1
|
Keshavan N, Rahman S. Natural history of deoxyguanosine kinase deficiency. Mol Genet Metab 2024; 143:108554. [PMID: 39079226 DOI: 10.1016/j.ymgme.2024.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 10/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Deoxyguanosine kinase deficiency is one genetic cause of mtDNA depletion syndrome. Its major phenotypes include neonatal/infantile-onset hepatocerebral disease, isolated hepatic disease and myopathic disease. In this retrospective study, we seek to describe the natural history of deoxyguanosine kinase deficiency and identify any genotype-phenotype correlations. METHODS Retrospective literature search and collation of data from genetically confirmed cases of deoxyguanosine kinase deficiency. RESULTS 173 cases of DGUOK deficiency were identified. Neonatal/infantile-onset hepatocerebral disease accounted for 128 (74%) of cases. Isolated liver disease was seen in 36 (21%) and myopathic disease in 9 (5%) of cases. The most frequently involved systems were liver (98%), brain (75%), growth (46%) and gastrointestinal tract (26%). Infantile-onset disease typically presented with cholestatic jaundice and lactic acidosis. Neurological involvement included hypotonia, nystagmus and developmental delay with MRI brain abnormalities in about half of cases. Missense variants accounted for 48% of all pathogenic variants while variants resulting in truncated transcripts accounted for 39%. Prognosis was poor, especially for neonatal/ infantile-onset hepatocerebral disease for which 1 year survival was 11%. Twenty-three patients received liver transplants, of whom 12 died within 2 years of transplant. Patients with two truncating variants had a higher risk of death and were more likely to have the neonatal/infantile-onset hepatocerebral disease phenotype. No blood biomarker predictive of neurological involvement was identified. Earlier onset correlated with increased mortality. CONCLUSIONS There is a narrow window for therapeutic intervention. For the hepatocerebral disease phenotype, median age of onset was 1 month while the median age of death was 6.5 months implying rapid disease progression.
Collapse
Affiliation(s)
- Nandaki Keshavan
- Department of Metabolic Medicine, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, United Kingdom; UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Shamima Rahman
- Department of Metabolic Medicine, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, United Kingdom; UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| |
Collapse
|
2
|
Kotrys AV, Durham TJ, Guo XA, Vantaku VR, Parangi S, Mootha VK. Single-cell analysis reveals context-dependent, cell-level selection of mtDNA. Nature 2024; 629:458-466. [PMID: 38658765 PMCID: PMC11078733 DOI: 10.1038/s41586-024-07332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Heteroplasmy occurs when wild-type and mutant mitochondrial DNA (mtDNA) molecules co-exist in single cells1. Heteroplasmy levels change dynamically in development, disease and ageing2,3, but it is unclear whether these shifts are caused by selection or drift, and whether they occur at the level of cells or intracellularly. Here we investigate heteroplasmy dynamics in dividing cells by combining precise mtDNA base editing (DdCBE)4 with a new method, SCI-LITE (single-cell combinatorial indexing leveraged to interrogate targeted expression), which tracks single-cell heteroplasmy with ultra-high throughput. We engineered cells to have synonymous or nonsynonymous complex I mtDNA mutations and found that cell populations in standard culture conditions purge nonsynonymous mtDNA variants, whereas synonymous variants are maintained. This suggests that selection dominates over simple drift in shaping population heteroplasmy. We simultaneously tracked single-cell mtDNA heteroplasmy and ancestry, and found that, although the population heteroplasmy shifts, the heteroplasmy of individual cell lineages remains stable, arguing that selection acts at the level of cell fitness in dividing cells. Using these insights, we show that we can force cells to accumulate high levels of truncating complex I mtDNA heteroplasmy by placing them in environments where loss of biochemical complex I activity has been reported to benefit cell fitness. We conclude that in dividing cells, a given nonsynonymous mtDNA heteroplasmy can be harmful, neutral or even beneficial to cell fitness, but that the 'sign' of the effect is wholly dependent on the environment.
Collapse
Affiliation(s)
- Anna V Kotrys
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Timothy J Durham
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaoyan A Guo
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Venkata R Vantaku
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Pérez-Sánchez M, Pardiñas ML, Díez-Juan A, Quiñonero A, Domínguez F, Martin A, Vidal C, Beltrán D, Mifsud A, Mercader A, Pellicer A, Cobo A, de Los Santos MJ. The effect of vitrification on blastocyst mitochondrial DNA dynamics and gene expression profiles. J Assist Reprod Genet 2023; 40:2577-2589. [PMID: 37801195 PMCID: PMC10643482 DOI: 10.1007/s10815-023-02952-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE Does vitrification/warming affect the mitochondrial DNA (mtDNA) content and the gene expression profile of blastocysts? METHODS Prospective cohort study in which 89 blastocysts were obtained from 50 patients between July 2017 and August 2018. mtDNA was measured in a total of 71 aneuploid blastocysts by means of real-time polymerase chain reaction (RT-PCR). Transcriptomic analysis was performed by RNA sequencing (RNA-seq) in an additional 8 aneuploid blastocysts cultured for 0 h after warming, and 10 aneuploid blastocysts cultured for 4-5 h after warming. RESULTS A significant decrease in mtDNA content just during the first hour after the warming process in blastocysts was found (P < 0.05). However, mtDNA content experimented a significantly increased along the later culture hours achieving the original mtDNA levels before vitrification after 4-5 h of culture (P < 0.05). Gene expression analysis and functional enrichment analysis revealed that such recovery was accompanied by upregulation of pathways associated with embryo developmental capacity and uterine embryo development. Interestingly, the significant increase in mtDNA content observed in blastocysts just after warming also coincided with the differential expression of several cellular stress response-related pathways, such as apoptosis, DNA damage, humoral immune responses, and cancer. CONCLUSION To our knowledge, this is the first study demonstrating in humans, a modulation in blastocysts mtDNA content in response to vitrification and warming. These results will be useful in understanding which pathways and mechanisms may be activated in human blastocysts following vitrification and warming before a transfer.
