1
|
Lee SY, Weingarten M, Ottenheim C. Current upstream and downstream process strategies for sustainable yeast lipid production. BIORESOURCE TECHNOLOGY 2024; 414:131601. [PMID: 39389381 DOI: 10.1016/j.biortech.2024.131601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
An increasing global population demands more lipids for food and chemicals, but the unsustainable growth of plant-derived lipid production and an unreliable supply of certain lipids due to environmental changes, require new solutions. One promising solution is the use of lipids derived from microbial biomass, particularly oleaginous yeasts. This critical review begins with a description of the most promising yeast lipid replacement targets: palm oil substitute, cocoa butter equivalent, polyunsaturated fatty acid source, and animal fat analogue, emphasizing sustainability aspects. Subsequently, the review focuses on the most recent advances in upstream methodologies, particularly fermentation strategies that promote circularity, such as waste valorisation, co-cultivation and co-product biosynthesis. Downstream processing methods for minimising energy consumption and waste generation, including bioflocculation, energy-efficient and environmentally friendly cell lysis and extraction, and integrated co-product recovery methods, are discussed. Finally, the current challenges are outlined. Integrating these strategies advances sustainable yeast lipid production for high-value applications.
Collapse
Affiliation(s)
- Sze Ying Lee
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Melanie Weingarten
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Christoph Ottenheim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore.
| |
Collapse
|
2
|
Abiola T, Olukanni OD. Isolation, characterization and optimization of oleaginous Providencia vermicola as a feedstock for biodiesel production using Response Surface Methodology. Prep Biochem Biotechnol 2024; 54:1226-1242. [PMID: 38727011 DOI: 10.1080/10826068.2024.2344516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Oleaginous organisms accrue more than twenty percent of their biomass as lipids and hence are promising feedstocks for biodiesel production. In this study, lipid accumulating bacteria were isolated from diesel-contaminated soils and screened with Sudan black B stain. The most oleaginous was done using 16s rRNA gene sequencing. Lipid production was initially optimized based on media, nitrogen source, pH and temperature. Response surface methodology (RSM) was then employed for the enhancement of lipid weight and content. Obtained lipid was converted to biodiesel using direct transesterification, and both lipid and biodiesel were characterized using FTIR. A total of thirteen bacteria were isolated and the most prominent lipid producer was identified as Providencia vermicola with lab number BA6. Preliminary optimization studies revealed optimum lipid production when nutrient broth and acetic acid served as carbon source; KNO3 as nitrogen source, pH 7.0 and 30 °C. Optimization using RSM resulted in a 5.1% and 74.1% increase in the biomass and lipid content of BA6 respectively. FTIR analyses confirmed the presence of functional groups characteristic of lipids and biodiesel. P. vermicola is a novel oleaginous organism that represents a promising feedstock for biodiesel production.HIGHLIGHTSThe bacterium designated as BA6 identified as Providencia vermicola has the highest lipid contents of the oleaginous bacteria isolated.It accumulates lipids up to 47.73 % of its biomassThe percentage lipids accumulation increased to about 74 % when RSM was used.Providencia vermicola is being reported as an oleaginous organism for the first time.
Collapse
Affiliation(s)
- Temitope Abiola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| | - Olumide D Olukanni
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| |
Collapse
|
3
|
Yang Y, Jalalah M, Alsareii SA, Harraz FA, Thakur N, Zheng Y, Alalawy AI, Koutb M, Salama ES. Potential of oleaginous microbes for lipid accumulation and renewable energy generation. World J Microbiol Biotechnol 2024; 40:337. [PMID: 39358563 DOI: 10.1007/s11274-024-04145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
Biocomponents (such as lipids) accumulate in oleaginous microorganisms and could be used for renewable energy production. Oleaginous microbes are characterized by their ability to accumulate high levels of lipids, which can be converted into biodiesel. The oleaginous microbes (including microalgae, bacteria, yeast, and fungi) can utilize diverse substrates. Thus, in this study, commercially viable oleaginous microorganisms are comparatively summarized for their growth conditions, substrate utilization, and applications in biotechnological processes. Lipid content is species-dependent, as are culture conditions (such as temperature, pH, nutrients, and culture time) and substrates. Lipid production can be increased by selecting suitable microorganisms and substrates, optimizing environmental conditions, and using genetic engineering techniques. In addition, the emphasis on downstream processes (including harvesting, cell disruption, lipid extraction, and transesterification) highlights their critical role in enhancing cost-effectiveness. Oleaginous microorganisms are potential candidates for lipid biosynthesis and could play a key role in meeting the energy needs of the world in the future.
