1
|
Xu Y, Zheng Z, Sun R, Ye L, Chan EWC, Chen S. Epidemiological and genetic characterization of multidrug-resistant non-O1 and non-O139 Vibrio cholerae from food in southern China. Int J Food Microbiol 2024; 418:110734. [PMID: 38759293 DOI: 10.1016/j.ijfoodmicro.2024.110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
This study reports a comprehensive epidemiological and genetic analysis of V. cholerae strains, specifically non-O1/non-O139 serogroups, isolated from animal-derived food samples in Guangdong province from 2015 to 2019. A total of 21 V. cholerae strains were obtained, which exhibited high resistance rates for nalidixic acid (57.14 %, 12/21), ampicillin (33.33 %, 7/21), and ciprofloxacin (19.05 %, 4/21). The quinolone resistance-related gene, qnrVC, was prevalent in 80.95 % (17/21) of the isolates. Additionally, chromosomally mediated quinolone-resistance mutations, including mutations in GyrA at position 83 (S83I) and ParC at position 85 (S85L), were detected in 47.62 % of the isolates. The combination of target mutation and qnrVC genes was shown to mediate resistance or intermediate resistance to ciprofloxacin in V. cholerae. Furthermore, an IncC-type conjugative plasmid carrying thirteen antibiotic resistance genes, including genes conferring resistance to two clinically important antibiotics, cephalosporins and fluoroquinolones, was identified in the shrimp-derived strain Vc516. While none of our food isolates harbored the toxigenic CTX- and TCP-encoding genes, they did possess genes encoding toxins such as HlyA and Autoinducer-2. Notably, some V. cholerae strains from this study exhibited a close genetic relationship with clinical strains, suggesting their potential to cause human infections. Taken together, this study provides a comprehensive view of the epidemiological features and genetic basis of antimicrobial resistance and virulence potential of V. cholerae strains isolated from food in southern China, thereby advancing our understanding of this important pathogen.
Collapse
Affiliation(s)
- Yating Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhiwei Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Ruanyang Sun
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
2
|
Abdulaziz A, Vikraman HK, Raj D, Menon N, George G, Soman R, Mony DP, Mary A, Krishna K, Raju GKT, Kuttan SP, Tharakan B, Chekidhenkuzhiyil J, Platt T, Sathyendranath S. Distribution and antibiotic resistance of vibrio population in an urbanized tropical lake-the Vembanad-in the southwest coast of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116066-116077. [PMID: 37906329 DOI: 10.1007/s11356-023-30565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
Among the diverse Vibrio spp. autochthonous to coastal ecosystems, V. cholerae, V. fluvialis, V. vulnificus and V. parahaemolyticus are pathogenic to humans. Increasing sea-surface temperature, sea-level rise and water-related disasters associated with climate change have been shown to influence the proliferation of these bacteria and change their geographic distribution. We investigated the spatio-temporal distribution of Vibrio spp. in a tropical lake for 1 year at a 20-day interval. The abundance of Vibrio spp. was much higher during the south-west monsoon in 2018, when the lake experienced a once-in-a-century flood. The distribution of Vibrio spp. was influenced by salinity (r = 0.3, p < 0.001), phosphate (r = 0.18, p < 0.01) and nitrite (r = 0.16, p < 0.02) in the water. We isolated 470 colonies of Vibrio-like organisms and 341 could be revived further and identified using 16S rRNA gene sequencing. Functional annotations showed that all the 16 Vibrio spp. found in the lake could grow in association with animals. More than 60% of the isolates had multiple antibiotic resistance (MAR) index greater than 0.5. All isolates were resistant to erythromycin and cefepime. The proliferation of multiple antibiotic-resistant Vibrio spp. is a threat to human health. Our observations suggest that the presence of a diverse range of Vibrio spp. is favoured by the low-saline conditions brought about by heavy precipitation. Furthermore, infections caused by contact with Vibrio-contaminated waters may be difficult to cure due to their multiple antibiotic resistances. Therefore, continuous monitoring of bacterial pollution in the lakes is essential, as is the generation of risk maps of vibrio-infested waters to avoid public contact with contaminated waters and associated disease outbreaks.
