1
|
Zhao N, Guo W, Li J, Wang H, Guo X. Rapid and accurate identification of yeast subspecies by MALDI-MS combined with a cell membrane disruption reagent. Food Chem 2024; 457:140102. [PMID: 38905823 DOI: 10.1016/j.foodchem.2024.140102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been widely used for microbial analysis. However, due to the impenetrable shell of fungi the direct identification of fungi remains challenges. Targeting on this problem, the yeast Saccharomyces cerevisiae (S. cerevisiae) was selected as a model fungus, and a new fungal cell membrane disruption reagent C18-G1 was used before MALDI-MS detection. As a result, much more intensive peaks which distributed in wider m/z range of S. cerevisiae have been identified in comparison with the use of traditional fungal pretreatment methods. Furthermore, a differential peak at m/z 4993 between two subspecies of S. cerevisiae has been identified. The corresponding protein with exclusive sequence of the specific peak was obtained based on MS/MS fragments and database searching. In addition, the method was successfully applied for the discrimination of four commercial yeasts.
Collapse
Affiliation(s)
- Nan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wei Guo
- Department of Nuclear Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jiarui Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Morales-López S, Ustate K, Pedrozo Z, Torres Y. Biochemical typing and evaluation of pathogenicity in vulvovaginal isolates of Candida albicans complex. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:194-205. [PMID: 37721915 PMCID: PMC10588967 DOI: 10.7705/biomedica.6861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 09/20/2023]
Abstract
Introduction Candida albicans, C. dubliniensis, and C. africana form the Candida albicans complex. Objective To identify the phenotypic and pathogenic characteristics of isolates of the C. albicans complex preserved in a collection. Materials and methods Three hundred presumptive strains of the C. albicans complex were evaluated using CHROMagarTM Candida. Germ tube production was determined by three methods, chlamydospores formation was assessed and colonies were characterized in artisanal agars (Rosmarinus officinalis and Nicotiana tabacum). MALDI-TOF was used as the gold standard identification test. To detect pathogenicity factors, we evaluated the hemolytic activity of each isolate and cocultured with Staphylococcus aureus, coagulase enzyme production, and biofilm formation. Results Out of the 300 isolates, 43.7% produced germ tube in the heart-brain infusion broth and 47% of the isolates produced chlamydospores. In the artisan media, 6% of the isolates produced brown colonies on rosemary agar and 5% did so on tobacco agar. None of the strains hemolyzed the blood agar alone or cocultured with S. aureus. However, 50% of the isolates hemolyzed the potato dextrose agar supplemented with blood. All strains were coagulase producers, and biofilm production was variable. For germ tube production, the human serum method showed the same positivity as the milk broth method. All isolates were identified as C. albicans by MALDI-TOF. Conclusions The use of proteomics, molecular tests or a combination of methods is required for species identification.
Collapse
Affiliation(s)
- Soraya Morales-López
- Grupo CINBIOS, Programa de Microbiología, Universidad Popular del Cesar, Valledupar, Colombia; Laboratorios Nancy Flórez García S.A.S., Valledupar, Colombia.
| | - Keiner Ustate
- Grupo CINBIOS, Programa de Microbiología, Universidad Popular del Cesar, Valledupar, Colombia.
| | - Zulay Pedrozo
- Grupo CINBIOS, Programa de Microbiología, Universidad Popular del Cesar, Valledupar, Colombia.
| | - Yulibeth Torres
- Grupo CINBIOS, Programa de Microbiología, Universidad Popular del Cesar, Valledupar, Colombia.