Collapse
Affiliation(s)
- Yulu Yang
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Mohammed Jalalah
- Advanced Materials and Nano-Research Centre (AMNRC), Najran University, Najran, 11001, Saudi Arabia
- Department of Electrical Engineering, College of Engineering, Najran University, Najran, 11001, Saudi Arabia
| | - Saeed A Alsareii
- Department of Surgery, College of Medicine, Najran University, Najran, 11001, Saudi Arabia
| | - Farid A Harraz
- Advanced Materials and Nano-Research Centre (AMNRC), Najran University, Najran, 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah, 68342, Saudi Arabia
| | - Nandini Thakur
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | | | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Mostafa Koutb
- Department of Biology, Faculty of Science, Umm Al-Qura University, 715, Makkah, Saudi Arabia
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
4
|
Kot AM, Laszek P, Kieliszek M, Pobiega K, Błażejak S. Biotechnological potential of red yeast isolated from birch forests in Poland. Biotechnol Lett 2024; 46:641-669. [PMID: 38687405 PMCID: PMC11217099 DOI: 10.1007/s10529-024-03482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/25/2024] [Accepted: 03/10/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVES This study aimed to isolate red yeast from sap, bark and slime exudates collected from Polish birch forests and then assessment of their biotechnological potential. RESULTS 24 strains of red yeast were isolated from the bark, sap and spring slime fluxes of birch (Betula pendula). Strains belonging to Rhodotorula mucilaginosa (6), Rhodosporidiobolus colostri (4), Cystrofilobasidium capitaum (3), Phaffia rhodozyma (3) and Cystobasidium psychroaquaticum (3) were dominant. The highest efficiency of carotenoid biosynthesis (5.04 mg L-1) was obtained by R. mucilaginosa CMIFS 004, while lipids were most efficiently produced by two strains of P. rhodozyma (5.40 and 5.33 g L-1). The highest amount of exopolysaccharides (3.75 g L-1) was produced by the R. glutinis CMIFS 103. Eleven strains showed lipolytic activity, nine amylolytic activity, and only two proteolytic activity. The presence of biosurfactants was not found. The growth of most species of pathogenic moulds was best inhibited by Rhodotorula yeasts. CONCLUSION Silver birch is a good natural source for the isolation of new strains of red yeast with wide biotechnological potential.
Collapse
Affiliation(s)
- Anna M Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Paulina Laszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Stanisław Błażejak
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
5
|
Deshavath NN, Woodruff W, Eller F, Susanto V, Yang C, Rao CV, Singh V. Scale-up of microbial lipid and bioethanol production from oilcane. BIORESOURCE TECHNOLOGY 2024; 399:130594. [PMID: 38493941 DOI: 10.1016/j.biortech.2024.130594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Microbial oils are a sustainable biomass-derived substitute for liquid fuels and vegetable oils. Oilcane, an engineered sugarcane with superior feedstock characteristics for biodiesel production, is a promising candidate for bioconversion. This study describes the processing of oilcane stems into juice and hydrothermally pretreated lignocellulosic hydrolysate and their valorization to ethanol and microbial oil using Saccharomyces cerevisiae and engineered Rhodosporidium toruloides strains, respectively. A bioethanol titer of 106 g/L was obtained from S. cerevisiae grown on oilcane juice in a 3 L fermenter, and a lipid titer of 8.8 g/L was obtained from R. toruloides grown on oilcane hydrolysate in a 75 L fermenter. Oil was extracted from the R. toruloides cells using supercritical CO2, and the observed fatty acid profile was consistent with previous studies on this strain. These results demonstrate the feasibility of pilot-scale lipid production from oilcane hydrolysate as part of an integrated bioconversion strategy.
