1
|
Ouyang B, Yang C, Lv Z, Chen B, Tong L, Shi J. Recent advances in environmental antibiotic resistance genes detection and research focus: From genes to ecosystems. ENVIRONMENT INTERNATIONAL 2024; 191:108989. [PMID: 39241334 DOI: 10.1016/j.envint.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance genes (ARGs) persistence and potential harm have become more widely recognized in the environment due to its fast-paced research. However, the bibliometric review on the detection, research hotspot, and development trend of environmental ARGs has not been widely conducted. It is essential to provide a comprehensive overview of the last 30 years of research on environmental ARGs to clarify the changes in the research landscape and ascertain future prospects. This study presents a visualized analysis of data from the Web of Science to enhance our understanding of ARGs. The findings indicate that solid-phase extraction provides a reliable method for extracting ARG. Technological advancements in commercial kits and microfluidics have facilitated the efficacy of ARGs extraction with significantly reducing processing times. PCR and its derivatives, DNA sequencing, and multi-omics technology are the prevalent methodologies for ARGs detection, enabling the expansion of ARG research from individual strains to more intricate microbial communities in the environment. Furthermore, due to the development of combination, hybridization and mass spectrometer technologies, considerable advancements have been achieved in terms of sensitivity and accuracy as well as lowering the cost of ARGs detection. Currently, high-frequency terms such as "Antibiotic Resistance, Antibiotics, and Metagenomics" are the center of attention for study in this area. Prominent topics include the investigation of anthropogenic impacts on environmental resistance, as well as the dynamics of migration, dissemination, and adaptation of environmental ARGs, etc. The research on environmental ARGs has made significant advancements in the fields of "Microbiology" and "Biotechnology Applied Microbiology". Over the past decade, there has been a notable increase in the fields of "Environmental Sciences Ecology" and "Engineering" with a similar growth trend observed in "Water Resources". These three domains are expected to continue driving extensive study within the realm of environmental ARGs.
Collapse
Affiliation(s)
- Bowei Ouyang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Cong Yang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Ziyue Lv
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Lei Tong
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China.
| | - Jianbo Shi
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Ferheen I, Spurio R, Marcheggiani S. Vehicle transmission of antibiotic-resistant pathogens mediated by plastic debris in aquatic ecosystems. iScience 2024; 27:110026. [PMID: 38883843 PMCID: PMC11179577 DOI: 10.1016/j.isci.2024.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/27/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Plastic materials are emerging environmental pollutants acting as potential vehicles for accumulation and spread of multidrug-resistant bacteria. The current study investigates the role of plastics in favoring the dispersal of specific pathogens and their associated antibiotic resistant genes (ARGs). Artificial plastic substrates (APSs) were submerged in seven sampling points of Lake Bracciano (Italy), and after one-month both APSs and raw water (RW) samples were collected. Through the combination of standard microbiological and biochemical techniques, 272 bacterial strains were identified and characterized for antibiotic resistant profiling. Our results revealed a notable difference in terms of diversity and abundance of pathogenic bacteria recovered from APSs, compared to RW. In addition, higher resistance patterns were detected in APSs isolates, with frequent appearance of relevant ARGs and class 1 integrons. These findings reinforce the idea that plastic materials in aquatic ecosystems serve as a reservoir for superbugs, significantly contributing to the dissemination of ARGs.
Collapse
Affiliation(s)
- Ifra Ferheen
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Roberto Spurio
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Stefania Marcheggiani
- Department of Environment and Primary Prevention, National Institute of Health, 00161 Rome, Italy
| |
Collapse
|
3
|
Nolan TM, Martin NA, Reynolds LJ, Sala-Comorera L, O'Hare GMP, O'Sullivan JJ, Meijer WG. Agricultural and urban practices are correlated to changes in the resistome of riverine systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172261. [PMID: 38583611 DOI: 10.1016/j.scitotenv.2024.172261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The objective of this study was to comprehensively characterise the resistome, the collective set of antimicrobial resistance genes in a given environment, of two rivers, from their source to discharge into the sea, as these flow through areas of different land use. Our findings reveal significant differences in the riverine resistome composition in areas of different land uses, with increased abundance and diversity of AMR in downstream agricultural and urban locations, with the resistome in urban areas more similar to the resistome in wastewater. The changes in resistome were accompanied by changes in microbial communities, with a reduction in microbial diversity in downstream agricultural and urban affected areas, driven mostly by increased relative abundance in the phyla, Bacteroidetes and Proteobacteria. These results provide insight into how pollution associated with agricultural and urban activities affects microbial communities and influences AMR in aquatic water bodies. These results add valuable insights to form effective strategies for mitigating and preserving aquatic ecosystems. Overall, our study highlights the critical role of the environment in the development and dissemination of AMR and underscores the importance of adopting a One Health approach to address this global public health threat.