Collapse
Affiliation(s)
- Anas Abdulaziz
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India.
| | | | - Devika Raj
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Nandini Menon
- Nansen Environmental Research Centre India, KUFOS Amenity Centre, Kochi, 682506, India
- Trevor Platt Science Foundation, Kochi, 682018, India
| | - Grinson George
- ICAR-Central Marine Fisheries Research Institute, Kochi, 682018, India
| | - Reshma Soman
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | | | - Ann Mary
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Kiran Krishna
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | | | - Balu Tharakan
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Jasmin Chekidhenkuzhiyil
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
- Trevor Platt Science Foundation, Kochi, 682018, India
| | - Trevor Platt
- Plymouth Marine Laboratory, Plymouth, PL1 3DH, Devon, UK
| | | |
Collapse
|
3
|
Wang Y, Niu J, Sun M, Li Z, Wang X, He Y, Qi J. Rapid and Sensitive Detection of Streptococcus iniae in Trachinotus ovatus Based on Multienzyme Isothermal Rapid Amplification. Int J Mol Sci 2023; 24:ijms24097733. [PMID: 37175440 PMCID: PMC10178759 DOI: 10.3390/ijms24097733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Infectious diseases caused by Streptococcus iniae lead to massive death of fish, compose a serious threat to the global aquaculture industry, and constitute a risk to humans who deal with raw fish. In order to realize the early diagnosis of S. iniae, and control the outbreak and spread of disease, it is of great significance to establish fast, sensitive, and convenient detection methods for S. iniae. In the present study, two methods of real-time MIRA (multienzyme isothermal rapid amplification, MIRA) and MIRA-LFD (combining MIRA with lateral flow dipsticks (LFD)) for the simA gene of S. iniae were established, which could complete amplification at a constant temperature of 42 °C within 20 min. Real-time MIRA and MIRA-LFD assays showed high sensitivity (97 fg/μL or 7.6 × 102 CFU/mL), which were consistent with the sensitivity of real-time PCR and 10 times higher than that of PCR with strong specificity, repeatability simplicity, and rapidity for S. iniae originating from Trachinotus ovatus. In summary, real-time MIRA and MIRA-LFD provide effective ways for early diagnosis of S. iniae in aquaculture, especially for units in poor conditions.
Collapse
Affiliation(s)
- Yifen Wang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jingjing Niu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, China
| | - Minmin Sun
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ziyi Li
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiangyuan Wang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yan He
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jie Qi
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
4
|
Yu Y, Tang M, Wang Y, Liao M, Wang C, Rong X, Li B, Ge J, Gao Y, Dong X, Zhang Z. Virulence and antimicrobial resistance characteristics assessment of Vibrio isolated from shrimp (Penaeus vannamei) breeding system in south China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114615. [PMID: 36773438 DOI: 10.1016/j.ecoenv.2023.114615] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The diseases caused by Vibrio during shrimp breeding program have the risk of spreading in different aquatic areas through larvae transportation between different regions. Therefore, the population distribution and the virulence and antibiotic resistance risk of 5 pathogenic Vibrio in shrimp (Penaeus vannamei) breeding system in China were evaluated for the first time. A total of 418 isolates were recovered from shrimp, breeding water and biological baits samples, and 312 isolates were identified as Vibrio genus based on 16s rDNA, among which V. alginolyticus, V. harveyi, V. parahaemolyticus, V. cholerae and V. campbellii were the dominant species. And 10/20 kinds of virulence genes (chiA, luxR, vhh, tlh, chxA, sepro, flaA, vch, VAC and rpoS) were detected among the 5 Vibrio species. Multiple antibiotic resistance (MAR) index of the 5 dominant Vibrio isolates were 0.13-0.88 %, and 36.5 % isolates with MAR < 0.2. But the antibiotic resistance pattern abundance (ARPA) index ranged from 0.25 to 0.56, which indicated the antibiotic phenotypes of Vibrio species in the shrimp breeding system in China were homogeneity. Furthermore, resistance quotients (RQs) calculation results displayed that the dominant Vibrio species in the shrimp breeding system in China showed no or low selection pressure for resistance to cefoperazone/sulbactam, enrofloxacin, ciprofloxacin, fluoroquine, florfenicol, tetracycline and doxycycline. But only 5 resistance genes were detected, which were strA (43.8 %), strB (11.7 %), QnrVC (2.9 %), sul2 (8.8 %) and Int4 (8.8 %), respectively, and the antimicrobial resistance genotypes were not previously correlated with their phenotypes. The relevant research results provide theoretical basis for epizootic tracking in aquatic system in China, and targeting its final risk in aquatic ecosystem and public health perspectives.
