10112258 DOI: 10.1128/aac.01368-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/09/2023] [Indexed: 03/10/2023] Open
Abstract
In Mycobacterium tuberculosis, bedaquiline and clofazimine resistance occurs primarily through Rv0678 variants, a gene encoding a repressor protein that regulates mmpS5/mmpL5 efflux pump gene expression. Despite the shared effect of both drugs on efflux, little else is known about other pathways affected. We hypothesized that in vitro generation of bedaquiline- or clofazimine-resistant mutants could provide insight into additional mechanisms of action. We performed whole-genome sequencing and determined phenotypic MICs for both drugs on progenitor and mutant progenies. Mutants were induced through serial passage on increasing concentrations of bedaquiline or clofazimine. Rv0678 variants were identified in both clofazimine- and bedaquiline-resistant mutants, with concurrent atpE SNPs occurring in the latter. Of concern was the acquisition of variants in the F420 biosynthesis pathway in clofazimine-resistant mutants obtained from either a fully susceptible (fbiD: del555GCT) or rifampicin mono-resistant (fbiA: 283delTG and T862C) progenitor. The acquisition of these variants possibly implicates a shared pathway between clofazimine and nitroimidazoles. Pathways associated with drug tolerance and persistence, F420 biosynthesis, glycerol uptake and metabolism, efflux, and NADH homeostasis appear to be affected following exposure to these drugs. Shared genes affected by both drugs include Rv0678, glpK, nuoG, and uvrD1. Genes with variants in the bedaquiline resistant mutants included atpE, fadE28, truA, mmpL5, glnH, and pks8, while clofazimine-resistant mutants displayed ppsD, fbiA, fbiD, mutT3, fadE18, Rv0988, and Rv2082 variants. These results show the importance of epistatic mechanisms as a means of responding to drug pressure and highlight the complexity of resistance acquisition in M. tuberculosis.
Collapse
Affiliation(s)
- N. Ismail
- SAMRC Centre for Tuberculosis Research/DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof, Gauteng, South Africa
| | - A. Dippenaar
- Global Health Institute, Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - R. M. Warren
- SAMRC Centre for Tuberculosis Research/DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - R. P. H. Peters
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof, Gauteng, South Africa
- Department of Medical Microbiology, School CAPHRI (Care and Public Health Research Institute), Maastricht University, Maastricht, The Netherlands
| | - S. V. Omar
- Department of Medical Microbiology, School CAPHRI (Care and Public Health Research Institute), Maastricht University, Maastricht, The Netherlands
- National Institute for Communicable Diseases/National Health Laboratory Service, Centre for Tuberculosis, National TB Reference Laboratory & WHO Supranational TB Reference Laboratory, Johannesburg, Gauteng, South Africa
| |
Collapse
|
6
|
Williams JT, Abramovitch RB. Molecular Mechanisms of MmpL3 Function and Inhibition. Microb Drug Resist 2023; 29:190-212. [PMID: 36809064 PMCID: PMC10171966 DOI: 10.1089/mdr.2021.0424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Mycobacteria species include a large number of pathogenic organisms such as Mycobacterium tuberculosis, Mycobacterium leprae, and various non-tuberculous mycobacteria. Mycobacterial membrane protein large 3 (MmpL3) is an essential mycolic acid and lipid transporter required for growth and cell viability. In the last decade, numerous studies have characterized MmpL3 with respect to protein function, localization, regulation, and substrate/inhibitor interactions. This review summarizes new findings in the field and seeks to assess future areas of research in our rapidly expanding understanding of MmpL3 as a drug target. An atlas of known MmpL3 mutations that provide resistance to inhibitors is presented, which maps amino acid substitutions to specific structural domains of MmpL3. In addition, chemical features of distinct classes of Mmpl3 inhibitors are compared to provide insights into shared and unique features of varied MmpL3 inhibitors.