Collapse
Affiliation(s)
- Tristan M Nolan
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Niamh A Martin
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Liam J Reynolds
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Laura Sala-Comorera
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Gregory M P O'Hare
- School of Computer Science and Statistics, Trinity College Dublin, Dublin 2, Ireland
| | - John J O'Sullivan
- UCD School of Civil Engineering, UCD Dooge Centre for Water Resources Research and UCD Earth Institute, University College Dublin, Dublin 4, Ireland
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
4
|
Franklin AM, Weller DL, Durso LM, Bagley M, Davis BC, Frye JG, Grim CJ, Ibekwe AM, Jahne MA, Keely SP, Kraft AL, McConn BR, Mitchell RM, Ottesen AR, Sharma M, Strain EA, Tadesse DA, Tate H, Wells JE, Williams CF, Cook KL, Kabera C, McDermott PF, Garland JL. A one health approach for monitoring antimicrobial resistance: developing a national freshwater pilot effort. FRONTIERS IN WATER 2024; 6:10.3389/frwa.2024.1359109. [PMID: 38855419 PMCID: PMC11157689 DOI: 10.3389/frwa.2024.1359109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Antimicrobial resistance (AMR) is a world-wide public health threat that is projected to lead to 10 million annual deaths globally by 2050. The AMR public health issue has led to the development of action plans to combat AMR, including improved antimicrobial stewardship, development of new antimicrobials, and advanced monitoring. The National Antimicrobial Resistance Monitoring System (NARMS) led by the United States (U.S) Food and Drug Administration along with the U.S. Centers for Disease Control and U.S. Department of Agriculture has monitored antimicrobial resistant bacteria in retail meats, humans, and food animals since the mid 1990's. NARMS is currently exploring an integrated One Health monitoring model recognizing that human, animal, plant, and environmental systems are linked to public health. Since 2020, the U.S. Environmental Protection Agency has led an interagency NARMS environmental working group (EWG) to implement a surface water AMR monitoring program (SWAM) at watershed and national scales. The NARMS EWG divided the development of the environmental monitoring effort into five areas: (i) defining objectives and questions, (ii) designing study/sampling design, (iii) selecting AMR indicators, (iv) establishing analytical methods, and (v) developing data management/analytics/metadata plans. For each of these areas, the consensus among the scientific community and literature was reviewed and carefully considered prior to the development of this environmental monitoring program. The data produced from the SWAM effort will help develop robust surface water monitoring programs with the goal of assessing public health risks associated with AMR pathogens in surface water (e.g., recreational water exposures), provide a comprehensive picture of how resistant strains are related spatially and temporally within a watershed, and help assess how anthropogenic drivers and intervention strategies impact the transmission of AMR within human, animal, and environmental systems.
Collapse
Affiliation(s)
- Alison M. Franklin
- United States (U.S.) Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| | - Daniel L. Weller
- U.S. Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Lisa M. Durso
- U.S. Department of Agriculture, Agricultural Research Service (USDA, ARS), Agroecosystem Management Research, Lincoln, NE, United States
| | - Mark Bagley
- United States (U.S.) Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| | - Benjamin C. Davis
- United States (U.S.) Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| | - Jonathan G. Frye
- USDA ARS, U.S. National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, Athens, GA, United States
| | - Christopher J. Grim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Abasiofiok M. Ibekwe
- USDA, ARS, Agricultural Water Efficiency and Salinity Research Unit, Riverside, CA, United States
| | - Michael A. Jahne
- United States (U.S.) Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| | - Scott P. Keely
- United States (U.S.) Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| | - Autumn L. Kraft
- Oak Ridge Institute for Science and Education, USDA, ARS, Beltsville, MD, United States
| | - Betty R. McConn
- Oak Ridge Institute for Science and Education, USDA, ARS, Beltsville, MD, United States
| | - Richard M. Mitchell
- Environmental Protection Agency, Office of Water, Washington, DC, United States
| | - Andrea R. Ottesen
- Center for Veterinary Medicine, National Antimicrobial Resistance Monitoring System (NARMS), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Manan Sharma
- USDA, ARS Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States
| | - Errol A. Strain
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Daniel A. Tadesse
- Center for Veterinary Medicine, National Antimicrobial Resistance Monitoring System (NARMS), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Heather Tate
- Center for Veterinary Medicine, National Antimicrobial Resistance Monitoring System (NARMS), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Jim E. Wells
- USDA, ARS, U.S. Meat Animal Research Center, Meat Safety and Quality, Clay Center, NE, United States
| | - Clinton F. Williams
- USDA, ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, United States
| | - Kim L. Cook
- USDA, ARS Nutrition, Food Safety and Quality National Program Staff, Beltsville, MD, United States
| | - Claudine Kabera
- Center for Veterinary Medicine, National Antimicrobial Resistance Monitoring System (NARMS), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Patrick F. McDermott
- Center for Veterinary Medicine, National Antimicrobial Resistance Monitoring System (NARMS), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Jay L. Garland
- United States (U.S.) Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| |
Collapse
|
5
|
Al-Otaibi NM, Alsulaiman B, Alreshoodi FM, Mukhtar LE, Alajel SM, Binsaeedan NM, Alshabrmi FM. Screening for Antibiotic Resistance Genes in Bacteria and the Presence of Heavy Metals in the Upstream and Downstream Areas of the Wadi Hanifah Valley in Riyadh, Saudi Arabia. Antibiotics (Basel) 2024; 13:426. [PMID: 38786154 PMCID: PMC11117234 DOI: 10.3390/antibiotics13050426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Valley surface water is considered a focal public health concern owing to the presence of multi-drug-resistant bacteria. The distribution of antimicrobial resistance (AMR) bacteria in the surface water is affected by the presence of multiple factors, including antibiotics coming from wastewater discharge or other contaminant sources such as pharmaceuticals, biocides, and heavy metals. Furthermore, there is evidence suggesting that high levels of antibiotic resistance genes (ARGs) can be transferred within bacterial communities under the influence of heavy metal stress. Hence, the primary aim of this study is to investigate the presence of heavy metals and bacterial ARGs in upstream as well as downstream locations of Wadi Hanifah Valley in Riyadh, Saudi Arabia. Sample collection was conducted at eighteen surface water sites within the valley in total. The selection of ARGs was associated with the most common antibiotics, including β-lactam, tetracycline, erythromycin, gentamicin, sulphonamide, chloramphenicol, vancomycin, trimethoprim, and colistin antibiotics, which were detected qualitatively using polymerase chain reaction (PCR) technology. The tested antibiotic resistance genes (ARGs) included (blaNDM-1 (for the antibiotic class Beta-lactamases), mecA (methicillin-resistant Staphylococcus aureus), tet(M) and tet(B) (for the antibiotic class Tetracycline), ampC (for the antibiotic class Beta-lactamases), vanA (for the antibiotic class vancomycin), mcr-1 (for the antibiotic class colistin), erm(B) (for the antibiotic class erythromycin), aac6'-Ie-aph2-Ia (for the antibiotic class Gentamicin), sulII (for the antibiotic class sulphonamide), catII (for the antibiotic class Chlorophincol), and dfrA1 (for the antibiotic class trimethoprim). Moreover, an assessment of the levels of heavy metals such as lithium (Li), beryllium (Be), chromium (Cr), cobalt (Co), arsenic (As), cadmium (Cd), tin (Sn), mercury (Hg), and lead (Pb) was conducted by using inductively coupled plasma mass spectrometry (ICPMS). According to our findings, the concentrations of sulphonamide, erythromycin, and chloramphenicol ARGs (erm(B), sulII, and catII) were observed to be the most elevated. Conversely, two ARGs, namely mecA and mcr-1, were not detected in the samples. Moreover, our data illustrated a significant rise in ARGs in the bacteria of water samples from the upstream sites as compared with the water samples from the downstream sites of Wadi Hanifah Valley. The mean concentration of Li, Be, Cr, Co, As, Cd, Sn, Hg, and Pb in the water samples was estimated to be 37.25 µg/L, 0.02 µg/L, 0.56 µg/L,0.32 µg/L, 0.93 µg/L, 0.01 µg/L, 200.4 µg/L, 0.027 µg/L, and 0.26 µg/L, respectively, for the selected 18 sites. Furthermore, it was revealed that the concentrations of the screened heavy metals in the water samples collected from various sites did not surpass the maximum limits set by the World Health Organization (WHO). In conclusion, this study offers a concise overview of the presence of heavy metals and ARGs in water samples obtained from the Wadi Hanifah Valley in Riyadh, KSA. Such findings will contribute to the ongoing monitoring and future risk assessment of ARGs spread in surface water.