Collapse
Affiliation(s)
- Narendra Naik Deshavath
- Department of Agricultural and Biological Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Department of Energy (DOE), USA.
| | - William Woodruff
- Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Department of Energy (DOE), USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Fred Eller
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Functional Foods Research Unit, 1815 N University, Peoria, IL 61604, USA.
| | - Vionna Susanto
- Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Department of Energy (DOE), USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Cindy Yang
- Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Department of Energy (DOE), USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Christopher V Rao
- Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Department of Energy (DOE), USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Department of Energy (DOE), USA.
| |
Collapse
|
6
|
Mirseyed PS, Kheirabadi S, Anbarteh R, H Ghaffari M. Assessment of mycotoxin sequestration efficacy in Saccharomyces cerevisiae by-products cultured in wheat bran and whey protein medium. Sci Rep 2024; 14:3101. [PMID: 38326556 PMCID: PMC10850169 DOI: 10.1038/s41598-024-53633-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
Mycotoxins are metabolic products of fungi found in feed for farm animals and pose a major threat to food safety due to their adverse health effects. The development of strategies to reduce their bioavailability is crucial. In this context, the cell wall components of Saccharomyces cerevisiae (YCW), especially β-D-glucans and Mannan-oligosaccharide, have been recognized as potent mycotoxin binders. The objective of this research was to develop a novel culture medium to increase the biomass yield of S. cerevisiae and optimize cell disruption by stepwise physical lysis and hydrolytic preconditioning. This process resulted in a yield of approximately 56% reducing saccharides and 28.54% protein. Subsequently, the β-glucan was extracted after cell wall sequestration. The isolated YCW and extracted β-glucan were characterized both individually and synergistically to evaluate their antibacterial properties and analyze their Fourier transform infrared (FTIR) spectra. In vitro evaluation of antibacterial activity revealed that a concentration greater than 250 μg/mL of YCW-β-glucan blend significantly inhibited the growth of Gram-negative bacteria. In addition, this blend showed good adsorption of various mycotoxins, including Aflatoxin B1, Ochratoxin A, and Zearalenone, the latter of which exhibited a remarkable adsorption rate of 80.85%. This study highlights the promising potential of a combination of YCW and β-glucan as a robust strategy to address the pervasive problem of mycotoxin contamination in feed.
Collapse
Affiliation(s)
| | - Shahpour Kheirabadi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran
| | - Rojin Anbarteh
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Wei S, Wang H, Fan M, Cai X, Hu J, Zhang R, Song B, Li J. Application of adaptive laboratory evolution to improve the tolerance of Rhodotorula strain to methanol in crude glycerol and development of an effective method for cell lysis. Biotechnol J 2024; 19:e2300483. [PMID: 38041508 DOI: 10.1002/biot.202300483] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
Rhodotorula toruloides can utilize crude glycerol as the low-cost carbon source for lipid production, but its growth is subjected to inhibition by methanol in crude glycerol. Here, transcriptome profiling demonstrated that 1004 genes were significantly regulated in the strain R. toruloides TO2 under methanol stress. Methanol impaired the function of membrane transport and subsequently weakened the utilization of glycerol, activities of the primary metabolism and functions of nucleus and ribosome. Afterwards the tolerance of TO2 to methanol was improved by using two-round adaptive laboratory evolution (ALE). The final strain M2-ale had tolerance up to 3.5% of methanol. 1 H NMR-based metabolome analysis indicated that ALE not only improved the tolerance of M2-ale to methanol but also tuned the carbon flux towards the biosynthesis of glycerolipid-related metabolites. The biomass and lipid titer of M2-ale reached 14.63 ± 0.45 g L-1 and 7.06 ± 0.44 g L-1 at 96 h in the crude glycerol medium, which increased up to 17.69% and 31.39%, respectively, comparing with TO2. Afterwards, an effective method for cell lysis was developed by combining sonication and enzymatic hydrolysis (So-EnH). The lytic effect of So-EnH was validated by using confocal imaging and flow cytometry. At last, lipid recovery rate reached 95.4 ± 2.7% at the optimized condition.
Collapse
Affiliation(s)
- Shiyu Wei
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Hongyang Wang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Meixi Fan
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Xinrui Cai
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Junpeng Hu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Ruixin Zhang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Baocai Song
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Jing Li
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
8
|
Cardoso SL, Souza PM, Rodrigues K, Mota IDS, Filho EF, Fávaro LCDL, Saldanha-Araujo F, Homem-de-Mello M, Pessoa A, Silveira D, Fonseca-Bazzo YM, Magalhães PO. l-Asparaginase Type II from Fusarium proliferatum: Heterologous Expression and In Silico Analysis. Pharmaceutics 2023; 15:2352. [PMID: 37765320 PMCID: PMC10534586 DOI: 10.3390/pharmaceutics15092352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The search for new drug-producing microorganisms is one of the most promising situations in current world scientific scenarios. The use of molecular biology as well as the cloning of protein and compound genes is already well established as the gold standard method of increasing productivity. Aiming at this increase in productivity, this work aims at the cloning, purification and in silico analysis of l-asparaginase from Fusarium proliferatum in Komagataella phaffii (Pichia pastoris) protein expression systems. The l-asparaginase gene (NCBI OQ439985) has been cloned into Pichia pastoris strains. Enzyme production was analyzed via the quantification of aspartic B-hydroxamate, followed by purification on a DEAE FF ion exchange column. The in silico analysis was proposed based on the combined use of various technological tools. The enzymatic activity found intracellularly was 2.84 IU/g. A purification factor of 1.18 was observed. The in silico analysis revealed the position of five important amino acid residues for enzymatic activity, and likewise, it was possible to predict a monomeric structure with a C-score of 1.59. The production of the enzyme l-asparaginase from F. proliferatum in P. pastoris was demonstrated in this work, being of great importance for the analysis of new methodologies in search of the production of important drugs in therapy.