Collapse
Affiliation(s)
- John T Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Li H, Yuan J, Duan S, Pang Y. Resistance and tolerance of Mycobacterium tuberculosis to antimicrobial agents-How M. tuberculosis can escape antibiotics. WIREs Mech Dis 2022; 14:e1573. [PMID: 35753313 DOI: 10.1002/wsbm.1573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
Tuberculosis (TB) poses a serious threat to public health worldwide since it was discovered. Until now, TB has been one of the top 10 causes of death from a single infectious disease globally. The treatment of active TB cases majorly relies on various anti-tuberculosis drugs. However, under the selection pressure by drugs, the continuous evolution of Mycobacterium tuberculosis (Mtb) facilitates the emergence of drug-resistant strains, further resulting in the accumulation of tubercle bacilli with multiple drug resistance, especially deadly multidrug-resistant TB and extensively drug-resistant TB. Researches on the mechanism of drug action and drug resistance of Mtb provide a new scheme for clinical management of TB patients, and prevention of drug resistance. In this review, we summarized the molecular mechanisms of drug resistance of existing anti-TB drugs to better understand the evolution of drug resistance of Mtb, which will provide more effective strategies against drug-resistant TB, and accelerate the achievement of the EndTB Strategy by 2035. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Haoran Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinfeng Yuan
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shujuan Duan
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
8
|
Ismail N, Rivière E, Limberis J, Huo S, Metcalfe JZ, Warren RM, Van Rie A. Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis. THE LANCET MICROBE 2021; 2:e604-e616. [PMID: 34796339 PMCID: PMC8597953 DOI: 10.1016/s2666-5247(21)00175-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Background Methods Findings Interpretation Funding
Collapse
|
9
|
Bedaquiline Drug Resistance Emergence Assessment in MDR-TB (DREAM): a 5-Year Prospective In-Vitro Surveillance Study of Bedaquiline and Other Second-Line Drug-Susceptibility Testing in MDR-TB Isolates. J Clin Microbiol 2021; 60:e0291920. [PMID: 34705538 PMCID: PMC8769720 DOI: 10.1128/jcm.02919-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bedaquiline Drug Resistance Emergence Assessment in Multidrug-resistant-tuberculosis (MDR-TB) (DREAM) was a 5-year (2015-2019) phenotypic drug-resistance surveillance study across 11 countries. DREAM assessed the susceptibility of 5036 MDR-TB isolates of bedaquiline-treatment-naïve patients to bedaquiline and other anti-tuberculosis drugs by the 7H9 broth microdilution (BMD) and 7H10/7H11 agar dilution (AD) minimal inhibitory concentration (MIC) methods. Bedaquiline AD MIC quality control (QC) range for the H37Rv reference strain was unchanged, but the BMD MIC QC range (0.015-0.12 μg/ml) was adjusted compared with ranges from a multilaboratory, multicountry reproducibility study conforming to Clinical and Laboratory Standards Institute Tier-2 criteria. Epidemiological cut-off values of 0.12 μg/ml by BMD and 0.25 μg/ml by AD were consistent with previous bedaquiline breakpoints. An area of technical uncertainty or Intermediate category was set at 0.25 μg/ml and 0.5 μg/ml for BMD and AD, respectively. When applied to the 5036 MDR-TB isolates, bedaquiline-susceptible, intermediate and bedaquiline-resistant rates were 97.9%, 1.5% and 0.6%, respectively, for BMD, and 98.8%, 0.8% and 0.4% for AD. Resistance rates were: ofloxacin 35.1%, levofloxacin 34.2%, moxifloxacin 33.3%, 1.5% linezolid and 2% clofazimine. Phenotypic cross resistance between bedaquiline and clofazimine was 0.4% in MDR-TB and 1% in pre-extensively drug-resistant (pre-XDR-TB)/XDR-TB populations. Co-resistance to bedaquiline and linezolid, and clofazimine and linezolid, were 0.1% and 0.3%, respectively, in MDR-TB, and 0.2% and 0.4% in pre-XDR-TB/XDR-TB populations. Resistance rates to bedaquiline appear to be low in the bedaquiline-treatment-naïve population. No treatment-limiting patterns for cross-resistance and co-resistance have been identified with key TB drugs to date.