Collapse
Affiliation(s)
- Norah M. Al-Otaibi
- Executive Department of Reference Laboratories, Research and Laboratories, Saudi Food and Drug Authority (SFDA), Riyadh 13513, Saudi Arabia; (N.M.A.-O.); (B.A.); (S.M.A.); (N.M.B.)
| | - Bassam Alsulaiman
- Executive Department of Reference Laboratories, Research and Laboratories, Saudi Food and Drug Authority (SFDA), Riyadh 13513, Saudi Arabia; (N.M.A.-O.); (B.A.); (S.M.A.); (N.M.B.)
| | - Fahad M. Alreshoodi
- Executive Department of Reference Laboratories, Research and Laboratories, Saudi Food and Drug Authority (SFDA), Riyadh 13513, Saudi Arabia; (N.M.A.-O.); (B.A.); (S.M.A.); (N.M.B.)
| | - Lenah E. Mukhtar
- Executive Department of Reference Laboratories, Research and Laboratories, Saudi Food and Drug Authority (SFDA), Riyadh 13513, Saudi Arabia; (N.M.A.-O.); (B.A.); (S.M.A.); (N.M.B.)
| | - Sulaiman M. Alajel
- Executive Department of Reference Laboratories, Research and Laboratories, Saudi Food and Drug Authority (SFDA), Riyadh 13513, Saudi Arabia; (N.M.A.-O.); (B.A.); (S.M.A.); (N.M.B.)
| | - Norah M. Binsaeedan
- Executive Department of Reference Laboratories, Research and Laboratories, Saudi Food and Drug Authority (SFDA), Riyadh 13513, Saudi Arabia; (N.M.A.-O.); (B.A.); (S.M.A.); (N.M.B.)
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
6
|
Spagnuolo R, Scarlata GGM, Paravati MR, Abenavoli L, Luzza F. Change in Diagnosis of Helicobacter pylori Infection in the Treatment-Failure Era. Antibiotics (Basel) 2024; 13:357. [PMID: 38667033 PMCID: PMC11047737 DOI: 10.3390/antibiotics13040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
Helicobacter pylori (H. pylori) infection is a prevalent global health issue, associated with several gastrointestinal disorders, including gastritis, peptic ulcers, and gastric cancer. The landscape of H. pylori treatment has evolved over the years, with increasing challenges due to antibiotic resistance and treatment failure. Traditional diagnostic methods, such as the urea breath test, stool antigen test, and endoscopy with biopsy, are commonly used in clinical practice. However, the emergence of antibiotic-resistant strains has led to a decline in treatment efficacy, necessitating a re-evaluation of common diagnostic tools. This narrative review aims to explore the possible changes in the diagnostic approach of H. pylori infection in the era of treatment failure. Molecular techniques, including polymerase chain reaction and whole genome sequencing, which have high sensitivity and specificity, allow the detection of genes associated with antibiotic resistance. On the other hand, culture isolation and a phenotypic antibiogram could be used in the diagnostic routine, although H. pylori is a fastidious bacterium. However, new molecular approaches are promising tools for detecting the pathogen and its resistance genes. In this regard, more real-life studies are needed to reveal new diagnostic tools suitable for identifying multidrug-resistant H. pylori strains and for outlining proper treatment.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Luzza
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (R.S.); (G.G.M.S.); (M.R.P.); (L.A.)
