1
|
Liu J, Yin M, Zhang W, Tsang DCW, Wei X, Zhou Y, Xiao T, Wang J, Dong X, Sun Y, Chen Y, Li H, Hou L. Response of microbial communities and interactions to thallium in contaminated sediments near a pyrite mining area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:916-928. [PMID: 30856507 DOI: 10.1016/j.envpol.2019.02.089] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Thallium (Tl) is a well-recognized hazardous heavy metal with very high toxicity. It is usually concentrated in sulfide minerals, such as pyrite (FeS2), sphalerite (ZnS), chalcopyrite (CuS) and galena (PbS). Here, this study was carried out to investigate the indigenous microbial communities via 16S rRNA gene sequence analysis in typical surface sediments with various levels of Tl pollution (1.8-16.1 mg/kg) due to acid mine drainage from an active Tl-containing pyrite mining site in South China. It was found with more than 50 phyla from the domain Bacteria and 1 phyla from the domain Archaea. Sequences assigned to the genera Ferroplasma, Leptospirillum, Ferrovum, Metallibacterium, Acidithiobacillus, and Sulfuriferula manifested high relative abundances in all sequencing libraries from the relatively high Tl contamination. Canonical correspondence analysis further uncovered that the overall microbial community in this area was dominantly structured by the geochemical fractionation of Tl and geochemical parameters such as pH and Eh. Spearman's rank correlation analysis indicated a strong positive correlation between acidophilic Fe-metabolizing species and Tltotal, Tloxi, and Tlres. The findings clarify potential roles of such phylotypes in the biogeochemical cycling of Tl, which may facilitate the development of in-situ bioremediation technology for Tl-contaminated sediments.
Collapse
Affiliation(s)
- Juan Liu
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Meiling Yin
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Weilong Zhang
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xudong Wei
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuting Zhou
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tangfu Xiao
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Xinjiao Dong
- School of Life & Environmental Science, Wenzhou University, Wenzhou, 325027, China
| | - Yubing Sun
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yongheng Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China.
| |
Collapse
|
2
|
Electrochemical Behavior of Ocean Polymetallic Nodules and Low-Grade Nickel Sulfide Ore in Acidithiobacillus Ferrooxidans-Coupled Bio-Leaching. MINERALS 2019. [DOI: 10.3390/min9020070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Efficient extraction of Ni, Co, Cu, and Mn from low-grade and refractory ores is a common technical challenge. The present study proposes an Acidithiobacillus ferrooxidans-coupled leaching of Ni, Cu, Co, and Mn from oceanic polymetallic nodules and low-grade nickel sulfide ore, and focuses on the electrochemical behavior of the ores in simulated bio-leaching solutions. In the dissolution of polymetallic nodules, A. ferrooxidans facilitates the diffusion of H+ and accelerates electron transfer, producing a decrease in charge transfer resistance and promoting the Mn(IV)-preceding reaction. The use of A. ferrooxidans is beneficial for lower impedance of sulfur-nickel ore, faster diffusion rate of product layer, and better transformation of the Fe3+/Fe2+ couple and S0/S2− couple. A. ferrooxidans increases the potential difference between the nodule cathode and sulfide anode, and increases electron liberation from the sulfide ore. This motivates a significant increase in the average extraction rates of Ni, Co, Cu, and Mn in the bacterial solution. The bio-leaching efficiencies of Ni, Co, Cu, and Mn were as high as 95.4%, 97.8%, 92.2% and 97.3%, respectively, representing improvements of 17.1%, 11.5%, 14.3% and 12.9% relative to that of the germ- and Fe(III)-free acidic 9 K basic system.
Collapse
|