| |
Collapse
|
3
|
Zhu Y, Girault HH. Algorithms push forward the application of MALDI–TOF mass fingerprinting in rapid precise diagnosis. VIEW 2023. [DOI: 10.1002/viw.20220042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Yingdi Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou China
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Hubert H. Girault
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| |
Collapse
|
4
|
Fan X, Dai RC, Kudinha T, Gu L. A pseudo-outbreak of Cyberlindnera fabianii funguria: Implication from whole genome sequencing assay. Front Cell Infect Microbiol 2023; 13:1130645. [PMID: 36960046 PMCID: PMC10030058 DOI: 10.3389/fcimb.2023.1130645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Background Although the yeast Cyberlindnera fabianii (C. fabianii) has been rarely reported in human infections, nosocomial outbreaks caused by this organism have been documented. Here we report a pseudo-outbreak of C. fabianii in a urology department of a Chinese hospital over a two-week period. Methods Three patients were admitted to the urology department of a tertiary teaching hospital in Beijing, China, from Nov to Dec 2018, for different medical intervention demands. During the period Nov 28 to Dec 5, funguria occurred in these three patients, and two of them had positive urine cultures multiple times. Sequencing of rDNA internal transcribed spacer (ITS) region and MALDI-TOF MS were applied for strain identification. Further, sequencing of rDNA non-transcribed spacer (NTS) region and whole genome sequencing approaches were used for outbreak investigation purpose. Results All the cultured yeast strains were identified as C. fabianii by sequencing of ITS region, and were 100% identical to the C. fabianii type strain CBS 5640T. However, the MALDI-TOF MS system failed to correctly identify this yeast pathogen. Moreover, isolates from these three clustered cases shared 99.91%-100% identical NTS region sequences, which could not rule out the possibility of an outbreak. However, whole genome sequencing results revealed that only two of the C. fabianii cases were genetically-related with a pairwise SNP of 192 nt, whilst the third case had over 26,000 SNPs on its genome, suggesting a different origin. Furthermore, the genomes of the first three case strains were phylogenetically even more diverged when compared to a C. fabianii strain identified from another patient, who was admitted to a general surgical department of the same hospital 7 months later. One of the first three patients eventually passed away due to poor general conditions, one was asymptomatic, and other clinically improved. Conclusion In conclusion, nosocomial outbreaks caused by emerging and uncommon fungal species are increasingly being reported, hence awareness must be raised. Genotyping with commonly used universal gene targets may have limited discriminatory power in tracing the sources of infection for these organisms, requiring use of whole genome sequencing to confirm outbreak events.
Collapse
Affiliation(s)
- Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Rong-Chen Dai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Timothy Kudinha
- School of Dentistry and Medical Sciences, Charles Sturt University, Leeds Parade, Oranges, NSW, Australia
- NSW Health Pathology, Regional and Rural, Orange hospital, Orange, NSW, Australia
| | - Li Gu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Li Gu,
| |
Collapse
|
5
|
Kakehi A, Hagiya H, Iio K, Nakano Y, Ihoriya H, Taira Y, Nakamoto K, Hasegawa K, Higashikage A, Otsuka F. Candida dubliniensis fungemia in a patient with severe COVID-19: A case report. J Infect Chemother 2022; 28:1433-1435. [PMID: 35863730 PMCID: PMC9293379 DOI: 10.1016/j.jiac.2022.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 10/30/2022]
Abstract
Candida dubliniensis phenotypically mimics Candida albicans in its microbiological features; thus, its clinical characteristics have yet to be fully elucidated. Here we report the case of a 68-year-old Japanese man who developed C. dubliniensis fungemia during treatment for severe coronavirus disease 2019 (COVID-19). The patient was intubated and received a combination of immunosuppressants, including high-dose methylprednisolone and two doses of tocilizumab, as well as remdesivir, intravenous heparin, and ceftriaxone. A blood culture on admission day 11 revealed Candida species, which was confirmed as C. dubliniensis by mass spectrometry. An additional sequencing analysis of the 26S rDNA and ITS regions confirmed that the organism was 100% identical to the reference strain of C. dubliniensis (ATCC MYA-646). Considering the simultaneous isolation of C. dubliniensis from a sputum sample, the lower respiratory tract could be an entry point for candidemia. Although treatment with micafungin successfully eradicated the C. dubliniensis fungemia, the patient died of COVID-19 progression. In this case, aggressive immunosuppressive therapy could have caused the C. dubliniensis fungemia. Due to insufficient clinical reports on C. dubliniensis infection based on definitive diagnosis, the whole picture of the cryptic organism is still unknown. Further accumulation of clinical and microbiological data of the pathogen is needed to elucidate their clinical significance.
Collapse
Affiliation(s)
- Ayaka Kakehi
- Microbiology Division, Clinical Laboratory, Okayama University Hospital, Okayama, 700-8558, Japan
| | - Hideharu Hagiya
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
| | - Koji Iio
- Microbiology Division, Clinical Laboratory, Okayama University Hospital, Okayama, 700-8558, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hiromi Ihoriya
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yuki Taira
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Kenta Nakamoto
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Kou Hasegawa
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Akihito Higashikage
- Microbiology Division, Clinical Laboratory, Okayama University Hospital, Okayama, 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| |
Collapse
|
6
|
Mery A, Jawhara S, François N, Cornu M, Poissy J, Martinez-Esparza M, Poulain D, Sendid B, Guerardel Y. Identification of fungal trehalose for the diagnosis of invasive candidiasis by mass spectrometry. Biochim Biophys Acta Gen Subj 2022; 1866:130083. [PMID: 35033574 DOI: 10.1016/j.bbagen.2022.130083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
The rapidity of the diagnosis of invasive candidiasis (IC) is crucial to allow the early introduction of antifungal therapy that dramatically increases the survival rate of patients. Early diagnosis is unfortunately often delayed because Candida blood culture, the gold standard diagnostic test, is positive in only 50% of cases of IC and takes several days to obtain this result. Complementary non-culture-based methods relying on the detection of Candida cell wall polysaccharides in the serum, β-glucans and mannans, by enzymatic and immunological reagents have been successfully developed to allow a more efficient patients care. We have previously demonstrated that detection of circulating glycans by mass spectrometry could provide a reliable and cost-effective early diagnosis method called MS-DS for Mass Spectrometry of Di-Saccharide. Here, by comparing patient's sera and Candida albicans strains deficient in carbohydrates synthesis, we demonstrate that trehalose derived from fungal metabolism can be specifically targeted by MS-DS to allow early diagnosis. In particular, the use of C. albicans strains deficient in the synthesis of trehalose synthesizing enzymes Tps1 and Tps2 show that MS-DS results were correlated to the metabolism of trehalose. Finally, we demonstrate that the performance of the IC diagnosis can be significantly improved by using high resolution mass spectrometry, which opens new perspectives in the management of the disease.