Collapse
Affiliation(s)
- Yongxiang Yu
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Miaomiao Tang
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yingeng Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Meijie Liao
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Chunyuan Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaojun Rong
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Bin Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jianlong Ge
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yingli Gao
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuan Dong
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zheng Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
5
|
Leard E, Carmichael RH, Ortmann AC, Jones JL. Environmental Drivers of Vibrio cholerae Abundances in Mobile Bay, Alabama. Microbiol Spectr 2023; 11:e0173322. [PMID: 36692305 PMCID: PMC9927273 DOI: 10.1128/spectrum.01733-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Vibrio cholerae is the etiological agent of the illness cholera. However, there are non-O1/non-O139 V. cholerae (NOVC) strains that generally lack the toxin gene (ctx) and colonization factors that cause cholera. These NOVC strains are autochthonous members of estuarine environments and a significant cause of seafood-borne gastroenteritis in the United States. The objective of this study was to identify environmental parameters that correlate with NOVC prevalence in oysters, water, and sediment at three ecologically diverse locations in Mobile Bay, AL, including Dog River (DR), Fowl River (FR), and Cedar Point (CP). Oyster, water, and sediment samples were collected twice a month when conditions were favorable for NOVC growth and once a month when they were not. A most probable number (MPN)/real-time PCR assay was used to determine NOVC abundances. Environmental parameters were measured during sampling to determine their relationship, if any, with NOVC at each site. NOVC abundances in oysters at DR, FR, and CP were 0.87, 0.87, and -0.13 log MPN/g, respectively. In water, the median NOVC levels at DR, FR, and CP were 1.18, -0.13, and -0.82 log MPN/mL, and in sediment, the levels were 1.48, 1.87, and -0.03 log MPN/g, respectively. Correlations of NOVC abundances in oyster, water, and sediment samples with environmental parameters were largely site specific. For example, the levels of NOVC in oysters at DR had a positive correlation with temperature but a negative correlation with dissolved oxygen (DO) and nutrient concentrations, NO2-, NO3-, dissolved inorganic nitrogen (DIN), total dissolved nitrogen (TDN), and dissolved inorganic phosphorus (DIP). At FR, however, the levels of NOVC in oysters displayed only a negative correlation with NO2-. When grouping NOVC abundances by temperature, the main driving factor for prevalence, additional correlations with salinity, total cell counts, dissolved organic nitrogen (DON), and dissolved organic carbon (DOC) became evident regardless of the site. IMPORTANCE NOVC can cause gastrointestinal illness in humans, which typically occurs after the consumption of raw or undercooked seafood. Incidence rates of NOVC gastroenteritis have increased during the past decade. In this study, NOVC was enumerated from oysters, sediment, and water collected at three sites in Mobile Bay, with environmental parameters measured concurrently over the course of a year, to identify potential environmental drivers of NOVC abundances. The data from this study, from an area lacking in V. cholerae research, provide a useful baseline for risk analysis of V. cholerae infections. Defining correlations between NOVC and environmental attributes at different sites and temperatures within a dynamic system such as Mobile Bay provides valuable data to better understand the occurrence and proliferation of V. cholerae in the environment.