Collapse
Affiliation(s)
- Marta Pérez-Sánchez
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Maria Luisa Pardiñas
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Antonio Díez-Juan
- Department of Research, Igenomix, Parque Tecnológico, Rda. de Narcís Monturiol, nº11, B, 46980, Paterna, Valencia, Spain
| | - Alicia Quiñonero
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Francisco Domínguez
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Angel Martin
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Carmina Vidal
- Department of Gynaecology, IVIRMA Global, Plaça de La Policía Local, 3, Valencia, 46015, Spain
| | - Diana Beltrán
- IVF Laboratory, IVIRMA Global, Plaça de La Policía Local, 3, 46015, Valencia, Spain
| | - Amparo Mifsud
- IVF Laboratory, IVIRMA Global, Plaça de La Policía Local, 3, 46015, Valencia, Spain
| | - Amparo Mercader
- IVF Laboratory, IVIRMA Global, Plaça de La Policía Local, 3, 46015, Valencia, Spain
| | - Antonio Pellicer
- Department of Gynaecology, IVIRMA Global, Largo Ildebrando Pizzetti, 1, Rome, 00197, Italy
| | - Ana Cobo
- IVF Laboratory, IVIRMA Global, Plaça de La Policía Local, 3, 46015, Valencia, Spain
| | | |
Collapse
|
4
|
Seewald LA, Sabino IG, Montney KL, Delco ML. Synovial fluid mitochondrial DNA concentration reflects the degree of cartilage damage after naturally occurring articular injury. Osteoarthritis Cartilage 2023; 31:1056-1065. [PMID: 37028640 PMCID: PMC10524327 DOI: 10.1016/j.joca.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/27/2023] [Accepted: 03/19/2023] [Indexed: 04/09/2023]
Abstract
OBJECTIVE To evaluate mitochondrial DNA (mtDNA) release from injured chondrocytes and investigate the utility of synovial fluid mtDNA concentration in early detection of posttraumatic osteoarthritis. METHOD We measured mtDNA release using four models of osteoarthritis: in vitro interleukin-1β stimulation of cultured equine chondrocytes, ex vivo mechanical impact of bovine cartilage explants, in vivo mechanical impact of equine articular cartilage, and naturally occurring equine intraarticular fracture. In our in vivo model, one group was treated with an intraarticular injection of the mitoprotective peptide SS-31 following cartilage injury. mtDNA content was quantified using qPCR. For naturally occurring cases of joint injury, clinical data (radiographs, arthroscopic video footage) were scored for criteria associated with degenerative joint disease. RESULTS Chondrocytes released mtDNA in the acute time frame following inflammatory and mechanical cellular stress in vitro. mtDNA was increased in equine synovial fluid following experimental and naturally occurring injury to the joint surface. In naturally occurring posttraumatic osteoarthritis, we found a strong positive correlation between the degree of cartilage damage and mtDNA concentration (r = 0.80, P = 0.0001). Finally, impact-induced mtDNA release was mitigated by mitoprotective treatment. CONCLUSION Changes in synovial fluid mtDNA occur following joint injury and correlate with the severity of cartilage damage. Mitoprotection mitigates increases in synovial fluid mtDNA suggesting that mtDNA release may reflect mitochondrial dysfunction. Further investigation of mtDNA as a potentially sensitive marker of early articular injury and response to mitoprotective therapy is warranted.
Collapse
Affiliation(s)
- L A Seewald
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - I G Sabino
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - K L Montney
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - M L Delco
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Al Khatib I, Deng J, Symes A, Kerr M, Zhang H, Huang SYN, Pommier Y, Khan A, Shutt TE. Functional characterization of two variants of mitochondrial topoisomerase TOP1MT that impact regulation of the mitochondrial genome. J Biol Chem 2022; 298:102420. [PMID: 36030054 PMCID: PMC9513266 DOI: 10.1016/j.jbc.2022.102420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
TOP1MT encodes a mitochondrial topoisomerase that is important for mtDNA regulation and is involved in mitochondrial replication, transcription, and translation. Two variants predicted to affect TOP1MT function (V1 - R198C and V2 - V338L) were identified by exome sequencing of a newborn with hypertrophic cardiomyopathy. As no pathogenic TOP1MT variants had been confirmed previously, we characterized these variants for their ability to rescue several TOP1MT functions in KO cells. Consistent with these TOP1MT variants contributing to the patient phenotype, our comprehensive characterization suggests that both variants had impaired activity. Critically, we determined neither variant was able to restore steady state levels of mitochondrial-encoded proteins nor to rescue oxidative phosphorylation when re-expressed in TOP1MT KO cells. However, we found the two variants behaved differently in some respects; while the V1 variant was more efficient in restoring transcript levels, the V2 variant showed better rescue of mtDNA copy number and replication. These findings suggest that the different TOP1MT variants affect distinct TOP1MT functions. Altogether, these findings begin to provide insight into the many roles that TOP1MT plays in the maintenance and expression of the mitochondrial genome and how impairments in this important protein may lead to human pathology.
