1
|
Hasan MS, Sundberg C, Gilotte E, Ge X, Kostov Y, Rao G. Bioburden detection on surface and water samples in a rapid, ultra-sensitive and high-throughput manner. Biotechnol Prog 2024; 40:e3457. [PMID: 38494865 DOI: 10.1002/btpr.3457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Bioburden detection is crucial for food, water, and biopharmaceutical applications as it can directly impact public health. The objective of this study is to develop and validate an assay and protocol for detecting bioburden on solid surfaces, as well as in water, with high sensitivity and accuracy in a rapid manner. Henceforth, a resazurin-based assay optimized for detecting bioburden has been integrated with a previously developed portable multichannel fluorometer. The microbes were isolated from solid surfaces in different laboratory settings by swabbing technique, and stream water was collected for contamination analysis. Based on the results, the assay and protocol can successfully detect bioburden as low as 20 CFU/cm2 and 10 CFU/mL present in both surface and water samples, respectively.
Collapse
Affiliation(s)
- Md Sadique Hasan
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Chad Sundberg
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Elias Gilotte
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Xudong Ge
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Yordan Kostov
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Govind Rao
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Carrasco-Acosta M, Garcia-Jimenez P. Development of Multiplex RT qPCR Assays for Simultaneous Detection and Quantification of Faecal Indicator Bacteria in Bathing Recreational Waters. Microorganisms 2024; 12:1223. [PMID: 38930605 PMCID: PMC11205496 DOI: 10.3390/microorganisms12061223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we designed and validated in silico and experimentally a rapid, sensitive, and specific multiplex RT qPCR for the detection and quantification of faecal indicator bacteria (FIB) used as microbiological references in marine bathing water regulations (Escherichia coli and intestinal enterococci). The 16S rRNA gene was used to quantify group-specific enterococci and Escherichia/Shigella and species-specific such as Enterococcus faecalis and E. faecium. Additionally, a ybbW gene encoding allantoin transporter protein was used to detect E. coli. An assessment of marine coastal systems (i.e., marine water and sediment) revealed that intestinal enterococci were the predominant group compared to Escherichia/Shigella. The low contribution of E. faecalis to the intestinal enterococci group was reported. As E. faecalis and E. faecium were reported at low concentrations, it is assumed that other enterococci of faecal origin are contributing to the high gene copy number of this group-specific enterococci. Moreover, low 16S rRNA gene copy numbers with respect to E. faecalis and E. faecium were reported in seawater compared to marine sediment. We conclude that marine sediments can affect the quantification of FIBs included in bathing water regulations. Valuing the quality of the marine coastal system through sediment monitoring is recommended.
Collapse
Affiliation(s)
| | - Pilar Garcia-Jimenez
- Department of Biology, Faculty of Marine Sciences, Instituto Universitario de Investigación en Estudios Ambientales y Recursos Naturales i-UNAT, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain;
| |
Collapse
|
3
|
Hasan MS, Marsafari M, Tolosa M, Andar A, Ramamurthy SS, Ge X, Kostov Y, Rao G. Rapid Ultrasensitive and High-Throughput Bioburden Detection: Microfluidics and Instrumentation. Anal Chem 2022; 94:8683-8692. [PMID: 35666619 DOI: 10.1021/acs.analchem.2c00980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Contamination detection often requires lengthy culturing steps to detect low-level bioburden. To increase the rate of detection and decrease the limit of detection (LOD), a system featuring microfluidics and a multichannel fluorometer has been developed. The eight-channel fluorometer enables parallel testing of multiple samples with the LOD as low as <1 cfu/mL. This low-cost system utilizes the slope of fluorescence intensity that serves as the criterion for bioburden detection. The redox indicator dye resazurin is used to monitor the presence of viable cells in this study and is reduced to resorufin with a high quantum yield at 585 nm. The sample under investigation is spiked with resazurin and loaded in a special-design microfluidic cassette, and the rate of change is observed via the fluorometer. The method was validated using primary Escherichia coli culture in comparison with a spectrophotometer which served as the gold standard. An optimized assay based on Luria-Bertani medium was developed. The impact on the assay sensitivity based on incubation and filtration steps was also explored. The assay is shown to pick up inadvertent contamination from test tubes and pipette tips showing its applicability in real-world settings. The data analysis demonstrated a comparable performance of the multichannel fluorometer vis-a-vis the conventional plate reader. The multichannel system is shown to detect bioburden presence in as low as 20 s for bacterial concentrations ≥5 cfu/mL after 6 h of incubation. Considering its portability, low cost, simplicity of operation, and relevant assay sensitivity, the system is well positioned to detect low-level bioburden in the laboratory, pharmaceutical, and field settings.