| |
Collapse
|
7
|
Kläui A, Bütikofer U, Naskova J, Wagner E, Marti E. Fresh produce as a reservoir of antimicrobial resistance genes: A case study of Switzerland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167671. [PMID: 37813266 DOI: 10.1016/j.scitotenv.2023.167671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Antimicrobial resistance (AMR) can be transferred to humans through food and fresh produce can be an ideal vector as it is often consumed raw or minimally processed. The production environment of fresh produce and the agricultural practices and regulations can vary substantially worldwide, and consequently, the contamination sources of AMR. In this study, 75 imported and 75 non-imported fresh produce samples purchased from Swiss retailers were tested for the presence of antimicrobial resistant bacteria (ARB) and antimicrobial resistance genes (ARGs). Moreover, the plasmidome of 4 selected samples was sequenced to have an insight on the diversity of mobile resistome. In total, 91 ARB were isolated from fresh produce, mainly cephalosporin-resistant Enterobacterales (n = 64) and carbapenem-resistant P. aeruginosa (n = 13). All P. aeruginosa, as well as 16 Enterobacterales' isolates were multidrug-resistant. No differences between imported and Swiss fresh produce were found regarding the number of ARB. In 95 % of samples at least one ARG was detected, being the most frequent sul1, blaTEM, and ermB. Abundance of sul1 and intI1 correlated strongly with the total amount of ARGs, suggesting they could be good indicators for AMR in fresh produce. Furthermore, sul1 correlated with the fecal marker yccT, indicating that fecal contamination could be one of the sources of AMR. The gene sulI was significantly higher in most imported samples, suggesting higher anthropogenic contamination in the food production chain of imported produce. The analyses of the plasmidome of coriander and carrot samples revealed the presence of several ARGs as well as genes conferring resistance to antiseptics and disinfectants in mobile genetic elements. Overall, this study demonstrated that fresh produce contributes to the dissemination of ARGs and ARB.
Collapse
Affiliation(s)
- Anita Kläui
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Ueli Bütikofer
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Javorka Naskova
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Elvira Wagner
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Elisabet Marti
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| |
Collapse
|
8
|
Teixeira AM, Vaz-Moreira I, Calderón-Franco D, Weissbrodt D, Purkrtova S, Gajdos S, Dottorini G, Nielsen PH, Khalifa L, Cytryn E, Bartacek J, Manaia CM. Candidate biomarkers of antibiotic resistance for the monitoring of wastewater and the downstream environment. WATER RESEARCH 2023; 247:120761. [PMID: 37918195 DOI: 10.1016/j.watres.2023.120761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Urban wastewater treatment plants (UWTPs) are essential for reducing the pollutants load and protecting water bodies. However, wastewater catchment areas and UWTPs emit continuously antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), with recognized impacts on the downstream environments. Recently, the European Commission recommended to monitor antibiotic resistance in UWTPs serving more than 100 000 population equivalents. Antibiotic resistance monitoring in environmental samples can be challenging. The expected complexity of these systems can jeopardize the interpretation capacity regarding, for instance, wastewater treatment efficiency, impacts of environmental contamination, or risks due to human exposure. Simplified monitoring frameworks will be essential for the successful implementation of analytical procedures, data analysis, and data sharing. This study aimed to test a set of biomarkers representative of ARG contamination, selected based on their frequent human association and, simultaneously, rare presence in pristine environments. In addition to the 16S rRNA gene, ten potential biomarkers (intI1, sul1, ermB, ermF, aph(3'')-Ib, qacEΔ1, uidA, mefC, tetX, and crAssphage) were monitored in DNA extracts (n = 116) from raw wastewater, activated sludge, treated wastewater, and surface water (upstream and downstream of UWTPs) samples collected in the Czech Republic, Denmark, Israel, the Netherlands, and Portugal. Each biomarker was sensitive enough to measure decreases (on average by up to 2.5 log-units gene copy/mL) from raw wastewater to surface water, with variations in the same order of magnitude as for the 16S rRNA gene. The use of the 10 biomarkers allowed the typing of water samples whose origin or quality could be predicted in a blind test. The results show that, based on appropriate biomarkers, qPCR can be used for a cost-effective and technically accessible approach to monitoring wastewater and the downstream environment.
Collapse
Affiliation(s)
- A Margarida Teixeira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, Porto 4169-005, Portugal
| | - Ivone Vaz-Moreira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, Porto 4169-005, Portugal
| | - David Calderón-Franco
- Department of Biotechnology, Environmental Biotechnology Section, Delft University of Technology, van der Maasweg 9, Delft, HZ 2629, the Netherlands
| | - David Weissbrodt
- Department of Biotechnology, Environmental Biotechnology Section, Delft University of Technology, van der Maasweg 9, Delft, HZ 2629, the Netherlands; Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim 7034, Norway
| | - Sabina Purkrtova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 5 Technická, Prague 166 28, Czech Republic
| | - Stanislav Gajdos
- Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology Prague, 5 Technická, Prague 166 28, Czech Republic
| | - Giulia Dottorini
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg 9220, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg 9220, Denmark
| | - Leron Khalifa
- Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agricultural Research Organization, P.O Box 15159, Rishon Lezion 7528809, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agricultural Research Organization, P.O Box 15159, Rishon Lezion 7528809, Israel
| | - Jan Bartacek
- Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology Prague, 5 Technická, Prague 166 28, Czech Republic
| | - Célia M Manaia
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, Porto 4169-005, Portugal.
| |
Collapse
|
9
|
Li X, Xie J, Ding C, Du H, Gao S, Ma W, Liang F, Zhang H, Wang A. Occurrence, fate and potential health risks of antibiotic resistomes in a constructed wetlands-reservoir ecosystem for drinking water source improvement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166055. [PMID: 37543322 DOI: 10.1016/j.scitotenv.2023.166055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/16/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The development of effective and feasible engineering technologies to control the transmission of antibiotic resistance genes (ARGs) and pathogenic antibiotic-resistant bacteria (PARB) form drinking water sources is urgently needed for ensuring drinking water safety. In this study, metagenomic analysis was applied to systematically explore the full profiles, removal, and potential health risks of antibiotic resistomes in a large constructed wetlands-reservoir ecosystem (CWs-R) for drinking water source improvement. A total of 343 ARG subtypes belonging to 18 ARG types were identified from water and sediment samples in the CWs-R ecosystem, with an average abundance of 0.339 copies/cell, and bacitracin and multidrug resistance genes were the predominant ARG types in the water and sediment, respectively. The CWs-R ecosystem showed an excellent removal efficiency of ARGs and mobile genetic elements (MGEs) in water, with the total removal rate reaching 64.82 % and 77.09 %, respectively, among which the emergent plant zone and ecological storage unit played major roles. The metagenomic assembly tracked many mobile ARGs and opportunistic pathogens in the CWs-R ecosystem and identified 19 contigs as ARG-carrying pathogens, including Staphylococcus aureus, Salmonella enterica, Escherichia coli, and Klebsiella pneumonia. Overall, the CWs-R ecosystem has an important role in reducing the potential public health risks posed by antibiotic resistomes in drinking water sources but still cannot fully eliminate them. Therefore, we further classified water and sediment samples in the CWs-R ecosystem and identified potential ARGs and PARB indicators based on the metagenomic analysis results by considering the potential for horizontal transfer of ARGs to opportunistic pathogens. Taken together, this work demonstrates the CWs-R ecosystem as an economical and feasible engineering technology to reduce the dissemination of antibiotic resistomes in the drinking water source, provides useful information for monitoring and controlling antibiotic resistance in similar water sources, and ensures biosafety of drinking water.