Collapse
|
10
|
Genetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to bedaquiline, delamanid and pretomanid. Sci Rep 2021; 11:19431. [PMID: 34593898 PMCID: PMC8484543 DOI: 10.1038/s41598-021-98862-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the deadliest infectious diseases worldwide. Multidrug and extensively drug-resistant strains are making disease control difficult, and exhausting treatment options. New anti-TB drugs bedaquiline (BDQ), delamanid (DLM) and pretomanid (PTM) have been approved for the treatment of multi-drug resistant TB, but there is increasing resistance to them. Nine genetic loci strongly linked to resistance have been identified (mmpR5, atpE, and pepQ for BDQ; ddn, fgd1, fbiA, fbiB, fbiC, and fbiD for DLM/PTM). Here we investigated the genetic diversity of these loci across >33,000 M. tuberculosis isolates. In addition, epistatic mutations in mmpL5-mmpS5 as well as variants in ndh, implicated for DLM/PTM resistance in M. smegmatis, were explored. Our analysis revealed 1,227 variants across the nine genes, with the majority (78%) present in isolates collected prior to the roll-out of BDQ and DLM/PTM. We identified phylogenetically-related mutations, which are unlikely to be resistance associated, but also high-impact variants such as frameshifts (e.g. in mmpR5, ddn) with likely functional effects, as well as non-synonymous mutations predominantly in MDR-/XDR-TB strains with predicted protein destabilising effects. Overall, our work provides a comprehensive mutational catalogue for BDQ and DLM/PTM associated genes, which will assist with establishing associations with phenotypic resistance; thereby, improving the understanding of the causative mechanisms of resistance for these drugs, leading to better treatment outcomes.
Collapse
|
11
|
Kontsevaya I, Lange C, Comella-Del-Barrio P, Coarfa C, DiNardo AR, Gillespie SH, Hauptmann M, Leschczyk C, Mandalakas AM, Martinecz A, Merker M, Niemann S, Reimann M, Rzhepishevska O, Schaible UE, Scheu KM, Schurr E, Abel Zur Wiesch P, Heyckendorf J. Perspectives for systems biology in the management of tuberculosis. Eur Respir Rev 2021; 30:30/160/200377. [PMID: 34039674 DOI: 10.1183/16000617.0377-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/28/2021] [Indexed: 12/18/2022] Open
Abstract
Standardised management of tuberculosis may soon be replaced by individualised, precision medicine-guided therapies informed with knowledge provided by the field of systems biology. Systems biology is a rapidly expanding field of computational and mathematical analysis and modelling of complex biological systems that can provide insights into mechanisms underlying tuberculosis, identify novel biomarkers, and help to optimise prevention, diagnosis and treatment of disease. These advances are critically important in the context of the evolving epidemic of drug-resistant tuberculosis. Here, we review the available evidence on the role of systems biology approaches - human and mycobacterial genomics and transcriptomics, proteomics, lipidomics/metabolomics, immunophenotyping, systems pharmacology and gut microbiomes - in the management of tuberculosis including prediction of risk for disease progression, severity of mycobacterial virulence and drug resistance, adverse events, comorbidities, response to therapy and treatment outcomes. Application of the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach demonstrated that at present most of the studies provide "very low" certainty of evidence for answering clinically relevant questions. Further studies in large prospective cohorts of patients, including randomised clinical trials, are necessary to assess the applicability of the findings in tuberculosis prevention and more efficient clinical management of patients.
Collapse
Affiliation(s)
- Irina Kontsevaya
- Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.,International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - Christoph Lange
- Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.,International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - Patricia Comella-Del-Barrio
- Research Institute Germans Trias i Pujol, CIBER Respiratory Diseases, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Molecular and Cellular Biology, Center for Precision Environmental health, Baylor College of Medicine, Houston, TX, USA
| | - Andrew R DiNardo
- The Global Tuberculosis Program, Texas Children's Hospital, Dept of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - Matthias Hauptmann
- Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Christoph Leschczyk
- Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Anna M Mandalakas
- The Global Tuberculosis Program, Texas Children's Hospital, Dept of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Antal Martinecz
- Dept of Biology, Pennsylvania State University, University Park, PA, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.,Dept of Pharmacy, Faculty of Health Sciences, UiT, Arctic University of Norway, Tromsø, Norway
| | - Matthias Merker
- Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Stefan Niemann
- Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Maja Reimann
- Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.,International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - Olena Rzhepishevska
- Dept of Chemistry, Umeå University, Umeå, Sweden.,Dept of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Ulrich E Schaible
- Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | | | - Erwin Schurr