Collapse
Affiliation(s)
- Iman Al Khatib
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jingti Deng
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew Symes
- Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | | | - Hongliang Zhang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Shar-Yin Naomi Huang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Aneal Khan
- Discovery DNA, Calgary, Alberta, Canada; M.A.G.I.C. Clinic Ltd (Metabolics and Genetics in Calgary), Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Timothy E Shutt
- Departments of Biochemistry & Molecular Biology and Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
6
|
Tan HY, Yong YK, Xue YC, Liu H, Furihata T, Shankar EM, Ng CS. cGAS and DDX41-STING mediated intrinsic immunity spreads intercellularly to promote neuroinflammation in SOD1 ALS model. iScience 2022; 25:104404. [PMID: 35712074 PMCID: PMC9194172 DOI: 10.1016/j.isci.2022.104404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/22/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Neuroinflammation exacerbates the progression of SOD1-driven amyotrophic lateral sclerosis (ALS), although the underlying mechanisms remain largely unknown. Herein, we demonstrate that misfolded SOD1 (SOD1Mut)-causing ALS results in mitochondrial damage, thus triggering the release of mtDNA and an RNA:DNA hybrid into the cytosol in an mPTP-independent manner to activate IRF3- and IFNAR-dependent type I interferon (IFN-I) and interferon-stimulating genes. The neuronal hyper-IFN-I and pro-inflammatory responses triggered in ALS-SOD1Mut were sufficiently robust to cause a strong physiological outcome in vitro and in vivo. cGAS/DDX41-STING-signaling is amplified in bystander cells through inter-neuronal gap junctions. Our results highlight the importance of a common DNA-sensing pathway between SOD1 and TDP-43 in influencing the progression of ALS. Constitutive basal activation of IFN-I was found in the SOD1-ALS animal model SOD1-ALS damaged mitochondria to release mtDNA and RNA:DNA to activate the STING-pathway Blocking cGAS and STING diminishes neurodegeneration in vivo in the SOD1-ALS model Connexin and pannexin channels are required to propagate neuroinflammation in SOD1-ALS
Collapse
Affiliation(s)
- Hong Yien Tan
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia.,School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Yean Kong Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Yuan Chao Xue
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Huitao Liu
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Esaki Muthu Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Chen Seng Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| |
Collapse
|
7
|
Holt AG, Davies AM. The Effect of Mitochondrial DNA Half-Life on Deletion Mutation Proliferation in Long Lived Cells. Acta Biotheor 2021; 69:671-695. [PMID: 34131800 DOI: 10.1007/s10441-021-09417-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/07/2021] [Indexed: 01/21/2023]
Abstract
The proliferation of mitochondrial DNA (mtDNA) with deletion mutations has been linked to aging and age related neurodegenerative conditions. In this study we model the effect of mtDNA half-life on mtDNA competition and selection. It has been proposed that mutation deletions ([Formula: see text]) have a replicative advantage over wild-type ([Formula: see text]) and that this is detrimental to the host cell, especially in post-mitotic cells. An individual cell can be viewed as forming a closed ecosystem containing a large population of independently replicating mtDNA. Within this enclosed environment a selfishly replicating [Formula: see text] would compete with the [Formula: see text] for space and resources to the detriment of the host cell. In this paper, we use a computer simulation to model cell survival in an environment where [Formula: see text] compete with [Formula: see text] such that the cell expires upon [Formula: see text] extinction. We focus on the survival time for long lived post-mitotic cells, such as neurons. We confirm previous observations that [Formula: see text] do have a replicative advantage over [Formula: see text]. As expected, cell survival times diminished with increased mutation probabilities, however, the relationship between survival time and mutation rate was non-linear, that is, a ten-fold increase in mutation probability only halved the survival time. The results of our model also showed that a modest increase in half-life had a profound affect on extending cell survival time, thereby, mitigating the replicative advantage of [Formula: see text]. Given the relevance of mitochondrial dysfunction to various neurodegenerative conditions, we propose that therapies to increase mtDNA half-life could significantly delay their onset.
Collapse
|
8
|
Brüser C, Keller-Findeisen J, Jakobs S. The TFAM-to-mtDNA ratio defines inner-cellular nucleoid populations with distinct activity levels. Cell Rep 2021; 37:110000. [PMID: 34818548 DOI: 10.1016/j.celrep.2021.110000] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/20/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
In human cells, generally a single mitochondrial DNA (mtDNA) is compacted into a nucleoprotein complex denoted the nucleoid. Each cell contains hundreds of nucleoids, which tend to cluster into small groups. It is unknown whether all nucleoids are equally involved in mtDNA replication and transcription or whether distinct nucleoid subpopulations exist. Here, we use multi-color STED super-resolution microscopy to determine the activity of individual nucleoids in primary human cells. We demonstrate that only a minority of all nucleoids are active. Active nucleoids are physically larger and tend to be involved in both replication and transcription. Inactivity correlates with a high ratio of the mitochondrial transcription factor A (TFAM) to the mtDNA of the individual nucleoid, suggesting that TFAM-induced nucleoid compaction regulates nucleoid replication and transcription activity in vivo. We propose that the stable population of highly compacted inactive nucleoids represents a storage pool of mtDNAs with a lower mutational load.
Collapse
Affiliation(s)
- Christian Brüser
- Department of NanoBiophotonics, Research Group Mitochondrial Structure and Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Clinic of Neurology, High Resolution Microscopy of the Cell, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jan Keller-Findeisen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Research Group Mitochondrial Structure and Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Clinic of Neurology, High Resolution Microscopy of the Cell, University Medical Center Göttingen, 37075 Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
9
|
Hu X, Calton MA, Tang S, Vollrath D. Depletion of Mitochondrial DNA in Differentiated Retinal Pigment Epithelial Cells. Sci Rep 2019; 9:15355. [PMID: 31653972 PMCID: PMC6814719 DOI: 10.1038/s41598-019-51761-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/26/2019] [Indexed: 11/17/2022] Open
Abstract
We investigated the effects of treating differentiated retinal pigment epithelial (RPE) cells with didanosine (ddI), which is associated with retinopathy in individuals with HIV/AIDS. We hypothesized that such treatment would cause depletion of mitochondrial DNA and provide insight into the consequences of degradation of RPE mitochondrial function in aging and disease. Treatment of differentiated ARPE-19 or human primary RPE cells with 200 µM ddI for 6–24 days was not cytotoxic but caused up to 60% depletion of mitochondrial DNA, and a similar reduction in mitochondrial membrane potential and NDUFA9 protein abundance. Mitochondrial DNA-depleted RPE cells demonstrated enhanced aerobic glycolysis by extracellular flux analysis, increased AMP kinase activation, reduced mTOR activity, and increased resistance to cell death in response to treatment with the oxidant, sodium iodate. We conclude that ddI-mediated mitochondrial DNA depletion promotes a glycolytic shift in differentiated RPE cells and enhances resistance to oxidative damage. Our use of ddI treatment to induce progressive depletion of mitochondrial DNA in differentiated human RPE cells should be widely applicable for other studies aimed at understanding RPE mitochondrial dysfunction in aging and disease.