Collapse
Affiliation(s)
- Elizabeth Leard
- Food and Drug Administration, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama, USA
- Department of Marine Sciences, University of South Alabama, Mobile, Alabama, USA
- University Programs, Dauphin Island Sea Lab, Dauphin Island, Alabama, USA
| | - Ruth H. Carmichael
- Department of Marine Sciences, University of South Alabama, Mobile, Alabama, USA
- University Programs, Dauphin Island Sea Lab, Dauphin Island, Alabama, USA
| | - Alice C. Ortmann
- Department of Marine Sciences, University of South Alabama, Mobile, Alabama, USA
| | - Jessica L. Jones
- Food and Drug Administration, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama, USA
| |
Collapse
|
6
|
Chen D, Liang Z, Ren S, Alali W, Chen L. Rapid and Visualized Detection of Virulence-Related Genes of Vibrio cholerae in Water and Aquatic Products by Loop-Mediated Isothermal Amplification. J Food Prot 2022; 85:44-53. [PMID: 34436566 DOI: 10.4315/jfp-21-182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/20/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Vibrio cholerae can cause pandemic cholera in humans. The bacterium resides in aquatic environments worldwide. Continuous testing of V. cholerae contamination in water and aquatic products is imperative for food safety control and human health. In this study, a rapid and visualized method was developed for the first time based on loop-mediated isothermal amplification (LAMP) for detection of the important virulence-related genes ace, zot, cri, and nanH for toxins and the infectious process of V. cholerae. Three pairs of molecular probes targeting each of these genes were designed and synthesized. The one-step LAMP reaction was conducted at 65°C for 40 min. Positive results were inspected by the production of a light green color under visible light or green fluorescence under UV light (302 nm). Limit of detection of the LAMP method ranged from 1.85 to 2.06 pg per reaction of genomic DNA or 2.50 × 100 to 4.00 × 102 CFU per reaction for target genes of cell culture of V. cholerae, which was more sensitive than standard PCR. Inclusivity and exclusivity of the LAMP method were 100% for all target genes. The method showed similar high efficiency to a certain extent in rapid testing of spiked or collected specimens of water and aquatic products. Target genes were detected by absence from all water samples from various sources. However, high occurrences of the nanH gene were observed in intestinal samples derived from four species of fish and one species of shellfish, indicating a risk of potentially toxic V. cholerae in commonly consumed aquatic products. The results in this study provide a potential tool for rapid and visualized detection of V. cholerae in water and aquatic products. HIGHLIGHTS
Collapse
Affiliation(s)
- Dailing Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Zhili Liang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Shunlin Ren
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, Virginia 23249, USA
| | - Walid Alali
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Kuwait University, Kuwait City, Kuwait
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| |
Collapse
|
7
|
Yilmaz T, Goluch ED. A comprehensive review of conventional techniques and biosensor systems developed for in situ detection of vibrio cholerae. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Lin WX, Yaqub MR, Zhang ZH, Mao M, Zeng HS, Chen FP, Li WM, Cai WZ, Li YQ, Tan ZY, Sheng W, Li ZM, Tao XL, Li YX, Zhang JP, Han YB, Li Y, Duan WQ, Ye BN, Li YR, Song YZ. Molecular epidemiologic study of citrin deficiency by screening for four reported pathogenic SLC25A13 variants in the Shaanxi and Guangdong provinces, China. Transl Pediatr 2021; 10:1658-1667. [PMID: 34295780 PMCID: PMC8261583 DOI: 10.21037/tp-21-58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/19/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Citrin deficiency (CD) is an autosomal recessive disease resulting from biallelic mutations of the SLC25A13 gene. This study aimed to investigate the molecular epidemiological features of CD in the Guangdong and Shaanxi provinces of China. METHODS A total of 3,409 peripheral blood samples from Guangdong and 2,746 such samples from Shaanxi province were collected. Four prevalent SLC25A13 mutations NG_012247.2 (NM_014251.3): c.852_855del, c.1638_1660dup, c.615+5G>A, and c.1751-5_1751-4ins(2684) were screened by using the conventional polymerase chain reaction (PCR)/PCR-restriction fragment length polymorphism and newly-developed multiplex PCR methods, respectively. The mutated SLC25A13 allele frequencies, carrier frequencies, and CD morbidity rates were calculated and then compared with the Chi-square and Fisher's exact tests. RESULTS The mutations were detected in 68 out of 6,818 SLC25A13 alleles in Guangdong and 29 out of 5,492 alleles in the Shaanxi population. The carrier frequencies were subsequently calculated to be 1/51 and 1/95, while the CD morbidity rates were 1/10,053 and 1/35,865, in the 2 populations, respectively. When compared with the Shaanxi population, Guangdong exhibited a higher frequency of mutated SLC25A13 allele (68/6,818 vs. 29/5,492, χ2=8.570, P=0.003) in general, with higher c.852_855del (54/6,818 vs. 13/5,492, χ2=17.328, P=0.000) but lower c.1751-5_1751 -4ins(2684) (2/6,818 vs. 9/5,492, P=0.015) allele frequencies. The distribution of c.615+5G>A and c.1638_1660dup between the 2 provinces, as well as all 4 prevalent mutations among different geographic regions within the 2 provinces, did not differed significantly. CONCLUSIONS Our findings depicted the CD molecular epidemiological features in Guangdong and Shaanxi populations, providing preliminary but significant laboratory evidences for the subsequent CD diagnosis and management in the 2 provinces of mainland China.
