1
|
Chen J, Li S, Lin Y, Toldrá F, Lu X. The role of coagulase-negative staphylococci on aroma generation of fermented sausage. Meat Sci 2025; 221:109730. [PMID: 39662119 DOI: 10.1016/j.meatsci.2024.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/19/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Fermented sausages are popular meat products with many different varieties. The aroma of fermented sausages depends on the metabolic activities of microbiota, mainly involving lactic acid bacteria and catalase-positive cocci, the group of coagulase-negative staphylococci (CNS) in particular. Regarding staphylococci, this work elucidated their generation of aroma precursors from hydrolase, metabolic activities contributing to aroma development, antioxidant effects that improve aroma via preventing excessive lipid oxidation. The metabolic pathways of staphylococci that play a role in aroma formation involve carbohydrate fermentation, amino acid degradation, fatty acid β-oxidation, and esterase activities. Their antioxidant activities are associated with superoxidase dismutase and catalase activities, as well as the production of antioxidant peptides. Processing conditions may influence CNS communities and affect aroma characteristics of fermented sausages. Implementation of genome sequencing and editing to select and customize CNS with specific biosynthetic metabolic pathways was proposed forward, offering a great potential for enhancing aroma development during sausage fermentation.
Collapse
Affiliation(s)
- Juan Chen
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610025, China; Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Shenmiao Li
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Yaqiu Lin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
2
|
Ağagündüz D, Keskin FN. The impact of fermentation on development of medical foods (for celiac, irritable bowel syndrome patients). HANDBOOK OF SOURDOUGH MICROBIOTA AND FERMENTATION 2025:161-181. [DOI: 10.1016/b978-0-443-18622-6.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
İlhan Z, Zengin M, Bacaksız OK, Demir E, Ekin İH, Azman MA. Hypericum perforatum L. (St. John's Wort) in broilers diet improve growth performance, intestinal microflora and immunity. Poult Sci 2024; 103:104419. [PMID: 39427421 PMCID: PMC11536019 DOI: 10.1016/j.psj.2024.104419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
Hypericum perforatum L. (St. John's Wort) extract (HPE), powdered H. perforatum (PHP), and selenium (Se) on growth, intestinal flora, and immunity of broiler chicks were investigated. In total, 504 one-day-old broiler chicks were randomly allocated into 6 dietary treatments, which were then denoted as negative control (NC) group (basal diet), containing organic Se 0.2% in the starter and grower period as positive control (PC), containing 1% PHP in the starter and grower period, and HPE I, HPE II, and HPE III groups containing respectively, 1.5, 3.0, and 4.5 mL / kg HPE in the starter and grower period. The results on performance showed that a significant (P < 0.05) higher body weight of chickens in the HPE III group was observed when compared with that of the NC and PHP groups. Although average daily weight gain and feed intake are significant in the HPE III group, the difference in terms of total feed conversion rate was insignificant (P > 0.05). The liver weights in PC and HPE III were lower compared to HPE I (P < 0.05). The difference in total lactic acid bacteria count (TLABC) between the NC group and all HPE groups was found to be significant (P ˂ 0.05), in addition to TLABC was higher in the HPE III group than other groups (P = 0.001). The highest serum antibody titers to the Newcastle disease vaccine were determined in the HPE III group on the 24th, 35th, and 42nd days of age. IL-1B and IL-6 were found to be insignificant between the groups in chickens (P ˃ 0.05). TNF-α in the HPE III group was greatly increased than the other groups and significant compared to the NC and HPE I groups (P = 0.018). In conclusion, 4.5 mL / kg HPE, which has a low production cost and is easy to extract and without causing environmental problems, varied significantly in their impact on growth performance, intestinal microflora, and immunity of growing broilers.