Collapse
Affiliation(s)
- Alexandre Mery
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Samir Jawhara
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Univ. Lille, Inserm U1285, CHU Lille, Laboratoire de Parasitologie-Mycologie, Lille, France
| | - Nadine François
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Univ. Lille, Inserm U1285, CHU Lille, Laboratoire de Parasitologie-Mycologie, Lille, France
| | - Marjorie Cornu
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Univ. Lille, Inserm U1285, CHU Lille, Laboratoire de Parasitologie-Mycologie, Lille, France
| | - Julien Poissy
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Univ. Lille, Inserm U1285, CHU Lille, Pôle de réanimation, Lille, France
| | - Maria Martinez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB-Arrixaca and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Daniel Poulain
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Univ. Lille, Inserm U1285, CHU Lille, Laboratoire de Parasitologie-Mycologie, Lille, France
| | - Boualem Sendid
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Univ. Lille, Inserm U1285, CHU Lille, Laboratoire de Parasitologie-Mycologie, Lille, France
| | - Yann Guerardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
| |
Collapse
|
7
|
Mendonça A, Santos H, Franco-Duarte R, Sampaio P. Fungal infections diagnosis - Past, present and future. Res Microbiol 2022; 173:103915. [PMID: 34863883 PMCID: PMC8634697 DOI: 10.1016/j.resmic.2021.103915] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023]
Abstract
Despite the scientific advances observed in the recent decades and the emergence of new methodologies, the diagnosis of systemic fungal infections persists as a problematic issue. Fungal cultivation, the standard method that allows a proven diagnosis, has numerous disadvantages, as low sensitivity (only 50% of the patients present positive fungal cultures), and long growth time. These are factors that delay the patient's treatment and, consequently, lead to higher hospital costs. To improve the accuracy and quickness of fungal infections diagnosis, several new methodologies attempt to be implemented in clinical microbiology laboratories. Most of these innovative methods are independent of pathogen isolation, which means that the diagnosis goes from being considered proven to probable. In spite of the advantage of being culture-independent, the majority of the methods lack standardization. PCR-based methods are becoming more and more commonly used, which has earned them an important place in hospital laboratories. This can be perceived now, as PCR-based methodologies have proved to be an essential tool fighting against the COVID-19 pandemic. This review aims to go through the main steps of the diagnosis for systemic fungal infection, from diagnostic classifications, through methodologies considered as "gold standard", to the molecular methods currently used, and finally mentioning some of the more futuristic approaches.
Collapse
|
8
|
Application and Perspectives of MALDI-TOF Mass Spectrometry in Clinical Microbiology Laboratories. Microorganisms 2021; 9:microorganisms9071539. [PMID: 34361974 PMCID: PMC8307939 DOI: 10.3390/microorganisms9071539] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022] Open
Abstract
Early diagnosis of severe infections requires of a rapid and reliable diagnosis to initiate appropriate treatment, while avoiding unnecessary antimicrobial use and reducing associated morbidities and healthcare costs. It is a fact that conventional methods usually require more than 24–48 h to culture and profile bacterial species. Mass spectrometry (MS) is an analytical technique that has emerged as a powerful tool in clinical microbiology for identifying peptides and proteins, which makes it a promising tool for microbial identification. Matrix assisted laser desorption ionization–time of flight MS (MALDI–TOF MS) offers a cost- and time-effective alternative to conventional methods, such as bacterial culture and even 16S rRNA gene sequencing, for identifying viruses, bacteria and fungi and detecting virulence factors and mechanisms of resistance. This review provides an overview of the potential applications and perspectives of MS in clinical microbiology laboratories and proposes its use as a first-line method for microbial identification and diagnosis.
Collapse
|