Collapse
Affiliation(s)
- Samuel Leite Cardoso
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Paula Monteiro Souza
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Kelly Rodrigues
- Brazilian Agricultural Research Corporation—EMBRAPA Agroenergia, Brasilia 70770-901, Brazil; (K.R.); (L.C.d.L.F.)
| | - Isabella de Souza Mota
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | | | - Léia Cecilia de Lima Fávaro
- Brazilian Agricultural Research Corporation—EMBRAPA Agroenergia, Brasilia 70770-901, Brazil; (K.R.); (L.C.d.L.F.)
| | - Felipe Saldanha-Araujo
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Mauricio Homem-de-Mello
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Dâmaris Silveira
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Yris Maria Fonseca-Bazzo
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Pérola Oliveira Magalhães
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| |
Collapse
|
9
|
Kot AM, Błażejak S, Nosek K, Synowiec A, Chlebowska-Śmigiel A, Pobiega K. Magnesium Binding by Cyberlindnera jadinii Yeast in Media from Potato Wastewater and Glycerol. Microorganisms 2023; 11:1923. [PMID: 37630483 PMCID: PMC10459593 DOI: 10.3390/microorganisms11081923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this study was to determine the magnesium-binding capacity of Cyberlindnera jadinii yeast in media prepared from potato wastewater and glycerol (after biodiesel production), supplemented with magnesium salt. The research was carried out in two stages. In the first, the ability to binding magnesium by yeast in media supplemented with various doses of this element was tested. In the second stage, after selecting the appropriate dose of magnesium, the culture was carried out in a bioreactor. The composition of the yeast biomass was also analysed in terms of lipids and protein content and amino acid composition. Studies have shown that this type of medium can be used as a culture medium for the growth of C. jadinii yeast. In the first stage of the study, the most magnesium (8.97 mg/gd.m.) was bound by yeast cells after 48 h of cultivation in a medium supplemented with the addition of magnesium at a dose of 2 g/L. In the second stage of the research, the highest magnesium content in the biomass (7.9 mg/gd.m.) was noted after 24 h of cultivation in the same medium. The lipid and protein contents in the biomass obtained after 24 h of cultivation in the bioreactor were 6.35 and 43.73%, respectively. The main fatty acids present in the yeast lipids were oleic acid (59.4%) and linoleic acid (8.6%). Analysis of the amino acid profile of the proteins showed the highest proportions were glutamic acid (13.7%) and aspartic acid (11%).
Collapse
Affiliation(s)
- Anna M. Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776 Warsaw, Poland; (S.B.); (K.N.); (A.S.); (A.C.-Ś.); (K.P.)
| | | | | | | | | | | |
Collapse
|
10
|
Gutiérrez-Hernández CA, Hernández-Almanza A, Hernández-Beltran JU, Balagurusamy N, Hernández-Teran F. Cheese whey valorization to obtain single-cell oils of industrial interest: An overview. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
de Andrade EWV, Dupont S, Beney L, de Souza ML, Hoskin RT, da Silva Pedrini MR. Sonoprocessing is an effective strategy to encapsulate fisetin into Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 2022; 106:7461-7475. [PMID: 36207545 DOI: 10.1007/s00253-022-12214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022]
Abstract
The encapsulation of fisetin into S. cerevisiae cells through sonoporation coupled with drying is reported for the first time in the literature. To establish the best conditions to maximize the amount of internalized fisetin, the cell density (5-10% w/v), fisetin concentration (1-3 mg/mL), acoustic energy density (0-333.3 W/L), and drying method (freeze-drying and spray drying) were analyzed through a Box-Behnken experimental design (BBD) coupled with response surface methodology (RSM). Higher encapsulation efficiency (EE) was achieved with a cell density of 10% w/v, while fisetin concentration of 3 mg/mL favored the encapsulation yield (EY) and antioxidant activity (AA). Higher EE (67.7%), EY (25.7 mg/g), and AA (90%) were registered when an acoustic density of 333.3 W/L was used. Furthermore, both drying protocols promoted fisetin encapsulation, but through spray drying, the EE, EY, and AA were 11.5%, 11.1%, and 26.6% higher than via freeze-drying, respectively. This work proved that fully filled biocapsules were produced through sonoprocessing, and their morphology was influenced by the acoustic energy and drying process. Overall, these results open new perspectives for the application of sonoprocessing-assisted encapsulation, paving the way for developing innovative yeast-based delivery systems for lipophilic compounds such as fisetin. KEY POINTS: • Sonoprocessing improves the encapsulation of fisetin into S. cerevisiae cells • Spray drying promotes fisetin loading into yeasts' intracellular space and cavities • Fisetin binding with yeast extracellular agents are favored by freeze-drying.