Collapse
Affiliation(s)
- Wei-Xia Lin
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Muhammad Rauf Yaqub
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhan-Hui Zhang
- Clinical Medicine Research Institute, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Man Mao
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Han-Shi Zeng
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Feng-Ping Chen
- Department of Laboratory Science, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wei-Ming Li
- Department of Pediatrics, Maternal and Child Health Hospital of Qingyuan City, Qingyuan, China
| | - Wen-Zhe Cai
- Department of Internal Medicine, Central Hospital of Shantou City, Shantou, China
| | - Ying-Qiang Li
- Department of Internal Medicine, Maternal and Child Health Hospital of Yunfu City, Yunfu, China
| | - Zhi-Yong Tan
- Department of Pediatrics, Maternal and Child Health Hospital of Shaoguan City, Shaoguan, China
| | - Wei Sheng
- Department of Pediatrics, Weinan First Hospital, Weinan, China
| | - Zhi-Min Li
- Department of Pediatrics, San Er Ling Yi Hospital, Hanzhong, China
| | - Xiao-Ling Tao
- Department of Pediatrics, Xianyang Rainbow Hospital (Xianyang Children's Hospital), Xianyang, China
| | - Yuan-Xia Li
- Department of Pediatrics, Yan'an University Hospital, Yan'an, China
| | - Jun-Ping Zhang
- Clinical laboratory, Qishan County Hospital, Qishan, China
| | - Yao-Bin Han
- Department of Infectious Diseases, Shenmu Hospital of Northwestern University, Shenmu, China
| | - Yan Li
- Department of Pediatrics, Zhashui County Hospital, Zhashui, China
| | - Wu-Qiong Duan
- Department of Pediatrics, Ankang Central Hospital, Ankang, China
| | - Bao-Ni Ye
- Department of Pediatrics, Southern Campus of Tongchuan People's Hospital, Tongchuan, China
| | - Ya-Rong Li
- The Third Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Yuan-Zong Song
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Guan H, Xue P, Zhou H, Sha D, Wang D, Gao H, Li J, Diao B, Zhao H, Kan B, Zhang J. A multiplex PCR assay for the detection of five human pathogenic Vibrio species and Plesiomonas. Mol Cell Probes 2020; 55:101689. [PMID: 33338586 DOI: 10.1016/j.mcp.2020.101689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 01/07/2023]
Abstract
A multiplex PCR (mPCR) assay was established to detect five pathogenic Vibrio species and Plesiomonas shigelloides. Twelve genes were included: ompW, ctxA, rfbN, and wbfR from V. cholerae; tl, tdh, and trh from V. parahaemolyticus; toxR and vmhA from V. mimicus; toxR from V. fluvialis; vvhA from V. vulnificus; and the 23S rRNA gene from P. shigelloides. The specificity of the mPCR assay was 100% for the detection of 136 strains and the limits of detection (LoD) were 12.5-50 pg/reaction. The assay exhibited higher sensitivity than cultivation methods in the detection of APW cultures of 113 diarrhea samples. In the analysis of 369 suspected Vibrio populations from estuarine water samples, the specificity of the mPCR for V. cholerae and V. parahaemolyticus was 100% for both, while the sensitivities were 100% and 96.1%, respectively. The assay can be applied to screen enrichment cultures and suspected colonies from environmental and clinical samples.