Collapse
Affiliation(s)
- Ziya İlhan
- Faculty of Veterinary Medicine, Department of Microbiology, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye.
| | - Muhittin Zengin
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye; Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, Görükle Campus, Bursa Uludağ University, Nilüfer, Bursa 16059, Türkiye
| | - Oğuz Koray Bacaksız
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye
| | - Ergün Demir
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye
| | - İsmail Hakkı Ekin
- Faculty of Veterinary Medicine, Department of Microbiology, Zeve Campus, Van Yüzüncu Yıl University, Van 65040, Türkiye
| | - Mehmet Ali Azman
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye
| |
Collapse
|
4
|
Giordano I, Pasolli E, Mauriello G. Transcriptomic analysis reveals differential gene expression patterns of Lacticaseibacillus casei ATCC 393 in response to ultrasound stress. ULTRASONICS SONOCHEMISTRY 2024; 107:106939. [PMID: 38843696 PMCID: PMC11214525 DOI: 10.1016/j.ultsonch.2024.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/19/2024]
Abstract
In recent years, there has been a growing interest in modulating the performance of probiotic, mainly Lactic Acid Bacteria (LAB), in the field of probiotic food. Attenuation, induced by sub-lethal stresses, delays the probiotic metabolism, and induces a metabolic shift as survival strategy. In this paper, RNA sequencing was used to uncover the transcriptional regulation in Lacticaseibacillus casei ATCC 393 after ultrasound-induced attenuation. Six (T) and 8 (ST) min of sonication induced a significant differential expression of 742 and 409 genes, respectively. We identified 198 up-regulated and 321 down-regulated genes in T, and similarly 321 up-regulated and 249 down-regulated in ST. These results revealed a strong defensive response at 6 min, followed by adaptation at 8 min. Ultrasound attenuation modified the expression of genes related to a series of crucial biomolecular processes including membrane transport, carbohydrate and purine metabolism, phage-related genes, and translation. Specifically, genes encoding PTS transporters and genes involved in the glycolytic pathway and pyruvate metabolism were up-regulated, indicating an increased need for energy supply, as also suggested by an increase in the transcription of purine biosynthetic genes. Instead, protein translation, a high-energy process, was inhibited with the down-regulation of ribosomal protein biosynthetic genes. Moreover, phage-related genes were down-regulated suggesting a tight transcriptional control on DNA structure. The observed phenomena highlight the cell need of ATP to cope with the multiple ultrasound stresses and the activation of processes to stabilize and preserve the DNA structure. Our work demonstrates that ultrasound has remarkable effects on the tested strain and elucidates the involvement of different pathways in its defensive stress-response and in the modification of its phenotype.
Collapse
Affiliation(s)
- Irene Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80049 Naples, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, 80049 Naples, Italy
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, 80049 Naples, Italy.
| |
Collapse
|
5
|
Abedin MM, Chourasia R, Phukon LC, Sarkar P, Ray RC, Singh SP, Rai AK. Lactic acid bacteria in the functional food industry: biotechnological properties and potential applications. Crit Rev Food Sci Nutr 2023; 64:10730-10748. [PMID: 37405373 DOI: 10.1080/10408398.2023.2227896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
With the growing demand for functional foods having better nutraceutical properties, lactic acid bacteria (LAB) has become an important industrial microorganism. LAB play a significant role in the functional food industry by exhibiting probiotic properties and has the ability to produce various biologically active metabolites such as γ-aminobutyric acid (GABA), exopolysaccharides (EPSs), conjugated linoleic acid (CLA), bacteriocins, reuterin and reutericyclin, which provides enhanced nutraceutical properties to the final food products. LAB are also known to produce several specific enzymes essential for producing substrate-derived bioactive compounds, such as polyphenols, bioactive peptides, inulin-type fructans and β-glucans, fatty acids, and polyols. These compounds exhibit many health benefits, including better mineral absorption, oxidative stress protection, blood glucose and cholesterol-lowering properties, prevention of gastrointestinal tract infections and improved cardiovascular function. Further, metabolically engineered LAB have been widely used for the nutritive enhancement of different food products and the application of CRISPR-Cas9 holds tremendous potential for the engineering of food cultures. This review provides an overview of the use of LAB as probiotics, its application in producing fermented foods and nutraceutical products, and its health benefits on the host.