Collapse
Affiliation(s)
- Eduardo Wagner Vasconcelos de Andrade
- Chemical Engineering Department, Bioprocess Laboratory, Universidade Federal Do Rio Grande Do Norte, Lagoa Nova, Natal, RN, 59078-900, Brazil
- Laboratory of Bioactive Compounds, Chemical Engineering Department, Universidade Federal Do Rio Grande Do Norte, Lagoa Nova, Natal, RN, 59078-900, Brazil
| | - Sebastien Dupont
- UMR Procédés Alimentaires Et Microbiologiques (PAM, UMR A 02.102), Univ. Bourgogne Franche-Comté, AgroSup Dijon, 21000, Dijon, France
| | - Laurent Beney
- UMR Procédés Alimentaires Et Microbiologiques (PAM, UMR A 02.102), Univ. Bourgogne Franche-Comté, AgroSup Dijon, 21000, Dijon, France
| | - Marlinda Lobo de Souza
- Embrapa Recursos Genéticos E Biotecnologia, Parque Estação Biológica, Final W5 Norte, Brasília, DF, 70770-900, Brazil
| | - Roberta Targino Hoskin
- Laboratory of Bioactive Compounds, Chemical Engineering Department, Universidade Federal Do Rio Grande Do Norte, Lagoa Nova, Natal, RN, 59078-900, Brazil
| | - Márcia Regina da Silva Pedrini
- Chemical Engineering Department, Bioprocess Laboratory, Universidade Federal Do Rio Grande Do Norte, Lagoa Nova, Natal, RN, 59078-900, Brazil.
| |
Collapse
|
12
|
de Andrade EWV, Hoskin RT, da Silva Pedrini MR. Ultrasound-assisted encapsulation of curcumin and fisetin into Saccharomyces cerevisiae cells: a multistage batch process protocol. Lett Appl Microbiol 2022; 75:1538-1548. [PMID: 36036364 DOI: 10.1111/lam.13820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
Abstract
Some of the challenges of yeast encapsulation protocols are low phytochemical internalization rates and limited intracellular compartment of yeasts. This study uses an ultrasound-assisted batch encapsulation (UABE) protocol to optimize the encapsulation of curcumin and fisetin by recovering non-encapsulated biomaterial and further incorporating it into non-loaded yeasts in three encapsulation stages (1ES, 2ES, and 3ES). The effect of selected acoustic energies (166.7 and 333.3 W L-1 ) on the encapsulation efficiency (EE), yield (EY), and antioxidant activity retention were evaluated, and then, compared with a control process (without ultrasound treatment). Compared to the control, enhanced EEs were achieved for both curcumin (10.9% control to 58.5% UABE) and fisetin (18.6% control to 76.6% UABE) after 3ES and the use of 333.3 W L-1 . Similarly, the yeast maximum loading capacity was improved from 6.6 to 13.4 mg g-1 for curcumin; and from 11.1 to 26.4 mg g-1 for fisetin after UABE protocol. The antioxidant activity of produced biocapsules was positively correlated with the bioactive loaded content of yeasts when ultrasound treatment was applied. Overall, results from this study provide valuable information regarding UABE processes, and moreover, bring new and creative perspectives for the ultrasound technology in the food industry.
