1
|
Wan X, Wang L, Chang J, Zhang J, Zhang Z, Li K, Sun G, Liu C, Zhong Y. Effective synthesis of high-content fructooligosaccharides in engineered Aspergillus niger. Microb Cell Fact 2024; 23:76. [PMID: 38461254 PMCID: PMC10924377 DOI: 10.1186/s12934-024-02353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Aspergillus niger ATCC 20611 is an industrially important fructooligosaccharides (FOS) producer since it produces the β-fructofuranosidase with superior transglycosylation activity, which is responsible for the conversion of sucrose to FOS accompanied by the by-product (glucose) generation. This study aims to consume glucose to enhance the content of FOS by heterologously expressing glucose oxidase and peroxidase in engineered A. niger. RESULTS Glucose oxidase was successfully expressed and co-localized with β-fructofuranosidase in mycelia. These mycelia were applied to synthesis of FOS, which possessed an increased purity of 60.63% from 52.07%. Furthermore, peroxidase was expressed in A. niger and reached 7.70 U/g, which could remove the potential inhibitor of glucose oxidase to facilitate the FOS synthesis. Finally, the glucose oxidase-expressing strain and the peroxidase-expressing strain were jointly used to synthesize FOS, which content achieved 71.00%. CONCLUSIONS This strategy allows for obtaining high-content FOS by the multiple enzymes expressed in the industrial fungus, avoiding additional purification processes used in the production of oligosaccharides. This study not only facilitated the high-purity FOS synthesis, but also demonstrated the potential of A. niger ATCC 20611 as an enzyme-producing cell factory.
Collapse
Affiliation(s)
- Xiufen Wan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Lu Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jingjing Chang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Zhiyun Zhang
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, People's Republic of China
| | - Kewen Li
- Baolingbao Biology Co., Ltd, Dezhou, 251299, People's Republic of China
| | - Guilian Sun
- Baolingbao Biology Co., Ltd, Dezhou, 251299, People's Republic of China
| | - Caixia Liu
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, People's Republic of China.
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
2
|
Niu X, Lin L, Liu L, Wang H. Preparation of a novel glucose oxidase-N-succinyl chitosan nanospheres and its antifungal mechanism of action against Colletotrichum gloeosporioides. Int J Biol Macromol 2023; 228:681-691. [PMID: 36549621 DOI: 10.1016/j.ijbiomac.2022.12.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
In this work, a new glucose oxidase-N-succinyl chitosan (GOD-NSCS) nanospheres was prepared through the immobilization of glucose oxidase (GOD) on N-succinyl chitosan (NSCS) nanospheres. Compared to the free GOD, GOD-NSCS nanospheres demonstrated the excellent anti-Colletotrichum gloeosporioides activity with the EC50 values of 211.2 and 10.7 μg/mL against mycelial growth and spores germination. The computational biology analysis demonstrated that the substrate presented the similar binding free energy with GOD-NSCS nanospheres (-27.64 kcal/mol) compared with the free GOD (-24.04 kcal/mol), indicating that GOD-NSCS nanospheres had the same oxidation efficiency and produced more H2O2. Moreover, the enzyme activity stability of GOD-NSCS nanospheres could be prolonged to 10 d. The cell membrane was destructed by the treatment of H2O2 produced by GOD, leading to the cell death. In vivo test, GOD-NSCS nanospheres treatment significantly prolonged the preservation period of mangoes 2-fold. Collectively, these results suggested that GOD-NSCS nanospheres suppresses anthracnose in postharvest mangoes by inhibiting the growth of C. gloeosporioides and might become a potential natural preservative for fruits and vegetables.
Collapse
Affiliation(s)
- Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Li Lin
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Lu Liu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Wang L, Xie Y, Chang J, Wang J, Liu H, Shi M, Zhong Y. A novel sucrose-inducible expression system and its application for production of biomass-degrading enzymes in Aspergillus niger. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:23. [PMID: 36782304 PMCID: PMC9926565 DOI: 10.1186/s13068-023-02274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Filamentous fungi are extensively exploited as important enzyme producers due to the superior secretory capability. However, the complexity of their secretomes greatly impairs the titer and purity of heterologous enzymes. Meanwhile, high-efficient evaluation and production of bulk enzymes, such as biomass-degrading enzymes, necessitate constructing powerful expression systems for bio-refinery applications. RESULTS A novel sucrose-inducible expression system based on the host strain Aspergillus niger ATCC 20611 and the β-fructofuranosidase promoter (PfopA) was constructed. A. niger ATCC 20611 preferentially utilized sucrose for rapid growth and β-fructofuranosidase production. Its secretory background was relatively clean because β-fructofuranosidase, the key enzyme responsible for sucrose utilization, was essentially not secreted into the medium and the extracellular protease activity was low. Furthermore, the PfopA promoter showed a sucrose concentration-dependent induction pattern and was not subject to glucose repression. Moreover, the strength of PfopA was 7.68-fold higher than that of the commonly used glyceraldehyde-3-phosphate dehydrogenase promoter (PgpdA) with enhanced green fluorescence protein (EGFP) as a reporter. Thus, A. niger ATCC 20611 coupled with the PfopA promoter was used as an expression system to express a β-glucosidase gene (bgla) from A. niger C112, allowing the production of β-glucosidase at a titer of 17.84 U/mL. The crude β-glucosidase preparation could remarkably improve glucose yield in the saccharification of pretreated corncob residues when added to the cellulase mixture of Trichoderma reesei QM9414. The efficacy of this expression system was further demonstrated by co-expressing the T. reesei-derived chitinase Chi46 and β-N-acetylglucosaminidase Nag1 to obtain an efficient chitin-degrading enzyme cocktail, which could achieve the production of N-acetyl-D-glucosamine from colloidal chitin with a conversion ratio of 91.83%. Besides, the purity of the above-secreted biomass-degrading enzymes in the crude culture supernatant was over 86%. CONCLUSIONS This PfopA-driven expression system expands the genetic toolbox of A. niger and broadens the application field of the traditional fructo-oligosaccharides-producing strain A. niger ATCC 20611, advancing it to become a high-performing enzyme-producing cell factory. In particular, the sucrose-inducible expression system possessed the capacity to produce biomass-degrading enzymes at a high level and evade endogenous protein interference, providing a potential purification-free enzyme production platform for bio-refinery applications.