Collapse
Affiliation(s)
- Xinqian Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China. .,Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Melissa A Calton
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shibo Tang
- AIER School of Ophthalmology, Central South University, Changsha, China.,AIER Eye Institute, Changsha, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
10
|
Mitochondrial transcription factor A promotes DNA strand cleavage at abasic sites. Proc Natl Acad Sci U S A 2019; 116:17792-17799. [PMID: 31413200 DOI: 10.1073/pnas.1911252116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In higher eukaryotic cells, mitochondria are essential subcellular organelles for energy production, cell signaling, and the biosynthesis of biomolecules. The mitochondrial DNA (mtDNA) genome is indispensable for mitochondrial function because it encodes protein subunits of the electron transport chain and a full set of transfer and ribosomal RNAs. MtDNA degradation has emerged as an essential quality control measure to maintain mtDNA and to cope with mtDNA damage resulting from endogenous and environmental factors. Among all types of DNA damage known, abasic (AP) sites, sourced from base excision repair and spontaneous base loss, are the most abundant endogenous DNA lesions in cells. In mitochondria, AP sites trigger rapid DNA loss; however, the mechanism and molecular factors involved in the process remain elusive. Herein, we demonstrate that the stability of AP sites is reduced dramatically upon binding to a major mtDNA packaging protein, mitochondrial transcription factor A (TFAM). The half-life of AP lesions within TFAM-DNA complexes is 2 to 3 orders of magnitude shorter than that in free DNA, depending on their position. The TFAM-catalyzed AP-DNA destabilization occurs with nonspecific DNA or mitochondrial light-strand promoter sequence, yielding DNA single-strand breaks and DNA-TFAM cross-links. TFAM-DNA cross-link intermediates prior to the strand scission were also observed upon treating AP-DNA with mitochondrial extracts of human cells. In situ trapping of the reaction intermediates (DNA-TFAM cross-links) revealed that the reaction proceeds via Schiff base chemistry facilitated by lysine residues. Collectively, our data suggest a novel role of TFAM in facilitating the turnover of abasic DNA.
Collapse
|
11
|
Zhao L. Mitochondrial DNA degradation: A quality control measure for mitochondrial genome maintenance and stress response. Enzymes 2019; 45:311-341. [PMID: 31627882 DOI: 10.1016/bs.enz.2019.08.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria play a central role in bioenergetics, and fulfill a plethora of functions in cell signaling, programmed cell death, and biosynthesis of key protein cofactors. Mitochondria harbor their own genomic DNA, which encodes protein subunits of the electron transport chain and a full set of transfer and ribosomal RNAs. Mitochondrial DNA (mtDNA) is essential for cellular and organismal functions, and defects in mitochondrial genome maintenance have been implicated in common human diseases and mitochondrial disorders. mtDNA repair and degradation are known pathways to cope with mtDNA damage; however, molecular factors involved in this process have remained unclear. Such knowledge is fundamental to the understanding of mitochondrial genomic maintenance and pathology, because mtDNA degradation may contribute to the etiology of mtDNA depletion syndromes and to the activation of the innate immune response by fragmented mtDNA. This article reviews the current literature regarding the importance of mitochondrial DNA degradation in mtDNA maintenance and stress response, and the recent progress in uncovering molecular factors involved in mtDNA degradation. These factors include key components of the mtDNA replication machinery, such as DNA polymerase γ, helicase Twinkle, and exonuclease MGME1, as well as a major DNA-packaging protein, mitochondrial transcription factor A (TFAM).
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States.
| |
Collapse
|
12
|
Bai Y, Casas L, Scheers H, Janssen BG, Nemery B, Nawrot TS. Mitochondrial DNA content in blood and carbon load in airway macrophages. A panel study in elderly subjects. ENVIRONMENT INTERNATIONAL 2018; 119:47-53. [PMID: 29933237 DOI: 10.1016/j.envint.2018.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/20/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Mitochondria are sensitive to air pollutants due to their lack of repair capacity. Changes in mitochondrial DNA copy number (mtDNAcn) or content is a proxy of mitochondrial damage and has been associated with recent exposure to traffic-derived air pollutants, nitrogen dioxide (NO2) and black carbon (BC). Inhaled BC can be phagocytosed by airway macrophages (AMs), and its amount in AM reflects personal exposure to traffic-related air pollution. OBJECTIVES The present study investigated the relation between the internal marker AM BC and ambient NO2 concentration and examined the associations of mtDNAcn with NO2 and AM BC. METHODS A panel of 20 healthy retired participants (10 couples) living in Belgium underwent repeated assessments of health and air pollution exposure at 11 time points over one year. We increased exposure contrast temporarily by moving participants for 10 days to Milan, Italy (high exposure) and to Vindeln, Sweden (low exposure). Personal exposure to NO2 was measured during 5 consecutive days prior to each assessment time point. The amount of BC was assessed by image analysis in AMs retrieved from induced sputum collected at 7 time points. Blood mtDNAcn was determined by qPCR at each time point. Associations between AM BC and NO2, and of mtDNAcn with NO2 and AM BC were estimated using linear mixed effect models adjusted for covariates and potential confounders. RESULTS Mean concentrations of 5-day average NO2 were higher in Milan (64 μg/m3) and lower in Vindeln (4 μg/m3) than Belgium (26 μg/m3). Each 10 μg/m3 increment in NO2 exposure during the last 5 days was associated with 0.07 μm2 (95% CI: 0.001 to 0.012) increase in median area of AM BC. A 10 μg/m3 increase in NO2 was associated with 3.9% (95% CI: 2.2 to 5.5%) decrease in mtDNAcn. Consistently, each 1 μm2 increment in median area of AM BC was associated with 24.8% (95% CI: 6.8 to 39.3%) decrease in mtDNAcn. CONCLUSION In this quasi-experimental setting involving moving persons to places with high and low ambient air pollution, we found changes in AM BC according to ambient air pollution levels measured during the previous 5 days. Both higher ambient NO2 and the internal lung BC load, paralleled mitochondrial compromises as exemplified by lower mtDNA content.