Collapse
Affiliation(s)
- Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jiahao Xie
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Cheng Ding
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| | - Hongqiu Du
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Weixing Ma
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Feng Liang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Center for Water and Environmental Technology, YCEST, Yancheng 224051, PR China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Aijie Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| |
Collapse
|
10
|
Geuther N, Mbarushimana D, Habarugira F, Buregeya JD, Kollatzsch M, Pfüller R, Mugabowindekwe M, Ndoli J, Mockenhaupt FP. ESBL-producing Enterobacteriaceae in a rural Rwandan community: Carriage among community members, livestock, farm products and environment. Trop Med Int Health 2023; 28:855-863. [PMID: 37752871 DOI: 10.1111/tmi.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
OBJECTIVES Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-PE) are spreading globally. However, respective data from African communities including livestock and environmental specimens are rare. In a rural community of southern Rwanda, we assessed intestinal carriage of ESBL-PE among residents and livestock as well as presence in household specimens and examined associated factors. METHODS Samples of humans and livestock (both rectal swabs), soil, water, vegetables and animal products were collected within 312 community households in Sovu, Southern Rwanda. Specimens were screened for ESBL-PE on chromogenic agar, and susceptibility to common antibiotics was determined by disc diffusion assays. Socio-demographic information was collected with questionnaires focusing on the socio-economic background, alimentation, living conditions, hygiene measures and medical history of the participants. RESULTS Data and specimens from 312 randomly selected households including 617 human beings, 620 livestock and of approximately each 300 kitchen vegetables, animal products, soil and drinking water were analysed. Overall, 14.8% of 2508 collected samples were positive for ESBL-PE; figures were highest for humans (37.9%) and livestock (15.6%), lower for vegetables (3.8%) and animal products (3.3%), and lowest for soil (1.6%) and water (0.6%). Most detected ESBL-PE were Escherichia coli (93.5%) in addition to Klebsiella pneumoniae (6.5%). Cross-resistance to ampicillin-sulbactam, ciprofloxacin and co-trimoxazole was common. Logistic regression identified increasing age, another ESBL-PE positive household member, prolonged time for fetching water, current diarrhoea and the ability to pay school fees as independent predictors of intestinal ESBL-PE carriage among community members. CONCLUSIONS ESBL-PE carriage is common in a rural Rwandan farming community. Carriage in livestock is not associated with human carriage. Associated factors suggest few addressable risk factors. The data indicate that in southern Rwanda, ESBL-PE are no longer primarily hospital-based but circulate in the community.
Collapse
Affiliation(s)
- Nadja Geuther
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Center for Global Health, Institute of International Health, Berlin, Germany
| | | | | | | | - Mandy Kollatzsch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Center for Global Health, Institute of International Health, Berlin, Germany
| | | | - Maurice Mugabowindekwe
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Centre for GIS and Remote Sensing, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Jules Ndoli
- University Teaching Hospital of Butare, Butare, Rwanda
| | - Frank P Mockenhaupt
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Center for Global Health, Institute of International Health, Berlin, Germany
| |
Collapse
|
11
|
K S, Vasanthrao R, Chattopadhyay I. Impact of environment on transmission of antibiotic-resistant superbugs in humans and strategies to lower dissemination of antibiotic resistance. Folia Microbiol (Praha) 2023; 68:657-675. [PMID: 37589876 DOI: 10.1007/s12223-023-01083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Antibiotics are the most efficient type of therapy developed in the twentieth century. From the early 1960s to the present, the rate of discovery of new and therapeutically useful classes of antibiotics has significantly decreased. As a result of antibiotic use, novel strains emerge that limit the efficiency of therapies in patients, resulting in serious consequences such as morbidity or mortality, as well as clinical difficulties. Antibiotic resistance has created major concern and has a greater impact on global health. Horizontal and vertical gene transfers are two mechanisms involved in the spread of antibiotic resistance genes (ARGs) through environmental sources such as wastewater treatment plants, agriculture, soil, manure, and hospital-associated area discharges. Mobile genetic elements have an important part in microbe selection pressure and in spreading their genes into new microbial communities; additionally, it establishes a loop between the environment, animals, and humans. This review contains antibiotics and their resistance mechanisms, diffusion of ARGs, prevention of ARG transmission, tactics involved in microbiome identification, and therapies that aid to minimize infection, which are explored further below. The emergence of ARGs and antibiotic-resistant bacteria (ARB) is an unavoidable threat to global health. The discovery of novel antimicrobial agents derived from natural products shifts the focus from chemical modification of existing antibiotic chemical composition. In the future, metagenomic research could aid in the identification of antimicrobial resistance genes in the environment. Novel therapeutics may reduce infection and the transmission of ARGs.