Collapse
Affiliation(s)
- Md Minhajul Abedin
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Rounak Chourasia
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Loreni Chiring Phukon
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Puja Sarkar
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Ramesh C Ray
- Centre for Food Biology and Environment Studies, Bhubaneswar, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Mohali, Punjab, India
| | - Amit Kumar Rai
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| |
Collapse
|
6
|
Hu Y, Chen C, Liu S, Jia W, Cao Y. Untargeted metabolomic analysis reveals the mechanism of Enterococcus faecium agent induced CaCO 3 scale inhibition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69205-69220. [PMID: 37138126 DOI: 10.1007/s11356-023-27314-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
In this study, a lactic acid bacterium, Enterococcus faecium, was found to prevent CaCO3 precipitation through its metabolism. On analysis of all stages of E. faecium growth, static jar tests demonstrated that stationary phase E. faecium broth possessed the highest inhibition efficiency of 97.3% at a 0.4% inoculation dosage, followed by the decline and log phases with efficiencies of 90.03% and 76.07%, respectively. Biomineralization experiments indicated that E. faecium fermented the substrate to produce organic acid, which resulted in modulation of the pH and alkalinity of the environment and thus inhibited CaCO3 precipitation. Surface characterization techniques indicated that the CaCO3 crystals precipitated by the E. faecium broth tended to be significantly distorted and formed other organogenic calcite crystals. The scale inhibition mechanisms were revealed by untargeted metabolomic analysis on log and stationary phase E. faecium broth. In total, 264 metabolites were detected, 28 of which were differential metabolites (VIP ≥ 1 and p < 0.05). Of these, 15 metabolites were upregulated in stationary phase broth, and 13 metabolites were downregulated in log phase broth. Metabolic pathway analysis suggested that improved glycolysis and the TCA cycle were the main reasons for enhancement of the antiscaling performance of E. faecium broth. These findings have significant implications for microbial metabolism-induced CaCO3 scale inhibition.
Collapse
Affiliation(s)
- Yanglin Hu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Chuanmin Chen
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China.
| | - Songtao Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Wenbo Jia
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Yue Cao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| |
Collapse
|
7
|
Kaur B, Kumar B, Sirhindi G, Guleria N, Kaur J. Phenolic Biotransformations in Wheatgrass Juice after Primary and Secondary Fermentation. Foods 2023; 12:foods12081624. [PMID: 37107419 PMCID: PMC10138189 DOI: 10.3390/foods12081624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Fermented wheatgrass juice was prepared using a two-stage fermentation process by employing Saccharomyces cerevisiae and recombinant Pediococcus acidilactici BD16 (alaD+). During fermentation, a reddish-brown hue appeared in wheatgrass juice due to production of different types of red pigments. The fermented wheatgrass juice has considerably higher content of anthocyanins, total phenols and beta-carotenes as compared to unfermented wheatgrass juice. It has low ethanol content, which might be ascribed to the presence of certain phytolignans in wheatgrass juice. Several yeast-mediated phenolic transformations (such as bioconversion of coumaric acid, hydroxybenzoic acid, hydroxycinnamic acid and quinic acid into respective derivatives; glycosylation and prenylation of flavonoids; glycosylation of lignans; sulphonation of phenols; synthesis of carotenoids, diarylnonanoids, flavanones, stilbenes, steroids, quinolones, di- and tri-terpenoids and tannin) were identified in fermented wheatgrass juice using an untargeted liquid chromatography (LC)-mass spectrometry (MS)-matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)/time-of-flight (TOF) technique. The recombinant P. acidilactici BD16 (alaD+) also supported flavonoid and lignin glycosylation; benzoic acid, hydroxycoumaric acid and quinic acid derivatization; and synthesis of anthraquinones, sterols and triterpenes with therapeutic benefits. The information presented in this manuscript may be utilized to elucidate the importance of Saccharomyces cerevisiae and P. acidilactici BD16 (alaD+) mediated phenolic biotransformations in developing functional food supplements such as fermented wheatgrass juice.