Collapse
Affiliation(s)
- Yang Bai
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Lidia Casas
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Hans Scheers
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Benoit Nemery
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Tim S Nawrot
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
13
|
Sitarek P, Synowiec E, Kowalczyk T, Śliwiński T, Skała E. An In Vitro Estimation of the Cytotoxicity and Genotoxicity of Root Extract from Leonurus sibiricus L. Overexpressing AtPAP1 against Different Cancer Cell Lines. Molecules 2018; 23:molecules23082049. [PMID: 30115821 PMCID: PMC6222913 DOI: 10.3390/molecules23082049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/08/2018] [Accepted: 08/12/2018] [Indexed: 12/22/2022] Open
Abstract
As the current cancer treatment success rate is not sufficient, interest has grown in plants as possible sources of anti-cancer compounds. One such plant with a broad spectrum of activity is Lenourus sibiricus of the family Lamiaceae. This study investigates for the first time both the genotoxic and cytotoxic activities of TR (transformed) and AtPAP1 TR (with over-expression of transcriptional factor) root extracts of Lenourus sibiricus against various cancer cell lines (CCRF-CEM, K-562 and A549). Both tested extracts showed a cytotoxic effect on CCRF-CEM and K-562 cell lines, but strongest activity was observed for the AtPAP1 TR extract. No cytotoxic effect was observed against the A549 cell line in the tested concentration range, and it was found that both tested extracts may induce apoptosis by decreasing mitochondrial membrane potential and inducing nDNA damage lesion in the TP53 region and mtDNA in ND1 (mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 1) and ND5 (mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 5) regions in K-562 and CCRF-CEM. Our results confirmed that TR and AtPAP1 TR root extracts from L. sibiricus are cytotoxic and genotoxic against different model cell lines (CCRF-CEM and K-562). However, the observed genotoxicity of both extracts needs to be confirmed by additional studies. These preclinical observations support the use of L. sibiricus with other pharmacological purposes.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland.
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| | - Tomasz Kowalczyk
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Łódź, Banacha 12/13, 90-237 Łódź, Poland.
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| | - Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland.
| |
Collapse
|
14
|
Nordgren KKS, Hampton M, Wallace KB. Editor's Highlight: The Altered DNA Methylome of Chronic Doxorubicin Exposure in Sprague Dawley Rats. Toxicol Sci 2018; 159:470-479. [PMID: 28962528 DOI: 10.1093/toxsci/kfx150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Doxorubicin (DOX) is a widely used treatment for human cancers, but increases the risk of life-threatening congestive heart failure (CHF). DOX-induced mitochondrial damage is cumulative and persistent, similar to that observed clinically for risk of CHF. Recent evidence suggests the persistent nature of this injury is caused by altered regulation of genes important to normal cardiac functioning. We hypothesize that chronic DOX therapy is associated with epigenetic modifications of DNA methylation status, particularly in critical regulators of mitochondrial function and capacity. Cardiac tissue from Sprague Dawley rats receiving injections of DOX (2 mg/kg, s.c.) or saline once a week for 6 weeks, followed by 5 weeks of drug-free holiday was used for Reduced Representation Bisulfite Sequencing to map specific sites of DNA methylation. Comparison of these methylomes indicated DOX exposure alters DNA methylation landscapes, and identified 14 genes with highly altered methylation status. Preliminary functional effects of DNA methylation changes were characterized by quantifying mRNA expression of selected targets (Rbm20, Nmnat2, Klhl29, Cacna1c, Scn5a.) Gene expression of Rbm20, Klhl29, and Nmnat2 were significantly altered in DOX treated animals; Klhl29 and Nmnat2 demonstrated significant decreases in protein expression corresponding to gene expression. Through an epigenotype-to-phenotype approach, this study identifies potential markers and molecular regulators of irreversible DOX-induced cardiovascular toxicity associated with clinically limiting CHF. However, none of the most prevalent genes identified directly relate to mitochondrial structure or function. Thus, the investigation fails to demonstrate a direct association between this altered methylome and persistent mitochondrionopathy associated with chronic doxorubicin cardiac toxicity.
Collapse
Affiliation(s)
- Kendra K S Nordgren
- Department of Biomedical Science, University of Minnesota Medical School Duluth Campus, Duluth, Minnesota 55812
| | - Marshall Hampton
- Department of Mathematics, University of Minnesota Duluth, Duluth, Minnesota 55812
| | - Kendall B Wallace
- Department of Biomedical Science, University of Minnesota Medical School Duluth Campus, Duluth, Minnesota 55812
| |
Collapse
|
15
|
Warren EB, Aicher AE, Fessel JP, Konradi C. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism. PLoS One 2017; 12:e0190456. [PMID: 29287112 PMCID: PMC5747477 DOI: 10.1371/journal.pone.0190456] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial DNA (mtDNA), the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD) patients who had developed L-DOPA Induced Dyskinesia (LID), compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr) treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.