Collapse
Affiliation(s)
- Lu Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Yijia Xie
- Qingdao Academy, Qingdao, 266111 People’s Republic of China
| | - Jingjing Chang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Juan Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Hong Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
4
|
Successive Fermentation of Aguamiel and Molasses by Aspergillus oryzae and Saccharomyces cerevisiae to Obtain High Purity Fructooligosaccharides. Foods 2022; 11:foods11121786. [PMID: 35741984 PMCID: PMC9222578 DOI: 10.3390/foods11121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Fructooligosaccharides (FOS) are usually synthesized with pure enzymes using highly concentrated sucrose solutions. In this work, low-cost aguamiel and molasses were explored as sucrose alternatives to produce FOS, via whole-cell fermentation, with an Aspergillus oryzae DIA-MF strain. FOS production process was optimized through a central composite experimental design, with two independent variables: initial sucrose concentration in a medium composed of aguamiel and molasses (AgMe), and inoculum concentration. The optimized process—165 g/L initial sucrose in AgMe (adjusted with concentrated molasses) and 1 × 107 spores/mL inoculum concentration—resulted in an FOS production of 119 ± 12 g/L and a yield of 0.64 ± 0.05 g FOS/g GFi. Among the FOSs produced were kestose, nystose, 1-fructofuranosyl-nystose, and potentially a novel trisaccharide produced by this strain. To reduce the content of mono- and disaccharides in the mixture, run a successive fermentation was run with two Saccharomyces cerevisiae strains. Fermentations run with S. cerevisiae S227 improved FOS purity in the mixture from 39 ± 3% to 61.0 ± 0.6% (w/w) after 16 h of fermentation. This study showed that agro-industrial wastes such as molasses with aguamiel are excellent alternatives as substrate sources for the production of prebiotic FOS, resulting in a lower-cost process.
Collapse
|
5
|
de Lima MZT, de Almeida LR, Mera AM, Bernardes A, Garcia W, Muniz JRC. Crystal Structure of a Sucrose-6-phosphate Hydrolase from Lactobacillus gasseri with Potential Applications in Fructan Production and the Food Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10223-10234. [PMID: 34449216 DOI: 10.1021/acs.jafc.1c03901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fructooligosaccharides (FOSs) are polymers of fructose with a prebiotic activity because of their production and fermentation by bacteria that inhabit the gastrointestinal tract and are widely used in the industry and new functional foods. Lactobacillus gasseri stands out as an important homofermentative microorganism related to FOS production, and its potential applications in the industry are undeniable. In this study, we report the production and characterization of a sucrose-6-phosphate hydrolase from L. gasseri belonging to the GH32 family. Apo-LgAs32 and LgAs32 complexed with β-d-fructose structures were determined at a resolution of 1.94 and 1.84 Å, respectively. The production of FOS, fructans, 1-kestose, and nystose by the recombinant LgAs32, using sucrose as a substrate, shown in this study is very promising. When compared to its homologous enzyme from Lactobacillus reuteri, the production of 1-kestose by LgAs32 is increased; thus, LgAs32 can be considered as an alternative in fructan production and other industrial applications.
Collapse
Affiliation(s)
- Mariana Z T de Lima
- Sao Carlos Institute of Physics (IFSC), University of Sao Paulo (USP), Sao Carlos, SP 13563-120, Brazil
| | - Leonardo R de Almeida
- Sao Carlos Institute of Physics (IFSC), University of Sao Paulo (USP), Sao Carlos, SP 13563-120, Brazil
| | - Alain M Mera
- Sao Carlos Institute of Physics (IFSC), University of Sao Paulo (USP), Sao Carlos, SP 13563-120, Brazil
| | - Amanda Bernardes
- Sao Carlos Institute of Physics (IFSC), University of Sao Paulo (USP), Sao Carlos, SP 13563-120, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP 09210-580, Brazil
| | - João R C Muniz
- Sao Carlos Institute of Physics (IFSC), University of Sao Paulo (USP), Sao Carlos, SP 13563-120, Brazil
| |
Collapse
|