Collapse
Affiliation(s)
- Suganya K
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610101, India
| | - Ramavath Vasanthrao
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610101, India
| | - Indranil Chattopadhyay
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610101, India.
| |
Collapse
|
12
|
Kaiser RA, Polk JS, Datta T, Keely SP, Brinkman NE, Parekh RR, Agga GE. Occurrence and prevalence of antimicrobial resistance in urban karst groundwater systems based on targeted resistome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162571. [PMID: 36871706 PMCID: PMC10449245 DOI: 10.1016/j.scitotenv.2023.162571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial resistance (AMR) is a global crisis threatening human, animal, and environmental health. The natural environment, specifically water resources, has been recognized as a reservoir and dissemination pathway for AMR; however, urban karst aquifer systems have been overlooked. This is a concern as these aquifer systems provide drinking water to about 10 % of the global population; yet, the urban influence on the resistome in these vulnerable aquifers is sparingly explored. This study used high-throughput qPCR to determine the occurrence and relative abundance of antimicrobial resistant genes (ARG) in a developing urban karst groundwater system in Bowling Green, KY. Ten sites throughout the city were sampled weekly and analyzed for 85 ARGs, as well as seven microbial source tracking (MST) genes for human and animal sources, providing a spatiotemporal understanding of the resistome in urban karst groundwater. To further understand ARGs in this environment, potential drivers (landuse, karst feature type, season, source of fecal pollution) were considered in relation to the resistome relative abundance. The MST markers highlighted a prominent human influence to the resistome in this karst setting. The concentration of targeted genes varied between the sample weeks, but all targeted ARGs were prevalent throughout the aquifer regardless of karst feature type or season, with high concentrations captured for sulfonamide (sul1), quaternary ammonium compound (qacE), and aminoglycoside (strB) antimicrobial classes. Higher prevalence and relative abundance were detected during the summer and fall seasons, as well as at the spring features. Linear discriminant analysis suggested that karst feature type had higher influence on ARGs in the aquifer compared to season and the source of fecal pollution had the least influence. These findings can contribute to the development of effective management and mitigation strategies for AMR.
Collapse
Affiliation(s)
- Rachel A Kaiser
- School of Environmental Studies, College of Interdisciplinary Studies, Tennessee Technological University, 1 William L Jones Drive, Cookeville, TN 38505, United States.
| | - Jason S Polk
- Earth, Environmental, and Atmospheric Sciences Department, Ogden College of Science and Engineering, 1906 College Heights Blvd., Bowling Green, KY 42101, United States
| | - Tania Datta
- Department of Civil and Environmental Engineering, College of Engineering, Tennessee Technological University, 1 William L Jones Drive, Cookeville, TN 38505, United States
| | - Scott P Keely
- United States Environmental Protection Agency, 26 Martin Luther King Drive West, Cincinnati, OH 45220, United States
| | - Nichole E Brinkman
- United States Environmental Protection Agency, 26 Martin Luther King Drive West, Cincinnati, OH 45220, United States
| | - Rohan R Parekh
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, 2413 Nashville Road B5, Bowling Green, KY 42101, United States
| | - Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, 2413 Nashville Road B5, Bowling Green, KY 42101, United States
| |
Collapse
|
13
|
Habibi N, Uddin S, Behbehani M, Kishk M, Abdul Razzack N, Zakir F, Shajan A. Antibiotic Resistance Genes in Aerosols: Baseline from Kuwait. Int J Mol Sci 2023; 24:ijms24076756. [PMID: 37047728 PMCID: PMC10095457 DOI: 10.3390/ijms24076756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats to human health worldwide. The World Health Organization (WHO, Geneva, Switzerland) has launched the "One-Health" approach, which encourages assessment of antibiotic-resistant genes (ARGs) within environments shared by human-animals-plants-microbes to constrain and alleviate the development of AMR. Aerosols as a medium to disseminate ARGs, have received minimal attention. In the present study, we investigated the distribution and abundance of ARGs in indoor and outdoor aerosols collected from an urban location in Kuwait and the interior of three hospitals. The high throughput quantitative polymerase chain reaction (HT-qPCR) approach was used for this purpose. The results demonstrate the presence of aminoglycoside, beta-lactam, fluoroquinolone, tetracycline, macrolide-lincosamide-streptogramin B (MLSB), multidrug-resistant (MDR) and vancomycin-resistant genes in the aerosols. The most dominant drug class was beta-lactam and the genes were IMP-2-group (0.85), Per-2 group (0.65), OXA-54 (0.57), QnrS (0.50) and OXA-55 (0.55) in the urban non-clinical settings. The indoor aerosols possessed a richer diversity (Observed, Chao1, Shannon's and Pielou's evenness) of ARGs compared to the outdoors. Seasonal variations (autumn vs. winter) in relative abundances and types of ARGs were also recorded (R2 of 0.132 at p < 0.08). The presence of ARGs was found in both the inhalable (2.1 µm, 1.1 µm, 0.7 µm and < 0.3 µm) and respirable (>9.0 µm, 5.8 µm, 4.7 µm and 3.3 µm) size fractions within hospital aerosols. All the ARGs are of pathogenic bacterial origin and are hosted by pathogenic forms. The findings present baseline data and underpin the need for detailed investigations looking at aerosol as a vehicle for ARG dissemination among human and non-human terrestrial biota.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Montaha Behbehani
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Mohamed Kishk
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Nasreem Abdul Razzack
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Farhana Zakir
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Anisha Shajan
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| |
Collapse
|
14
|
Leff LG, Fasina K, Engohang-Ndong J. Detecting antibiotic resistance genes in anthropogenically impacted streams and rivers. Curr Opin Biotechnol 2023; 79:102878. [PMID: 36621219 DOI: 10.1016/j.copbio.2022.102878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023]
Abstract
Streams and rivers are widely impacted by human activities ranging from hydrological modifications to point and nonpoint pollution. Among the pollutants that enter lotic ecosystems are pharmaceuticals and personal care products, including antibiotics, that may play a role in the occurrence of antibiotic resistance genes (ARGs). Oftentimes, ARGs are detected based on culturing of bacteria or by using quantitative polymerase chain reaction; the limitations of these methods create barriers to our understanding. Use of more exhaustive methods, such as metagenomics, may overcome some of these barriers. The public health and ecological impacts of ARGs may be profound but are largely understudied. Antibiotic resistance is a growing concern for public health.