Collapse
Affiliation(s)
- Emily Booth Warren
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Aidan Edward Aicher
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Joshua Patrick Fessel
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Christine Konradi
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, United States of America
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
16
|
Zhou X, Wang Y, Si J, Zhou R, Gan L, Di C, Xie Y, Zhang H. Laser controlled singlet oxygen generation in mitochondria to promote mitochondrial DNA replication in vitro. Sci Rep 2015; 5:16925. [PMID: 26577055 PMCID: PMC4649627 DOI: 10.1038/srep16925] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/21/2015] [Indexed: 01/26/2023] Open
Abstract
Reports have shown that a certain level of reactive oxygen species (ROS) can promote mitochondrial DNA (mtDNA) replication. However, it is unclear whether it is the mitochondrial ROS that stimulate mtDNA replication and this requires further investigation. Here we employed a photodynamic system to achieve controlled mitochondrial singlet oxygen (1O2) generation. HeLa cells incubated with 5-aminolevulinic acid (ALA) were exposed to laser irradiation to induce 1O2 generation within mitochondria. Increased mtDNA copy number was detected after low doses of 630 nm laser light in ALA-treated cells. The stimulated mtDNA replication was directly linked to mitochondrial 1O2 generation, as verified using specific ROS scavengers. The stimulated mtDNA replication was regulated by mitochondrial transcription factor A (TFAM) and mtDNA polymerase γ. MtDNA control region modifications were induced by 1O2 generation in mitochondria. A marked increase in 8-Oxoguanine (8-oxoG) level was detected in ALA-treated cells after irradiation. HeLa cell growth stimulation and G1-S cell cycle transition were also observed after laser irradiation in ALA-treated cells. These cellular responses could be due to a second wave of ROS generation detected in mitochondria. In summary, we describe a controllable method of inducing mtDNA replication in vitro.
Collapse
Affiliation(s)
- Xin Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Yupei Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China.,Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Rong Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Cuixia Di
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
17
|
Mei H, Sun S, Bai Y, Chen Y, Chai R, Li H. Reduced mtDNA copy number increases the sensitivity of tumor cells to chemotherapeutic drugs. Cell Death Dis 2015; 6:e1710. [PMID: 25837486 PMCID: PMC4650546 DOI: 10.1038/cddis.2015.78] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/15/2015] [Accepted: 02/18/2015] [Indexed: 11/09/2022]
Abstract
Many cancer drugs are toxic to cells by activating apoptotic pathways. Previous studies have shown that mitochondria have key roles in apoptosis in mammalian cells, but the role of mitochondrial DNA (mtDNA) copy number variation in the pathogenesis of tumor cell apoptosis remains largely unknown. We used the HEp-2, HNE2, and A549 tumor cell lines to explore the relationship between mtDNA copy number variation and cell apoptosis. We first induced apoptosis in three tumor cell lines and one normal adult human skin fibroblast cell line (HSF) with cisplatin (DDP) or doxorubicin (DOX) treatment and found that the mtDNA copy number significantly increased in apoptotic tumor cells, but not in HSF cells. We then downregulated the mtDNA copy number by transfection with shRNA-TFAM plasmids or treatment with ethidium bromide and found that the sensitivity of tumor cells to DDP or DOX was significantly increased. Furthermore, we observed that levels of reactive oxygen species (ROS) increased significantly in tumor cells with lower mtDNA copy numbers, and this might be related to a low level of antioxidant gene expression. Finally, we rescued the increase of ROS in tumor cells with lipoic acid or N-acetyl-L-cysteine and found that the apoptosis rate decreased. Our studies suggest that the increase of mtDNA copy number is a self-protective mechanism of tumor cells to prevent apoptosis and that reduced mtDNA copy number increases ROS levels in tumor cells, increases the tumor cells' sensitivity to chemotherapeutic drugs, and increases the rate of apoptosis. This research provides evidence that mtDNA copy number variation might be a promising new therapeutic target for the clinical treatment of tumors.
Collapse
Affiliation(s)
- H Mei
- Department of Otorhinolaryngology, Research Center, Key Laboratory of Hearing Science, Ministry of Health, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - S Sun
- Department of Otorhinolaryngology, Research Center, Key Laboratory of Hearing Science, Ministry of Health, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Y Bai
- Department of Otolaryngology, Children's Hospital, Chongqing Medical University, Chongqing 400014, China
| | - Y Chen
- Department of Otorhinolaryngology, Research Center, Key Laboratory of Hearing Science, Ministry of Health, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - R Chai
- Co-innovation Center of Neuroregeneration, Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - H Li
- Department of Otorhinolaryngology, Research Center, Key Laboratory of Hearing Science, Ministry of Health, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| |
Collapse
|
18
|
Meyer JN, Leung MCK, Rooney JP, Sendoel A, Hengartner MO, Kisby GE, Bess AS. Mitochondria as a target of environmental toxicants. Toxicol Sci 2013; 134:1-17. [PMID: 23629515 PMCID: PMC3693132 DOI: 10.1093/toxsci/kft102] [Citation(s) in RCA: 361] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enormous strides have recently been made in our understanding of the biology and pathobiology of mitochondria. Many diseases have been identified as caused by mitochondrial dysfunction, and many pharmaceuticals have been identified as previously unrecognized mitochondrial toxicants. A much smaller but growing literature indicates that mitochondria are also targeted by environmental pollutants. We briefly review the importance of mitochondrial function and maintenance for health based on the genetics of mitochondrial diseases and the toxicities resulting from pharmaceutical exposure. We then discuss how the principles of mitochondrial vulnerability illustrated by those fields might apply to environmental contaminants, with particular attention to factors that may modulate vulnerability including genetic differences, epigenetic interactions, tissue characteristics, and developmental stage. Finally, we review the literature related to environmental mitochondrial toxicants, with a particular focus on those toxicants that target mitochondrial DNA. We conclude that the fields of environmental toxicology and environmental health should focus more strongly on mitochondria.