Collapse
Affiliation(s)
- Baljinder Kaur
- Systems Biology Laboratory, Department of Biotechnology and Food Technology, Punjabi University, Patiala 147002, Punjab, India
| | - Balvir Kumar
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala 147002, Punjab, India
| | - Nidhi Guleria
- Department of Biotechnology and Food Technology, Punjabi University, Patiala 147002, Punjab, India
| | - Jashandeep Kaur
- Department of Biotechnology and Food Technology, Punjabi University, Patiala 147002, Punjab, India
| |
Collapse
|
8
|
Mostafa HS, Hashem MM. Lactic acid bacteria as a tool for biovanillin production: A review. Biotechnol Bioeng 2023; 120:903-916. [PMID: 36601666 DOI: 10.1002/bit.28328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Vanilla is the most commonly used natural flavoring agent in industries like food, flavoring, medicine, and fragrance. Vanillin can be obtained naturally, chemically, or through a biotechnological process. However, the yield from vanilla pods is low and does not meet market demand, and the use of vanillin produced by chemical synthesis is restricted in the food and pharmaceutical industries. As a result, the biotechnological process is the most efficient and cost-effective method for producing vanillin with consumer-demanding properties while also supporting industrial applications. Toxin-free biovanillin production, based on renewable sources such as industrial wastes or by-products, is a promising approach. In addition, only natural-labeled vanillin is approved for use in the food industry. Accordingly, this review focuses on biovanillin production from lactic acid bacteria (LAB), which is generally recognized as safe (GRAS), and the cost-cutting efforts that are utilized to improve the efficiency of biotransformation of inexpensive and readily available sources. LABs can utilize agro-wastes rich in ferulic acid to produce ferulic acid, which is then employed in vanillin production via fermentation, and various efforts have been applied to enhance the vanillin titer. However, different designs, such as response surface methods, using immobilized cells or pure enzymes for the spontaneous release of vanillin, are strongly advised.
Collapse
Affiliation(s)
- Heba S Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Marwa M Hashem
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Wu H, Zhao F, Li Q, Huang J, Ju J. Antifungal mechanism of essential oil against foodborne fungi and its application in the preservation of baked food. Crit Rev Food Sci Nutr 2022; 64:2695-2707. [PMID: 36129051 DOI: 10.1080/10408398.2022.2124950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Baked food is one of the most important staple foods in people's life, but its shelf life is limited. In addition, the spoilage of baked food caused by microbial deterioration will not only cause huge economic losses, but also pose a serious threat to human health. At present, due to the improvement of consumers' health awareness, the use of chemical preservatives has been gradually restricted. Compared with other types of synthetic preservatives, essential oils are becoming more and more popular because they are in line with the current development trend of "green," "safety" and "health" of food additives. Therefore, in this paper, we first summarized the main factors affecting the fungal contamination of baked food. Then analyzed the antifungal activity and mechanism of essential oil. Finally, we comprehensively summarized the application strategy of essential oil in the preservation of baked food. This review is of great significance for fully understanding the antifungal mechanism of essential oils and promoting the application of essential oils in the preservation of baked food.