Collapse
Affiliation(s)
- Hongxia Guan
- Wuxi Center for Disease Control and Prevention, Jiangsu, 214023, China
| | - Panpan Xue
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Haijian Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Dan Sha
- Wuxi Center for Disease Control and Prevention, Jiangsu, 214023, China
| | - Duochun Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - He Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jie Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Baowei Diao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Hongqun Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Jingyun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
10
|
Pengsuk C, Wangman P, Chaivisuthangkura P, Sithigorngul P, Longyant S. Nanogold‐based immunochromatographic strip test for rapid detection of clinical and environmental strains of
Vibrio cholerae. J Food Saf 2020. [DOI: 10.1111/jfs.12874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Chalinan Pengsuk
- Faculty of Agricultural Product Innovation and Technology Srinakharinwirot University Nakhon Nayok Thailand
| | - Pradit Wangman
- Department of Biology, Faculty of Science Srinakharinwirot University Bangkok Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
| | - Parin Chaivisuthangkura
- Department of Biology, Faculty of Science Srinakharinwirot University Bangkok Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
| | - Paisarn Sithigorngul
- Department of Biology, Faculty of Science Srinakharinwirot University Bangkok Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
| | - Siwaporn Longyant
- Department of Biology, Faculty of Science Srinakharinwirot University Bangkok Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
| |
Collapse
|
11
|
Bonny SQ, Hossain MAM, Uddin SMK, Pulingam T, Sagadevan S, Johan MR. Current trends in polymerase chain reaction based detection of three major human pathogenic vibrios. Crit Rev Food Sci Nutr 2020; 62:1317-1335. [DOI: 10.1080/10408398.2020.1841728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sharmin Quazi Bonny
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - M. A. Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Syed Muhammad Kamal Uddin
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Thiruchelvi Pulingam
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Kopprio GA, Neogi SB, Rashid H, Alonso C, Yamasaki S, Koch BP, Gärdes A, Lara RJ. Vibrio and Bacterial Communities Across a Pollution Gradient in the Bay of Bengal: Unraveling Their Biogeochemical Drivers. Front Microbiol 2020; 11:594. [PMID: 32351470 PMCID: PMC7174592 DOI: 10.3389/fmicb.2020.00594] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/18/2020] [Indexed: 01/23/2023] Open
Abstract
The highly populated coasts of the Bay of Bengal are particularly vulnerable to water-borne diseases, pollution and climatic extremes. The environmental factors behind bacterial community composition and Vibrio distribution were investigated in an estuarine system of a cholera-endemic region in the coastline of Bangladesh. Higher temperatures and sewage pollution were important drivers of the abundance of toxigenic Vibrio cholerae. A closer relation between non-culturable Vibrio and particulate organic matter (POM) was inferred during the post-monsoon. The distribution of operational taxonomic units (OTUs) of Vibrio genus was likely driven by salinity and temperature. The resuspension of sediments increased Vibrio abundance and organic nutrient concentrations. The δ13C dynamic in POM followed an increasing gradient from freshwater to marine stations; nevertheless, it was not a marker of sewage pollution. Bacteroidales and culturable coliforms were reliable indicators of untreated wastewater during pre and post-monsoon seasons. The presumptive incorporation of depleted-ammonium derived from ammonification processes under the hypoxic conditions, by some microorganisms such as Cloacibacterium and particularly by Arcobacter nearby the sewage discharge, contributed to the drastic 15N depletion in the POM. The likely capacity of extracellular polymeric substances production of these taxa may facilitate the colonization of POM from anthropogenic origin and may signify important properties for wastewater bioremediation. Genera of potential pathogens other than Vibrio associated with sewage pollution were Acinetobacter, Aeromonas, Arcobacter, and Bergeyella. The changing environmental conditions of the estuary favored the abundance of early colonizers and the island biogeography theory explained the distribution of some bacterial groups. This multidisciplinary study evidenced clearly the eutrophic conditions of the Karnaphuli estuary and assessed comprehensively its current bacterial baseline and potential risks. The prevailing conditions together with human overpopulation and frequent natural disasters, transform the region in one of the most vulnerable to climate change. Adaptive management strategies are urgently needed to enhance ecosystem health.