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
| | - Pia Abel Zur Wiesch
- Dept of Biology, Pennsylvania State University, University Park, PA, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Jan Heyckendorf
- Research Center Borstel, Borstel, Germany .,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.,International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| |
Collapse
|
12
|
Wasserman S, Louw G, Ramangoaela L, Barber G, Hayes C, Omar SV, Maartens G, Barry C, Song T, Meintjes G. Linezolid resistance in patients with drug-resistant TB and treatment failure in South Africa. J Antimicrob Chemother 2020; 74:2377-2384. [PMID: 31081017 PMCID: PMC6640298 DOI: 10.1093/jac/dkz206] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/13/2022] Open
Abstract
Objectives Limited data exist on clinical associations and genotypic correlates of linezolid resistance in Mycobacterium tuberculosis. We aimed to describe mutations and clinical factors associated with phenotypic linezolid resistance from patients with drug-resistant TB at two public sector facilities in South Africa. Methods Adults and adolescents with treatment failure (culture positivity ≥4 months) on a linezolid-containing regimen were retrospectively identified. Phenotypic resistance, as defined by a linezolid MIC >1 mg/L, was assessed for retrieved isolates using broth microdilution. Targeted sequencing of rrl and rplC was performed, irrespective of growth on subculture. Results Thirty-nine patients with linezolid-based treatment failure were identified, 13 (33%) of whom had phenotypic or genotypic linezolid resistance after a median duration of 22 months (range = 7–32) of linezolid therapy. Paired MIC testing and genotyping was performed on 55 unique isolates. All isolates with phenotypic resistance (n = 16) were associated with known resistance mutations, most frequently due to the T460C substitution in rplC (n = 10); rrl mutations included G2814T, G2270C/T and A2810C. No mutations were detected in isolates with MICs at or below the critical concentration. Conclusions Linezolid resistance occurred in a third of patients with drug-resistant TB and treatment failure. Resistance occurred late and was predicted by a limited number of mutations in rrl and rplC. Screening for genotypic resistance should be considered for patients with a positive culture after 4 months of linezolid therapy in order to optimize treatment and avoid the toxicity of ineffective linezolid therapy.
Collapse
Affiliation(s)
- Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gail Louw
- Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Limpho Ramangoaela
- Jose Pearson Hospital, Eastern Province Department of Health, Port Elizabeth, South Africa
| | - Garrick Barber
- Jose Pearson Hospital, Eastern Province Department of Health, Port Elizabeth, South Africa
| | - Cindy Hayes
- National Health Laboratory Service, TB Laboratory, Port Elizabeth, South Africa
| | - Shaheed Vally Omar
- Centre for Tuberculosis, WHO Supranational TB Reference Network, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Gary Maartens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Clifton Barry
- Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Taeksun Song
- Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Hu M, Fu L, Wang B, Xu J, Guo S, Zhao J, Li Y, Chen X, Lu Y. Genetic and Virulence Characteristics of Linezolid and Pretomanid Dual Drug-Resistant Strains Induced from Mycobacterium tuberculosis in vitro. Infect Drug Resist 2020; 13:1751-1761. [PMID: 32606825 PMCID: PMC7297343 DOI: 10.2147/idr.s257145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/16/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose Linezolid (LZD) and pretomanid (PA-824) are promising candidates in regimens for the treatment of drug-resistant tuberculosis. However, research on LZD and PA-824 dual drug-resistant (LPDR) strains is rarely reported. This study aimed to investigate the genotypic and virulence characteristics of LPDR strains. Methods To obtain the LPDR strains (marked as LP or PL strains), we used a two-way induction method, namely, we first induced LZD- or PA-824-resistant mutants from the parental Mycobacterium tuberculosis (MTB) strain H37Rv in vitro, then we obtained the LPDR strains from induction of LZD- or PA-824-resistant mutants. Mutations in rplC, rrl, or ddn and fgd1 were identified in all mutants. To investigate the virulence of these strains, six strains were selected as representative strains, including LZD-resistant strains, PA-824-resistant strains and LPDR strains. We performed the animal survival study as virulence of MTB can be measured as survival time of an animal after being infected. Results We induced 38 mutant strains of LZD and PA-824 mono or dual drug resistance from H37Rv in vitro. The mutation frequency of rplC (C154R) gene in LPDR strains was 100% and 86%, respectively. In the animal survival study, animals infected with different drug-resistant strains survived significantly longer than those infected with H37Rv; animals infected with LPDR strains and PA-824-resistant strains survived similarly and both of which survived significantly shorter than those infected with LZD-resistant strains. Conclusion Our study showed that rplC gene had a high mutation frequency in LPDR strains. The virulence of LPDR strains was similar to PA-824-resistant strains, and the virulence of the LZD-resistant strains was weaker than PA-824-resistant strains.