Collapse
Affiliation(s)
- Laura G Leff
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent OH 44236, USA.
| | - Kolapo Fasina
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent OH 44236, USA
| | - Jean Engohang-Ndong
- Department of Biological Sciences, Kent State University - Tuscarawas, 330 University DR. NE, New Philadelphia, OH 44663, USA
| |
Collapse
|
15
|
Bliss SS, Abraha EA, Fuhrmeister ER, Pickering AJ, Bascom-Slack CA. Learning and STEM identity gains from an online module on sequencing-based surveillance of antimicrobial resistance in the environment: An analysis of the PARE-Seq curriculum. PLoS One 2023; 18:e0282412. [PMID: 36897842 PMCID: PMC10004520 DOI: 10.1371/journal.pone.0282412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
COVID-19 necessitated the rapid transition to online learning, challenging the ability of Science, Technology, Engineering, and Math (STEM) professors to offer laboratory experiences to their students. As a result, many instructors sought online alternatives. In addition, recent literature supports the capacity of online curricula to empower students of historically underrepresented identities in STEM fields. Here, we present PARE-Seq, a virtual bioinformatics activity highlighting approaches to antimicrobial resistance (AMR) research. Following curricular development and assessment tool validation, pre- and post-assessments of 101 undergraduates from 4 institutions revealed that students experienced both significant learning gains and increases in STEM identity, but with small effect sizes. Learning gains were marginally modified by gender, race/ethnicity, and number of extracurricular work hours per week. Students with more extracurricular work hours had significantly lower increase in STEM identity score after course completion. Female-identifying students saw greater learning gains than male-identifying, and though not statistically significant, students identifying as an underrepresented minority reported larger increases in STEM identity score. These findings demonstrate that even short course-based interventions have potential to yield learning gains and improve STEM identity. Online curricula like PARE-Seq can equip STEM instructors to utilize research-driven resources that improve outcomes for all students, but support must be prioritized for students working outside of school.
Collapse
Affiliation(s)
- Scarlet S. Bliss
- Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Medford, Massachusetts, United States of America
- Center for Science Education, Department of Medical Education, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Eve A. Abraha
- Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Medford, Massachusetts, United States of America
| | - Erica R. Fuhrmeister
- Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Medford, Massachusetts, United States of America
| | - Amy J. Pickering
- Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Medford, Massachusetts, United States of America
| | - Carol A. Bascom-Slack
- Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Medford, Massachusetts, United States of America
- Center for Science Education, Department of Medical Education, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Waśko I, Kozińska A, Kotlarska E, Baraniak A. Clinically Relevant β-Lactam Resistance Genes in Wastewater Treatment Plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113829. [PMID: 36360709 PMCID: PMC9657204 DOI: 10.3390/ijerph192113829] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 05/17/2023]
Abstract
Antimicrobial resistance (AMR) is one of the largest global concerns due to its influence in multiple areas, which is consistent with One Health's concept of close interconnections between people, animals, plants, and their shared environments. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) circulate constantly in various niches, sediments, water sources, soil, and wastes of the animal and plant sectors, and is linked to human activities. Sewage of different origins gets to the wastewater treatment plants (WWTPs), where ARB and ARG removal efficiency is still insufficient, leading to their transmission to discharge points and further dissemination. Thus, WWTPs are believed to be reservoirs of ARGs and the source of spreading AMR. According to a World Health Organization report, the most critical pathogens for public health include Gram-negative bacteria resistant to third-generation cephalosporins and carbapenems (last-choice drugs), which represent β-lactams, the most widely used antibiotics. Therefore, this paper aimed to present the available research data for ARGs in WWTPs that confer resistance to β-lactam antibiotics, with a particular emphasis on clinically important life-threatening mechanisms of resistance, including extended-spectrum β-lactamases (ESBLs) and carbapenemases (KPC, NDM).
Collapse
Affiliation(s)
- Izabela Waśko
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
- Correspondence: ; Tel.: +48-228-410-623
| | - Aleksandra Kozińska
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
| | - Ewa Kotlarska
- Genetics and Marine Biotechnology Department, Institute of Oceanology of the Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland
| | - Anna Baraniak
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
| |
Collapse
|
17
|
Røken M, Forfang K, Wasteson Y, Haaland AH, Eiken HG, Hagen SB, Bjelland AM. Antimicrobial resistance- Do we share more than companionship with our dogs? J Appl Microbiol 2022; 133:1027-1039. [PMID: 35596927 PMCID: PMC9542740 DOI: 10.1111/jam.15629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022]
Abstract
Aims To investigate and compare antimicrobial resistance genes (ARGs) in faeces from cohabiting dogs and owners. Methods and Results DNA from faecal samples from 35 dogs and 35 owners was screened for the presence of 34 clinically relevant ARGs using high throughput qPCR. In total, 24 and 25 different ARGs were present in the dog and owner groups, respectively. The households had a mean of 9.9 ARGs present, with dogs and owners sharing on average 3.3 ARGs. ARGs were shared significantly more in households with dogs over 6 years old (3.5, interquartile range 2.75–5.0) than in households with younger dogs (2.5, interquartile range 2.0–3.0) (p = 0.02). Dogs possessed significantly more mecA and aminoglycoside resistance genes than owners. Conclusions Dogs and owners can act as reservoirs for a broad range of ARGs belonging to several antimicrobial resistance classes. A modest proportion of the same resistance genes were present in both dogs and owners simultaneously, indicating that ARG transmission between the dog and human gut is of minor concern in the absence of antimicrobial selection. Significance and Impact of the Study This study provides insight into the common dog and human gut resistomes, contributing to an improved knowledge base in risk assessments regarding ARG transmission between dogs and humans.