Collapse
Affiliation(s)
- Hao Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Fangyuan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Qianyu Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Jinglin Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Jian Ju
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| |
Collapse
|
10
|
Jeong CH, Hwang H, Lee HJ, Kim TW, Ko HI, Jang DE, Sim JG, Park BG, Hong SW. Enhancement of the functional properties of vegetable sponge beverage fermented with Lactobacillus plantarum isolated from Korean dongchimi. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Ye Z, Shang Z, Zhang S, Li M, Zhang X, Ren H, Hu X, Yi J. Dynamic analysis of flavor properties and microbial communities in Chinese pickled chili pepper (Capsicum frutescens L.): A typical industrial-scale natural fermentation process. Food Res Int 2022; 153:110952. [DOI: 10.1016/j.foodres.2022.110952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 01/03/2023]
|
12
|
Biomedical applications of L-alanine produced by Pediococcus acidilactici BD16 (alaD +). Appl Microbiol Biotechnol 2022; 106:1435-1446. [PMID: 35089399 DOI: 10.1007/s00253-022-11766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/01/2021] [Accepted: 01/06/2022] [Indexed: 11/02/2022]
Abstract
L-alanine possesses extensive physiological functionality and tremendous pharmacological significance, therefore could be considered as potential ingredient for food, pharmaceutical, and personal care products. However, therapeutic properties of L-alanine still need to be addressed in detail to further strengthen its utilization as a viable ingredient for developing natural therapeutics with minimum side effects. Thus, the present study was aimed to explore the anticipated therapeutic potential of L-alanine, produced microbially using a lactic acid bacterial strain Pediococcus acidilactici BD16 (alaD+) expressing L-alanine dehydrogenase enzyme. The anticipated therapeutic potential of L-alanine was assessed in terms of anti-proliferative, anti-bacterial, and anti-urolithiatic properties. Anti-bacterial assays revealed that L-alanine successfully inhibited growth and in vitro proliferation of important human pathogens including Enterococcus faecalis, Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus mutans, and Vibrio cholerae in a concentration-dependent manner. Current investigation has also revealed its significant anti-proliferative potential against human lung adenocarcinoma (A549; IC50 7.32 μM) and mammary gland adenocarcinoma (MCF-7; IC50 8.81 μM) cells. The anti-urolithiatic potential of L-alanine was augmented over three different phases, viz., nucleation inhibition, aggregation inhibition, and oxalate depletion. Further, an in vitro cell culture-based kidney stone dissolution model using HEK293-T cells was also established to further strengthen its anti-urolithiatic potential. This is probably the first in vitro cell culture-based model which experimentally validates the immense therapeutic efficacy of L-alanine in treating urolithiasis disease. KEY POINTS: • Assessment of therapeutic potential of L-alanine produced by LAB. • L-alanine exhibited significant anti-proliferative and anti-bacterial activities. • L-alanine as potential anti-urolithiatic agent.
Collapse
|
13
|
Sharma A, Noda M, Sugiyama M, Kaur B, Ahmad A. Optimization of L-alanine production in the recombinant Pediococcus acidilactici BD16 (alaD+). Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Some Important Metabolites Produced by Lactic Acid Bacteria Originated from Kimchi. Foods 2021; 10:foods10092148. [PMID: 34574257 PMCID: PMC8465840 DOI: 10.3390/foods10092148] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/16/2023] Open
Abstract
Lactic acid bacteria (LAB) have been used for various food fermentations for thousands of years. Recently, LAB are receiving increased attention due to their great potential as probiotics for man and animals, and also as cell factories for producing enzymes, antibodies, vitamins, exopolysaccharides, and various feedstocks. LAB are safe organisms with GRAS (generally recognized as safe) status and possess relatively simple metabolic pathways easily subjected to modifications. However, relatively few studies have been carried out on LAB inhabiting plants compared to dairy LAB. Kimchi is a Korean traditional fermented vegetable, and its fermentation is carried out by LAB inhabiting plant raw materials of kimchi. Kimchi represents a model food with low pH and is fermented at low temperatures and in anaerobic environments. LAB have been adjusting to kimchi environments, and produce various metabolites such as bacteriocins, γ-aminobutyric acid, ornithine, exopolysaccharides, mannitol, etc. as products of metabolic efforts to adjust to the environments. The metabolites also contribute to the known health-promoting effects of kimchi. Due to the recent progress in multi-omics technologies, identification of genes and gene products responsible for the synthesis of functional metabolites becomes easier than before. With the aid of tools of metabolic engineering and synthetic biology, it can be envisioned that LAB strains producing valuable metabolites in large quantities will be constructed and used as starters for foods and probiotics for improving human health. Such LAB strains can also be useful as production hosts for value-added products for food, feed, and pharmaceutical industries. In this review, recent findings on the selected metabolites produced by kimchi LAB are discussed, and the potentials of metabolites will be mentioned.