Collapse
Affiliation(s)
- Minghao Hu
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, People's Republic of China
| | - Lei Fu
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, People's Republic of China
| | - Bin Wang
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, People's Republic of China
| | - Jian Xu
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, People's Republic of China
| | - Shaochen Guo
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, People's Republic of China
| | - Jiaojie Zhao
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, People's Republic of China
| | - Yuanyuan Li
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, People's Republic of China
| | - Xiaoyou Chen
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, People's Republic of China
| | - Yu Lu
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, People's Republic of China
| |
Collapse
|
14
|
Nieto Ramirez LM, Quintero Vargas K, Diaz G. Whole Genome Sequencing for the Analysis of Drug Resistant Strains of Mycobacterium tuberculosis: A Systematic Review for Bedaquiline and Delamanid. Antibiotics (Basel) 2020; 9:antibiotics9030133. [PMID: 32209979 PMCID: PMC7148535 DOI: 10.3390/antibiotics9030133] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 11/24/2022] Open
Abstract
Tuberculosis (TB) remains the deadliest Infectious disease worldwide, partially due to the increasing dissemination of multidrug and extensively drug-resistant (MDR/XDR) strains. Drug regimens containing the new anti-TB drugs bedaquiline (BDQ) and delamanid (DLM) appear as a last resort for the treatment of MDR or XDR-TB. Unfortunately, resistant cases to these drugs emerged just one year after their introduction in clinical practice. Early detection of resistant strains to BDQ and DLM is crucial to preserving the effectiveness of these drugs. Here, we present a systematic review aiming to define all available genotypic variants linked to different levels of resistance to BDQ and DLM that have been described through whole genomic sequencing (WGS) and the available drug susceptibility testing methods. During the review, we performed a thorough analysis of 18 articles. BDQ resistance was associated with genetic variants in Rv0678 and atpE, while mutations in pepQ were linked to a low-level of resistance for BDQ. For DLM, mutations in the genes ddn, fgd1, fbiA, and fbiC were found in phenotypically resistant cases, while all the mutations in fbiB were reported only in DLM-susceptible strains. Additionally, WGS analysis allowed the detection of heteroresistance to both drugs. In conclusion, we present a comprehensive panel of gene mutations linked to different levels of drug resistance to BDQ and DLM.
Collapse
Affiliation(s)
| | - Karina Quintero Vargas
- Facultad de Ciencias para la Salud, Departamento de Ciencias Básicas, Universidad de Caldas, Manizales 170002, Colombia;
| | - Gustavo Diaz
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali 760031, Colombia;
- Facultad de Ciencias Naturales, Universidad Icesi, Calle 18 No. 122-135, Cali 760031, Colombia
| |
Collapse
|
15
|
Peretokina IV, Krylova LY, Antonova OV, Kholina MS, Kulagina EV, Nosova EY, Safonova SG, Borisov SE, Zimenkov DV. Reduced susceptibility and resistance to bedaquiline in clinical M. tuberculosis isolates. J Infect 2020; 80:527-535. [PMID: 31981638 DOI: 10.1016/j.jinf.2020.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Bedaquiline is an effective drug used to treat MDR and XDR tuberculosis, providing high cure rates in complex therapy. Mutations in the mmpR (rv0678) and atpE genes are associated with reduced susceptibility to bedaquiline and have been identified in both in vitro selected strains and clinical isolates. However, the phenotypic criteria used to detect bedaquiline resistance have yet to be established due to the collection of few clinical isolates from patients receiving bedaquiline-containing treatment regimens. METHODS One hundred eighty-two clinical isolates from 74 patients receiving bedaquiline and 163 isolates from 107 patients not exposed to bedaquiline were analysed. The bedaquiline MICs were tested using serial dilutions on 7H11 agar plates and the Bactec MGIT 960 system. The mmpR and atpE genes were sequenced by Sanger sequencing. RESULTS The 7H11 agar method allowed for rapid discrimination between mutated and wild-type isolates and between exposed and non-exposed isolates. Seventy-three percent of bedaquiline-exposed isolates, as well as 91% of isolates with mutations, had an elevated bedaquiline MIC (≥ 0.12 mg/L on 7H11 media) compared to the reference isolates (89% had an MIC ≤ 0.03 mg/L). Previously reported in vitro-selected mutants (E61D and A63P) and novel AtpE substitutions (G25S and D28G) were observed in the clinical isolates. Substitutions in codon 63 of AtpE were likely associated with a higher bedaquiline MIC. Five new cases of pre-existing reduced susceptibility to bedaquiline, accompanied by mmpR mutations in most isolates, without a history of bedaquiline treatment were identified. CONCLUSIONS Bedaquiline treatment leads to an elevated bedaquiline MIC and the acquisition of mmpR and atpE gene mutations in tuberculosis strains. The standardisation of bedaquiline phenotypic susceptibility testing is urgently needed based on observed discrepancies between our study and previous studies and differences in solid and liquid media MIC determinations.