Collapse
Affiliation(s)
- Mari Røken
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine Department of Paraclinical Sciences, Ås, Norway
| | - Kristin Forfang
- Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Ås, Norway
| | - Yngvild Wasteson
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine Department of Paraclinical Sciences, Ås, Norway
| | - Anita Haug Haaland
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine Department of Companion Animal Clinical Sciences, Ås, Norway
| | - Hans Geir Eiken
- Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Ås, Norway
| | - Snorre B Hagen
- Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Ås, Norway
| | - Ane Mohn Bjelland
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine Department of Paraclinical Sciences, Ås, Norway
| |
Collapse
|
18
|
Antibiotic Resistance in the Drinking Water: Old and New Strategies to Remove Antibiotics, Resistant Bacteria, and Resistance Genes. Pharmaceuticals (Basel) 2022; 15:ph15040393. [PMID: 35455389 PMCID: PMC9029892 DOI: 10.3390/ph15040393] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Bacterial resistance is a naturally occurring process. However, bacterial antibiotic resistance has emerged as a major public health problem in recent years. The accumulation of antibiotics in the environment, including in wastewaters and drinking water, has contributed to the development of antibiotic resistant bacteria and the dissemination of antibiotic resistance genes (ARGs). Such can be justified by the growing consumption of antibiotics and their inadequate elimination. The conventional water treatments are ineffective in promoting the complete elimination of antibiotics and bacteria, mainly in removing ARGs. Therefore, ARGs can be horizontally transferred to other microorganisms within the aquatic environment, thus promoting the dissemination of antibiotic resistance. In this review, we discuss the efficiency of conventional water treatment processes in removing agents that can spread/stimulate the development of antibiotic resistance and the promising strategies for water remediation, mainly those based on nanotechnology and microalgae. Despite the potential of some of these approaches, the elimination of ARGs remains a challenge that requires further research. Moreover, the development of new processes must avoid the release of new contaminants for the environment, such as the chemicals resulting from nanomaterials synthesis, and consider the utilization of green and eco-friendly alternatives such as biogenic nanomaterials and microalgae-based technologies.
Collapse
|
19
|
Aslam B, Khurshid M, Arshad MI, Muzammil S, Rasool M, Yasmeen N, Shah T, Chaudhry TH, Rasool MH, Shahid A, Xueshan X, Baloch Z. Antibiotic Resistance: One Health One World Outlook. Front Cell Infect Microbiol 2021; 11:771510. [PMID: 34900756 PMCID: PMC8656695 DOI: 10.3389/fcimb.2021.771510] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/29/2021] [Indexed: 01/07/2023] Open
Abstract
Antibiotic resistance (ABR) is a growing public health concern worldwide, and it is now regarded as a critical One Health issue. One Health's interconnected domains contribute to the emergence, evolution, and spread of antibiotic-resistant microorganisms on a local and global scale, which is a significant risk factor for global health. The persistence and spread of resistant microbial species, and the association of determinants at the human-animal-environment interface can alter microbial genomes, resulting in resistant superbugs in various niches. ABR is motivated by a well-established link between three domains: human, animal, and environmental health. As a result, addressing ABR through the One Health approach makes sense. Several countries have implemented national action plans based on the One Health approach to combat antibiotic-resistant microbes, following the Tripartite's Commitment Food and Agriculture Organization (FAO)-World Organization for Animal Health (OIE)-World Health Organization (WHO) guidelines. The ABR has been identified as a global health concern, and efforts are being made to mitigate this global health threat. To summarize, global interdisciplinary and unified approaches based on One Health principles are required to limit the ABR dissemination cycle, raise awareness and education about antibiotic use, and promote policy, advocacy, and antimicrobial stewardship.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Maria Rasool
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nafeesa Yasmeen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Taif Shah
- Faculty of Life Science and Technology, Kunming University Science and Technology, Kunming, Yunnan, China
| | - Tamoor Hamid Chaudhry
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
- Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan
| | | | - Aqsa Shahid
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, Pakistan
| | - Xia Xueshan
- Faculty of Life Science and Technology, Kunming University Science and Technology, Kunming, Yunnan, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
20
|
Howe AC, Soupir ML. Antimicrobial resistance in integrated agroecosystems: State of the science and future opportunities. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1255-1265. [PMID: 34528726 DOI: 10.1002/jeq2.20289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
As the Journal of Environmental Quality (JEQ) celebrates 50 years of publication, the division of environmental microbiology is one of the newest additions to the journal. During this time, significant advances in understanding of the interconnected microbial community and impact of the microbiome on natural and designed environmental systems have occurred. In this review, we highlight the intractable challenge of antimicrobial resistance (AMR) on humans, animals, and the environment, with particular emphasis on the role of integrated agroecosystems and by highlighting contributions published in JEQ. From early studies of phenotypic resistance of indicator organisms in waters systems to current calls for integrating AMR assessment across "One Health," publications in JEQ have advanced our understanding of AMR. As we reflect on the state of the science, we emphasize future opportunities. First, integration of phenotypic and molecular tools for assessing environmental spread of AMR and human health risk continues to be an urgent research need for a one health approach to AMR. Second, monitoring AMR levels in manure is recommended to understand inputs and potential spread through agroecosystems. Third, baseline knowledge of AMR levels is important to realize the impact of manure inputs on water quality and public health risk; this can be achieved through background monitoring or identifying the source-related genes or organisms. And finally, conservation practices designed to meet nutrient reduction goals should be explored for AMR reduction potential.
Collapse
Affiliation(s)
- Adina C Howe
- Dep. of Agricultural and Biosystems Engineering, Iowa State Univ., Ames, IA, 50011, USA
| | - Michelle L Soupir
- Dep. of Agricultural and Biosystems Engineering, Iowa State Univ., Ames, IA, 50011, USA
| |
Collapse
|