Collapse
|
15
|
Metabolic Engineering of Pediococcus acidilactici BD16 for Heterologous Expression of Synthetic alaD Gene Cassette and L-Alanine Production in the Recombinant Strain Using Fed-Batch Fermentation. Foods 2021; 10:foods10081964. [PMID: 34441741 PMCID: PMC8391875 DOI: 10.3390/foods10081964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/21/2022] Open
Abstract
Metabolic engineering substantially aims at the development of more efficient, robust and industrially competitive microbial strains for the potential applications in food, fermentation and pharmaceutical industries. An efficient lab scale bioprocess was developed for high level fermentative production of L-alanine using metabolically engineered Pediococcus acidilactici BD16 (alaD+). Computational biology tools assisted the designing of a synthetic alaD gene cassette, which was further cloned in shuttle vector pLES003 and expressed using an auto-inducible P289 promoter. Further, L-alanine production in the recombinant P. acidilactici BD16 (alaD+) strain was carried out using fed-batch fermentation under oxygen depression conditions, which significantly enhanced L-alanine levels. The recombinant strain expressing the synthetic alaD gene produced 229.12 g/L of L-alanine after 42 h of fed-batch fermentation, which is the second highest microbial L-alanine titer reported so far. After extraction and crystallization, 95% crystal L-alanine (217.54 g/L) was recovered from the culture broth with an enantiomeric purity of 97%. The developed bioprocess using recombinant P. acidilactici BD16 (alaD+) is suggested as the best alternative to chemical-based commercial synthesis of L-alanine for potential industrial applications.
Collapse
|
16
|
Sharma A, Noda M, Sugiyama M, Kumar B, Kaur B. Application of Pediococcus acidilactici BD16 ( alaD +) expressing L-alanine dehydrogenase enzyme as a starter culture candidate for secondary wine fermentation. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1995496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Anshula Sharma
- Systems Biology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab, India
| | - Masafumi Noda
- Department of Molecular Microbiology and Biotechnology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Masanori Sugiyama
- Department of Molecular Microbiology and Biotechnology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Balvir Kumar
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Baljinder Kaur
- Systems Biology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
17
|
Hu Y, Zhang L, Wen R, Chen Q, Kong B. Role of lactic acid bacteria in flavor development in traditional Chinese fermented foods: A review. Crit Rev Food Sci Nutr 2020; 62:2741-2755. [PMID: 33377402 DOI: 10.1080/10408398.2020.1858269] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Traditional Chinese fermented foods are favored by consumers due to their unique flavor, texture and nutritional values. A large number of microorganisms participate in the process of fermentation, especially lactic acid bacteria (LAB), which are present in almost all fermented foods and contribute to flavor development. The formation process of flavor is complex and involves the biochemical conversion of various food components. It is very important to fully understand the conversion process to direct the flavor formation in foods. A comprehensive link between the LAB community and the flavor formation in traditional Chinese fermented foods is reviewed. The main mechanisms involved in the flavor formation dominated by LAB are carbohydrate metabolism, proteolysis and amino acid catabolism, and lipolysis and fatty acid metabolism. This review highlights some useful novel approaches for flavor enhancement, including the application of functional starter cultures and metabolic engineering, which may provide significant advances toward improving the flavor of fermented foods for a promising market.
Collapse
Affiliation(s)
- Yingying Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Lang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Rongxin Wen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|