Collapse
Affiliation(s)
- Eduardo Wagner Vasconcelos de Andrade
- Bioprocess Laboratory, Chemical Engineering Department, Universidade Federal do Rio Grande do Norte, Lagoa Nova, 59078-900, Natal, RN, Brazil.,Laboratory of Bioactive Compounds, Chemical Engineering Department, Universidade Federal do Rio Grande do Norte, Lagoa Nova, 59078-900, Natal, RN, Brazil
| | - Roberta Targino Hoskin
- Laboratory of Bioactive Compounds, Chemical Engineering Department, Universidade Federal do Rio Grande do Norte, Lagoa Nova, 59078-900, Natal, RN, Brazil
| | - Márcia Regina da Silva Pedrini
- Bioprocess Laboratory, Chemical Engineering Department, Universidade Federal do Rio Grande do Norte, Lagoa Nova, 59078-900, Natal, RN, Brazil
| |
Collapse
|
13
|
Gientka I, Wirkowska-Wojdyła M, Ostrowska-Ligęza E, Janowicz M, Reczek L, Synowiec A, Błażejak S. Enhancing Red Yeast Biomass Yield and Lipid Biosynthesis by Using Waste Nitrogen Source by Glucose Fed-Batch at Low Temperature. Microorganisms 2022; 10:microorganisms10061253. [PMID: 35744771 PMCID: PMC9229382 DOI: 10.3390/microorganisms10061253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
This work reports the effect of simple feeding strategies and temperature to obtain high-cell-density cultures of Rhodotorula glutinis var. rubescens LOCKR13 maximizing the de novo lipid productivity using deproteinated potato wastewater (DPW) as a basic medium. Feeding DPW with glucose enables a high yield of Rhodotorula glutinis var. rubescens LOCKR13 biomass (52 g d.w. L−1) to be obtained. The highest values of lipid accumulation (34.15%, w/w), production (14.68 g L−1) and yield coefficients (YL/S: 0.242 g g−1), and volumetric productivity (PL: 0.1 g L−1 h−1) were reached by the strain in the two-stage fed-batch process at 20 °C. The lipid of yeast biomass was rich in oleic acid (Δ9C18:1) and palmitic acid (C16:0), and the lower temperature of incubation significantly increased the MUFA (especially oleic acid) content. For the first time, a unique set of thermal analyses of the microbial oil was performed. The isotherms of the oxidation kinetics (PDSC) showed that lipids extracted from the biomass of red yeast had high oxidative stability. This feature of the yeast oil can be useful for long-shelf-life food products and can be promising for the production of biodiesel.
Collapse
Affiliation(s)
- Iwona Gientka
- Department of Food Biotechnology and Microbiology, Institute of Food Science, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland; (A.S.); (S.B.)
- Correspondence:
| | - Magdalena Wirkowska-Wojdyła
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 166, 02-787 Warsaw, Poland; (M.W.-W.); (E.O.-L.)
| | - Ewa Ostrowska-Ligęza
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 166, 02-787 Warsaw, Poland; (M.W.-W.); (E.O.-L.)
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland;
| | - Lidia Reczek
- Institute of Environmental Engineering, Warsaw University of Life Sciences–SGGW, Nowoursynowska Str. 166, 02-787 Warsaw, Poland;
| | - Alicja Synowiec
- Department of Food Biotechnology and Microbiology, Institute of Food Science, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland; (A.S.); (S.B.)
| | - Stanisław Błażejak
- Department of Food Biotechnology and Microbiology, Institute of Food Science, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland; (A.S.); (S.B.)
| |
Collapse
|
14
|
Zhang XY, Li B, Huang BC, Wang FB, Zhang YQ, Zhao SG, Li M, Wang HY, Yu XJ, Liu XY, Jiang J, Wang ZP. Production, Biosynthesis, and Commercial Applications of Fatty Acids From Oleaginous Fungi. Front Nutr 2022; 9:873657. [PMID: 35694158 PMCID: PMC9176664 DOI: 10.3389/fnut.2022.873657] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
Oleaginous fungi (including fungus-like protists) are attractive in lipid production due to their short growth cycle, large biomass and high yield of lipids. Some typical oleaginous fungi including Galactomyces geotrichum, Thraustochytrids, Mortierella isabellina, and Mucor circinelloides, have been well studied for the ability to accumulate fatty acids with commercial application. Here, we review recent progress toward fermentation, extraction, of fungal fatty acids. To reduce cost of the fatty acids, fatty acid productions from raw materials were also summarized. Then, the synthesis mechanism of fatty acids was introduced. We also review recent studies of the metabolic engineering strategies have been developed as efficient tools in oleaginous fungi to overcome the biochemical limit and to improve production efficiency of the special fatty acids. It also can be predictable that metabolic engineering can further enhance biosynthesis of fatty acids and change the storage mode of fatty acids.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bei-Chen Huang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Feng-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yue-Qi Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Shao-Geng Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Min Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zhi-Peng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
15
|
β-Glucans from Yeast—Immunomodulators from Novel Waste Resources. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
β-glucans are a large class of complex polysaccharides with bioactive properties, including immune modulation. Natural sources of these compounds include yeast, oats, barley, mushrooms, and algae. Yeast is abundant in various processes, including fermentation, and they are often discarded as waste products. The production of biomolecules from waste resources is a growing trend worldwide with novel waste resources being constantly identified. Yeast-derived β-glucans may assist the host’s defence against infections by influencing neutrophil and macrophage inflammatory and antibacterial activities. β-glucans were long regarded as an essential anti-cancer therapy and were licensed in Japan as immune-adjuvant therapy for cancer in 1980 and new mechanisms of action of these molecules are constantly emerging. This paper outlines yeast β-glucans’ immune-modulatory and anti-cancer effects, production and extraction, and their availability in waste streams.