Collapse
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Bess AS, Ryde IT, Hinton DE, Meyer JN. UVC-induced mitochondrial degradation via autophagy correlates with mtDNA damage removal in primary human fibroblasts. J Biochem Mol Toxicol 2013; 27:28-41. [PMID: 23132756 PMCID: PMC3640456 DOI: 10.1002/jbt.21440] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/08/2012] [Indexed: 11/07/2022]
Abstract
Mitochondrial DNA (mtDNA) is more susceptible than nuclear DNA to helix-distorting damage via exposure to environmental genotoxins, partially due to a lack of nucleotide excision repair. Thus, this damage is irreparable and persistent in mtDNA in the short term. We recently found that helix-distorting mtDNA damage induced by ultraviolet C radiation (UVC) is gradually removed in Caenorhabditis elegans and that removal is dependent upon autophagy and mitochondrial dynamics. We here report the effects of UVC exposure on mitophagy, mitochondrial morphology, and indicators of mitochondrial function in mammalian cells. Exposure to UVC induced autophagy within 24 h; nonetheless, significant mitochondrial degradation was not observed until 72 h post exposure. Mitochondrial mass, morphology, and function were not significantly altered. These data further support the idea that persistent mtDNA damage is removed by autophagy and also suggest a powerful compensatory capacity for dealing with mtDNA damage.
Collapse
Affiliation(s)
- Amanda S Bess
- Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Duke University, Research Drive, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
20
|
Vadrot N, Ghanem S, Braut F, Gavrilescu L, Pilard N, Mansouri A, Moreau R, Reyl-Desmars F. Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α. PLoS One 2012; 7:e40879. [PMID: 22911714 PMCID: PMC3401193 DOI: 10.1371/journal.pone.0040879] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 06/18/2012] [Indexed: 12/16/2022] Open
Abstract
During chronic liver inflammation, up-regulated Tumor Necrosis Factor alpha (TNF-α) targets hepatocytes and induces abnormal reactive oxygen species (ROS) production responsible for mitochondrial DNA (mtDNA) alterations. The serine/threonine Glycogen Synthase Kinase 3 beta (GSK3β) plays a pivotal role during inflammation but its involvement in the maintenance of mtDNA remains unknown. The aim of this study was to investigate its involvement in TNF-α induced mtDNA depletion and its interrelationship with p53 a protein known to maintain mtDNA copy numbers. Using quantitative polymerase chain reaction (qPCR) we found that at 30 min in human hepatoma HepG2 cells TNF-α induced 0.55±0.10 mtDNA lesions per 10 Kb and a 52.4±2.8% decrease in mtDNA content dependent on TNF-R1 receptor and ROS production. Both lesions and depletion returned to baseline from 1 to 6 h after TNF-α exposure. Luminol-amplified chemiluminescence (LAC) was used to measure the rapid (10 min) and transient TNF-α induced increase in ROS production (168±15%). A transient 8-oxo-dG level of 1.4±0.3 ng/mg DNA and repair of abasic sites were also measured by ELISA assays. Translocation of p53 to mitochondria was observed by Western Blot and co-immunoprecipitations showed that TNF-α induced p53 binding to GSK3β and mitochondrial transcription factor A (TFAM). In addition, mitochondrial D-loop immunoprecipitation (mtDIP) revealed that TNF-α induced p53 binding to the regulatory D-loop region of mtDNA. The knockdown of p53 by siRNAs, inhibition by the phosphoSer(15)p53 antibody or transfection of human mutant active GSK3βS9A pcDNA3 plasmid inhibited recovery of mtDNA content while blockade of GSK3β activity by SB216763 inhibitor or knockdown by siRNAs suppressed mtDNA depletion. This study is the first to report the involvement of GSK3β in TNF-α induced mtDNA depletion. We suggest that p53 binding to GSK3β, TFAM and D-loop could induce recovery of mtDNA content through mtDNA repair.
Collapse
Affiliation(s)
- Nathalie Vadrot
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Sarita Ghanem
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Françoise Braut
- INSERM U773, CRB3, Equipe El-Benna, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Laura Gavrilescu
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Nathalie Pilard
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Abdellah Mansouri
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Richard Moreau
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Florence Reyl-Desmars
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
- * E-mail:
| |
Collapse
|
21
|
Gandhi VV, Samuels DC. Correlated tissue expression of genes of cytoplasmic and mitochondrial nucleotide metabolisms in normal tissues is disrupted in transformed tissues. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:112-29. [PMID: 22303991 DOI: 10.1080/15257770.2011.644101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cells maintain dual metabolic pathways to provide substrates for the replication of mitochondrial and nuclear DNA. These pathways involve two separate sets of genes in the nuclear DNA, with one set encoding proteins targeted to the mitochondrion. However, the cytoplasmic and mitochondrial metabolisms are capable of communication through the transport of deoxyribonucleosides and deoxyribonucleotides between the two subcellular compartments. Cytoplasmic and mitochondrial deoxyribonucleoside triphosphate concentrations are strongly correlated in normal cells but not in transformed cells. We were therefore interested in comparing the interactions in normal and transformed tissues between the corresponding cytoplasmic and mitochondrial metabolisms that produce deoxyribonucleoside triphosphates. We conducted an analysis of gene expression data in normal and transformed human tissues obtained from the UniGene database for a selected set of genes for proteins involved in nucleoside salvage in either the cytoplasm or mitochondria. We also included ribonucleotide reductase in our analysis due to its importance in generating deoxyribonucleoside triphosphates. This analysis revealed a large number of highly significant positive correlations between the tissue expression profiles of the genes of the mitochondrial and cytoplasmic pathways in normal tissues, indicating that in normal tissues, the two metabolisms coordinately generate deoxyribonucleoside triphosphates. In transformed tissues, this correlation structure was disrupted. Multiple correlations involving the mitochondrial nucleoside kinase gene DGUOK were statistically significantly different between normal and transformed tissues, suggesting that control of DGUOK expression relative to other cytoplasmic genes is important in transformed tissues.