Collapse
Affiliation(s)
- Md Sadique Hasan
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States.,Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Monireh Marsafari
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States.,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Michael Tolosa
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Abhay Andar
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States.,Potomac Photonics Inc., Process and Product Technologies, 1450 South Rolling Road, Baltimore, Maryland 21227, United States
| | - Sai Sathish Ramamurthy
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States.,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States.,STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur 515134, Andhra Pradesh, India
| | - Xudong Ge
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States.,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Yordan Kostov
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Govind Rao
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States.,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
4
|
McQuillan JS, Wilson MW. Recombinase polymerase amplification for fast, selective, DNA-based detection of faecal indicator Escherichia coli. Lett Appl Microbiol 2021; 72:382-389. [PMID: 33175415 DOI: 10.1111/lam.13427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/01/2022]
Abstract
The bacterium Escherichia coli is commonly associated with the presence of faecal contamination in environmental samples, and is therefore subject to statutory surveillance. This is normally done using a culture-based methodology, which can be slow and laborious. Nucleic acid amplification for the detection of E. coli DNA sequences is a significantly more rapid approach, suited for applications in the field such as a point of sample analysis, and to provide an early warning of contamination. An existing, high integrity qPCR method to detect the E. coli ybbW gene, which requires almost an hour to detect low quantities of the target, was compared with a novel, isothermal RPA method, targeting the same sequence but achieving the result within a few minutes. The RPA technique demonstrated equivalent inclusivity and selectivity, and was able to detect DNA extracted from 100% of 99 E. coli strains, and exclude 100% of 30 non-target bacterial species. The limit of detection of the RPA assay was at least 100 target sequence copies. The high speed and simple, isothermal amplification chemistry may indicate that RPA is a more suitable methodology for on-site E. coli monitoring than an existing qPCR technique.
Collapse
Affiliation(s)
- J S McQuillan
- National Oceanography Centre, Southampton, SO14 3ZH, UK
| | - M W Wilson
- National Oceanography Centre, Southampton, SO14 3ZH, UK
| |
Collapse
|
5
|
Devane ML, Moriarty E, Weaver L, Cookson A, Gilpin B. Fecal indicator bacteria from environmental sources; strategies for identification to improve water quality monitoring. WATER RESEARCH 2020; 185:116204. [PMID: 32745743 DOI: 10.1016/j.watres.2020.116204] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
In tropical to temperate environments, fecal indicator bacteria (FIB), such as enterococci and Escherichia coli, can persist and potentially multiply, far removed from their natural reservoir of the animal gut. FIB isolated from environmental reservoirs such as stream sediments, beach sand and vegetation have been termed "naturalized" FIB. In addition, recent research suggests that the intestines of poikilothermic animals such as fish may be colonized by enterococci and E. coli, and therefore, these animals may contribute to FIB concentrations in the aquatic environment. Naturalized FIB that are derived from fecal inputs into the environment, and subsequently adapted to maintain their population within the non-host environment are termed "naturalized enteric FIB". In contrast, an additional theory suggests that some "naturalized" FIB diverged from enteric FIB many millions of years ago and are now normal inhabitants of the environment where they are referred to as "naturalized non-enteric FIB". In the case of the Escherichia genus, the naturalized non-enteric members are identified as E. coli during routine water quality monitoring. An over-estimation of the health risk could result when these naturalized, non-enteric FIB, (that is, not derived from avian or mammalian fecal contamination), contribute to water quality monitoring results. It has been postulated that these environmental FIB belonging to the genera Escherichia and Enterococcus can be differentiated from enteric FIB by genetic methods because they lack some of the genes required for colonization of the host intestine, and have acquired genes that aid survival in the environment. Advances in molecular tools such as next generation sequencing will aid the identification of genes peculiar or "enriched" in particular habitats to discriminate between enteric and environmental FIB. In this appraisal, we have reviewed the research studying "naturalized" FIB, and discussed the techniques for their differentiation from enteric FIB. This differentiation includes the important distinction between enteric FIB derived from fresh and non-recent fecal inputs, and those truly non-enteric environmental microbes, which are currently identified as FIB during routine water quality monitoring. The inclusion of tools for the identification of naturalized FIB (enteric or environmental) would be a valuable resource for future studies assessing water quality.
Collapse
Affiliation(s)
- Megan L Devane
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand.
| | - Elaine Moriarty
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Adrian Cookson
- AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand; mEpiLab, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Brent Gilpin
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| |
Collapse
|