Collapse
Affiliation(s)
- Germán A Kopprio
- Department of Chemical Analytics and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Tropical Marine Microbiology, Leibniz Centre for Tropical Marine Research, Bremen, Germany.,Marine Biogeochemistry, Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Sucharit B Neogi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Harunur Rashid
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Cecilia Alonso
- Microbial Ecology of Aquatic Systems, Centro Universitario Región Este, Universidad de la República, Rocha, Uruguay
| | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Boris P Koch
- Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Astrid Gärdes
- Tropical Marine Microbiology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Rubén J Lara
- Marine Biogeochemistry, Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
13
|
Zhang X, Lu Y, Qian H, Liu G, Mei Y, Jin F, Xia W, Ni F. Non-O1, Non-O139 Vibrio cholerae (NOVC) Bacteremia: Case Report and Literature Review, 2015-2019. Infect Drug Resist 2020; 13:1009-1016. [PMID: 32308442 PMCID: PMC7156264 DOI: 10.2147/idr.s245806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/22/2020] [Indexed: 12/22/2022] Open
Abstract
Non-O1, non-O139 Vibrio cholerae (NOVC) does not agglutinate with O1 and O139 antisera and can cause intestinal and extraintestinal infections in immunocompromised individuals. NOVC bacteremia has the highest mortality among NOVC infections, and the number of reports has increased in recent years. Nevertheless, some clinicians are poorly informed about this disease. Herein, we describe a documented case of NOVC bacteremia in a male patient with impaired liver function. Blood cultures revealed the presence of V. cholerae, but this strain showed self-coagulation on the serum agglutination test. To our knowledge, this phenomenon is unreported among cases of NOVC infections. This pathogen was finally confirmed as NOVC via PCR. Because the patient worked as a garbage transporter, he was likely infected after contact with contaminated water through a foot wound. The patient developed septic shock shortly after admission and ultimately died from the illness. This paper reviews 23 cases of NOVC bacteremia from 2015 to 2019. To improve the accuracy of identifying NOVC and analyze its virulence factors, relevant detection methods were reviewed and analyzed.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Nanjing, People's Republic of China
| | - Yanfei Lu
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Nanjing, People's Republic of China
| | - Huimin Qian
- Key Laboratory of Enteric Pathogenic Microbiology of Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Genyan Liu
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Nanjing, People's Republic of China
| | - Yaning Mei
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Nanjing, People's Republic of China
| | - Fei Jin
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Nanjing, People's Republic of China
| | - Wenying Xia
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Nanjing, People's Republic of China
| | - Fang Ni
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Nanjing, People's Republic of China
| |
Collapse
|
14
|
Gao X, Miao Z, Li X, Chen N, Gu W, Liu X, Yang H, Wei W, Zhang X. Pathogenicity of non-O1/ O139 Vibrio cholerae and its induced immune response in Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2019; 92:300-307. [PMID: 31202968 DOI: 10.1016/j.fsi.2019.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Outbreaks of mass mortalities occurred in Macrobrachium rosenbergii farms in Gaoyou county, Jiangsu Province of China. The bacterial isolates from M. rosenbergii exhibited the same phenotypic traits and biochemical characteristics, and were identified as non-O1/O139 Vibrio cholerae according to biochemical characteristics and molecular identification. In challenge test, M. rosenbergii infected with non-O1/O139 V. cholerae GXFL1-4 developed similar pathological signs to the naturally diseased prawns, and LD50 of the strain to M. rosenbergii was 4.5 × 106 CFU/mL at 96 h post-infection. Histopathological analysis revealed that hepatopancreas and intestines of diseased M. rosenbergii exhibited obvious inflammatory responses to non-O1/O139 V. cholerae infection. Detection virulence factors of the strain GXFL1-4 showed that the bacteria produced caseinase, lipase, amylase, lecithinase and hemolysin, and carried toxR, hlyA, ompW, ompU, hap, rtxA and rtxC virulence related genes, supporting the strong virulence to M. rosenbergii. Additionally, the immune related gene expression in M. rosenbergii evaluated by qRT-PCR analysis showed that HSP70, Crustin, Lysozyme, TRL1, ALF1, Lectin, Peroxinectin, proPO and SOD immune related genes were significantly up-regulated at 6 and 12 h after infection with GXFL1-4. The results of our study suggested that non-O1/O139 V. cholerae was an etiological element in the mass mortalities of M. rosenbergii and this study provided preliminary insights into the diversity in the immune response of M. rosenbergii to the bacterial invasion.
Collapse
Affiliation(s)
- Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhen Miao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xixi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Nan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenwen Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wanhong Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|