Collapse
|
16
|
Yang F, Jin Z, Nawaz M, Xiao Y, Jiang Y, Hu J, Li J, Gao MT. Oligosaccharides in straw hydrolysate could improve the production of single-cell protein with Saccharomyces cerevisiae. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2928-2936. [PMID: 34762318 DOI: 10.1002/jsfa.11633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Using agricultural wastes to produce single-cell proteins (SCP) can reduce production costs effectively. The aims of this study were to investigate the effects of enzyme loading on the components of rice straw (RS) hydrolysate and their effects on the growth of yeast. RESULTS At the same glucose concentration, the dry weight of cells produced in the hydrolysate was 2.89 times higher than that in 2 g L-1 yeast extract (YE) medium, indicating that the hydrolysate was a suitable substrate for yeast growth. Ethanol precipitation followed by analysis showed that there were many oligosaccharides in the hydrolysate. The amount of cellulase had an important effect on the production of monosaccharides but had a smaller effect on the amounts and compositions of oligosaccharides. Adding oligosaccharides to the medium had no effect on ethanol production, but it promoted yeast growth and increased SCP production effectively. The results indicate that oligosaccharides were an important growth factor for yeast in the hydrolysate. Compared with YE medium, the cost of the medium with the hydrolysate was reduced by 68.47% when the same dry cell weight was obtained. CONCLUSION Oligosaccharides in the hydrolysate can improve SCP production with low nutrient cost. This finding could reduce the amounts of cellulase required during saccharification and nutrients during culture, providing a new low-cost method for SCP production. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fan Yang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zheng Jin
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Muhammad Nawaz
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ying Xiao
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yipeng Jiang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- Shandong Yunqing Biotechnology Co., Ltd, Zibo, China
| |
Collapse
|
17
|
Singh S, Pandey D, Saravanabhupathy S, Daverey A, Dutta K, Arunachalam K. Liquid wastes as a renewable feedstock for yeast biodiesel production: Opportunities and challenges. ENVIRONMENTAL RESEARCH 2022; 207:112100. [PMID: 34619127 DOI: 10.1016/j.envres.2021.112100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Microbial lipids (bacterial, yeast, or algal) production and its utilization as a feedstock for biodiesel production in a sustainable and economical way along with waste degradation is a promising technology. Oleaginous yeasts have demonstrated multiple advantages over algae and bacteria such as high lipid yields, lipid similarity to vegetable oil, and requirement of lesser area for cultivation. Oleaginous yeasts grown on lignocellulosic solid waste as renewable feedstocks have been widely reported and reviewed. Recently, industrial effluents and other liquid wastes have been evaluated as feedstocks for biodiesel production from oleaginous yeasts. The idea of the utilization of wastewater for the growth of oleaginous yeasts for simultaneous wastewater treatment and lipid production is gaining attention among researchers. However, the detailed knowledge on the economic aspects of different process involved during the conversion of oleaginous yeast into lipids hinders its large-scale application. Therefore, this review aims to provide an overview of yeast-derived biodiesel production by utilizing industrial effluents and other liquid wastes as feedstocks. Various technologies for biomass harvesting, lipid extraction and the economic aspects specifically focused on yeast biodiesel production were also analyzed and reported in this review. The utilization of liquid wastes and the incorporation of cost-efficient harvesting and lipid extraction strategy would facilitate large-scale commercialization of biodiesel production from oleaginous yeasts in near future.