Collapse
Affiliation(s)
- Irina V Peretokina
- The Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Health Department, Moscow, Russia
| | - Ludmila Yu Krylova
- The Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Health Department, Moscow, Russia
| | - Olga V Antonova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Margarita S Kholina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena V Kulagina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena Yu Nosova
- The Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Health Department, Moscow, Russia
| | - Svetlana G Safonova
- The Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Health Department, Moscow, Russia
| | - Sergey E Borisov
- The Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Health Department, Moscow, Russia
| | - Danila V Zimenkov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
16
|
In Vitro Study of Stepwise Acquisition of rv0678 and atpE Mutations Conferring Bedaquiline Resistance. Antimicrob Agents Chemother 2019; 63:AAC.00292-19. [PMID: 31138569 DOI: 10.1128/aac.00292-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/19/2019] [Indexed: 12/28/2022] Open
Abstract
Bedaquiline resistance within Mycobacterium tuberculosis may arise through efflux-based (rv0678) or target-based (atpE) pathway mutations. M. tuberculosis mutant populations from each of five sequential steps in a passaging approach, using a pyrazinamide-resistant ATCC strain, were subjected to MIC determinations and whole-genome sequencing. Exposure to increasing bedaquiline concentrations resulted in increasing phenotypic resistance (up to >2 μg/ml) through MIC determination on solid medium (Middlebrook 7H10). rv0678 mutations were dynamic, while atpE mutations were fixed, once occurring. We present the following hypothesis for in vitro emergence of bedaquiline resistance: rv0678 mutations may be the first transient step in low-level resistance acquisition, followed by high-level resistance due to fixed atpE mutations.
Collapse
|
17
|
Evaluation of activity and potential for development of antimicrobial resistance to a new tinted 2% chlorhexidine gluconate/70% isopropyl alcohol film-forming sterile preoperative skin preparation. J Glob Antimicrob Resist 2019; 17:160-167. [DOI: 10.1016/j.jgar.2018.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/04/2018] [Accepted: 12/16/2018] [Indexed: 01/08/2023] Open
|
18
|
Clofazimine Exposure In Vitro Selects Efflux Pump Mutants and Bedaquiline Resistance. Antimicrob Agents Chemother 2019; 63:AAC.02141-18. [PMID: 30642938 DOI: 10.1128/aac.02141-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/31/2018] [Indexed: 11/20/2022] Open
Abstract
Six in vitro clofazimine-resistant spontaneous mutants obtained from a wild-type or pyrazinamide-resistant ATCC reference strain were selected to evaluate bedaquiline cross-resistance. The reverse was conducted for bedaquiline mutants. All clofazimine mutants harboring an rv0678 mutation displayed phenotypic cross-resistance. We observed the same for rv0678 bedaquiline mutants; however, atpE bedaquiline mutants showed no phenotypic cross-resistance. This confirms that upfront clofazimine usage may impact subsequent bedaquiline use due to a shared efflux resistance pathway.
Collapse
|
19
|
Collated data of mutation frequencies and associated genetic variants of bedaquiline, clofazimine and linezolid resistance in Mycobacterium tuberculosis. Data Brief 2018; 20:1975-1983. [PMID: 30306102 PMCID: PMC6172430 DOI: 10.1016/j.dib.2018.09.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 01/29/2023] Open
Abstract
A comprehensive literature search was conducted to obtain previously published resistance associated mutations for bedaquiline, clofazimine and linezolid for Mycobacterium tuberculosis. Where possible, mutation frequencies for these three drugs were also identified. This catalog of previously published mutations could serve as a reference for comparing mutations associated with either in vitro or clinical resistant mutants. The usage of these data was seen in our study relating to approaches for resistance mutant creation (in vitro approaches for generation of Mycobacterium tuberculosis mutants resistant to bedaquiline, clofazimine or linezolid and identification of associated genetic variants (Ismail et al., 2018 in press). Previously published mutations for clofazimine were described in the rv0678 and rv1979c genes, for bedaquiline in atpE, rv0678 and rv2535c (pepQ) genes and for linezolid in the rplC and rrl genes.
Collapse
|