Collapse
Affiliation(s)
- Sangeeta Singh
- National Institute of Technology Rourkela, Odisha, 769008, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India
| | | | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India.
| | - Kasturi Dutta
- National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Kusum Arunachalam
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India
| |
Collapse
|
18
|
Olive Pomace Phenolic Compounds Stability and Safety Evaluation: From Raw Material to Future Ophthalmic Applications. Molecules 2021; 26:molecules26196002. [PMID: 34641545 PMCID: PMC8512844 DOI: 10.3390/molecules26196002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Nowadays, increasing interest in olive pomace (OP) valorization aims to improve olive's industry sustainability. Interestingly, several studies propose a high-value application for OP extracts containing its main phenolic compounds, hydroxytyrosol and oleuropein, as therapy for ocular surface diseases. In this work, the stability and accessibility of OP total phenolic and flavonoid content, main representative compounds, and antioxidant activity were assessed under different pretreatment conditions. Among them, lyophilization and supercritical CO2 extraction were found to increase significantly most responses measured in the produced extracts. Two selected extracts (CONV and OPT3) were obtained by different techniques (conventional and pressurized liquid extraction); Their aqueous solutions were characterized by HPLC-DAD-MS/MS. Additionally, their safety and stability were evaluated according to EMA requirements towards their approval as ophthalmic products: their genotoxic effect on ocular surface cells and their 6-months storage stability at 4 different temperature/moisture conditions (CPMP/ICH/2736/99), together with pure hydroxytyrosol and oleuropein solutions. The concentration of hydroxytyrosol and oleuropein in pure or extract solutions was tracked, and possible degradation products were putatively identified by HPLC-DAD-MS/MS. Hydroxytyrosol and oleuropein had different stability as standard or extract solutions, with oleuropein also showing different degradation profile. All compounds/extracts were safe for ophthalmic use at the concentrations tested.
Collapse
|
19
|
Current Pretreatment/Cell Disruption and Extraction Methods Used to Improve Intracellular Lipid Recovery from Oleaginous Yeasts. Microorganisms 2021; 9:microorganisms9020251. [PMID: 33513696 PMCID: PMC7910848 DOI: 10.3390/microorganisms9020251] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
The production of lipids from oleaginous yeasts involves several stages starting from cultivation and lipid accumulation, biomass harvesting and finally lipids extraction. However, the complex and relatively resistant cell wall of yeasts limits the full recovery of intracellular lipids and usually solvent extraction is not sufficient to effectively extract the lipid bodies. A pretreatment or cell disruption method is hence a prerequisite prior to solvent extraction. In general, there are no recovery methods that are equally efficient for different species of oleaginous yeasts. Each method adopts different mechanisms to disrupt cells and extract the lipids, thus a systematic evaluation is essential before choosing a particular method. In this review, mechanical (bead mill, ultrasonication, homogenization and microwave) and nonmechanical (enzyme, acid, base digestions and osmotic shock) methods that are currently used for the disruption or permeabilization of oleaginous yeasts are discussed based on their principle, application and feasibility, including their effects on the lipid yield. The attempts of using conventional and “green” solvents to selectively extract lipids are compared. Other emerging methods such as automated pressurized liquid extraction, supercritical fluid extraction and simultaneous in situ lipid recovery using capturing agents are also reviewed to facilitate the choice of more effective lipid recovery methods.
Collapse
|
20
|
Spent Brewer's Yeast as a Source of Insoluble β-Glucans. Int J Mol Sci 2021; 22:ijms22020825. [PMID: 33467670 PMCID: PMC7829969 DOI: 10.3390/ijms22020825] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
In the brewing process, the consumption of resources and the amount of waste generated are high and due to a lot of organic compounds in waste-water, the capacity of natural regeneration of the environment is exceeded. Residual yeast, the second by-product of brewing is considered to have an important chemical composition. An approach with nutritional potential refers to the extraction of bioactive compounds from the yeast cell wall, such as β-glucans. Concerning the potential food applications with better textural characteristics, spent brewer’s yeast glucan has high emulsion stability and water-holding capacity fitting best as a fat replacer in different food matrices. Few studies demonstrate the importance and nutritional role of β-glucans from brewer’s yeast, and even less for spent brewer’s yeast, due to additional steps in the extraction process. This review focuses on describing the process of obtaining insoluble β-glucans (particulate) from spent brewer’s yeast and provides an insight into how a by-product from brewing can be converted to potential food applications.
Collapse
|