Collapse
Affiliation(s)
- Vishal V Gandhi
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0700, USA
| | | |
Collapse
|
22
|
Enzyme kinetics of the mitochondrial deoxyribonucleoside salvage pathway are not sufficient to support rapid mtDNA replication. PLoS Comput Biol 2011; 7:e1002078. [PMID: 21829339 PMCID: PMC3150320 DOI: 10.1371/journal.pcbi.1002078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/19/2011] [Indexed: 11/19/2022] Open
Abstract
Using a computational model, we simulated mitochondrial deoxynucleotide metabolism and mitochondrial DNA replication. Our results indicate that the output from the mitochondrial salvage enzymes alone is inadequate to support a mitochondrial DNA replication duration of as long as 10 hours. We find that an external source of deoxyribonucleoside diphosphates or triphosphates (dNTPs), in addition to those supplied by mitochondrial salvage, is essential for the replication of mitochondrial DNA to complete in the experimentally observed duration of approximately 1 to 2 hours. For meeting a relatively fast replication target of 2 hours, almost two-thirds of the dNTP requirements had to be externally supplied as either deoxyribonucleoside di- or triphosphates, at about equal rates for all four dNTPs. Added monophosphates did not suffice. However, for a replication target of 10 hours, mitochondrial salvage was able to provide for most, but not all, of the total substrate requirements. Still, additional dGTPs and dATPs had to be supplied. Our analysis of the enzyme kinetics also revealed that the majority of enzymes of this pathway prefer substrates that are not precursors (canonical deoxyribonucleosides and deoxyribonucleotides) for mitochondrial DNA replication, such as phosphorylated ribonucleotides, instead of the corresponding deoxyribonucleotides. The kinetic constants for reactions between mitochondrial salvage enzymes and deoxyribonucleotide substrates are physiologically unreasonable for achieving efficient catalysis with the expected in situ concentrations of deoxyribonucleotides. The powerhouses of human cells, mitochondria, contain DNA that is distinct from the primary genome, the DNA in the nucleus of cells. The mitochondrial genome needs to be replicated often to ensure continued generation of ATP (adenosine triphosphate) which is the energy currency of the cell. Problems with maintenance of mitochondrial DNA, arising from genetic mutations as well as from antiviral drugs, can lead to debilitating diseases that are often fatal in early life and childhood, or reduced compliance to therapy from patients suffering drug toxicity. It is therefore important to understand the processes that contribute to the upkeep of mitochondrial DNA. The activities of a set of enzymes, which together generate the chemical building blocks of mitochondrial DNA, are important in this regard. We used computational methods to analyze the properties of these enzymes. Results from our approach of treating these enzymes as a system rather than studying them one at a time suggest that in most conditions, the activities of the enzymes are not sufficient for completing replication of mitochondrial DNA in the observed duration of around 2 hours. We propose that a source of building blocks in addition to this set of enzymes appears to be essential.
Collapse
|
23
|
Wang L. Deoxynucleoside salvage enzymes and tissue specific mitochondrial DNA depletion. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:370-81. [PMID: 20544522 DOI: 10.1080/15257771003729732] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adequate mitochondrial DNA (mtDNA) copies are required for normal mitochondria function and reductions in mtDNA copy number due to genetic alterations cause tissue-specific mtDNA depletion syndrome (MDS). There are eight nuclear genes, directly or indirectly involved in mtDNA replication and mtDNA precursor synthesis, which have been identified as the cause of MDS. However, the tissue specific pathology of these nuclear gene mutations is not well understood. Here, mtDNA synthesis, mtDNA copy number control, and mtDNA turnover, as well as the synthesis of mtDNA precursors in relation to the levels of salvage enzymes are discussed. The question why MDS caused by TK2 and p53R2 mutations are predominantly muscle specific while dGK deficiency affected mainly liver will be addressed.
Collapse
Affiliation(s)
- L Wang
- Department of Anatomy, Physiology and Biochemistry, Section of Veterinary Medical Biochemistry, Uppsala, Sweden.
| |
Collapse
|
24
|
Echave P, Machado-da-Silva G, Arkell RS, Duchen MR, Jacobson J, Mitter R, Lloyd AC. Extracellular growth factors and mitogens cooperate to drive mitochondrial biogenesis. J Cell Sci 2009; 122:4516-25. [PMID: 19920079 DOI: 10.1242/jcs.049734] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cells generate new organelles when stimulated by extracellular factors to grow and divide; however, little is known about how growth and mitogenic signalling pathways regulate organelle biogenesis. Using mitochondria as a model organelle, we have investigated this problem in primary Schwann cells, for which distinct factors act solely as mitogens (neuregulin) or as promoters of cell growth (insulin-like growth factor 1; IGF1). We find that neuregulin and IGF1 act synergistically to increase mitochondrial biogenesis and mitochondrial DNA replication, resulting in increased mitochondrial density in these cells. Moreover, constitutive oncogenic Ras signalling results in a further increase in mitochondrial density. This synergistic effect is seen at the global transcriptional level, requires both the ERK and phosphoinositide 3-kinase (PI3K) signalling pathways and is mediated by the transcription factor ERRalpha. Interestingly, the effect is independent of Akt-TOR signalling, a major regulator of cell growth in these cells. This separation of the pathways that drive mitochondrial biogenesis and cell growth provides a mechanism for the modulation of mitochondrial density according to the metabolic requirements of the cell.
Collapse
Affiliation(s)
- Pedro Echave
- MRC Laboratory for Molecular Cell Biology, The Cancer Institute, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Rodriguez-Enriquez S, Kai Y, Maldonado E, Currin RT, Lemasters JJ. Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy 2009; 5:1099-106. [PMID: 19783904 DOI: 10.4161/auto.5.8.9825] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In primary culture, hepatocytes dedifferentiate, and their cytoplasm undergoes remodeling. Here, our aim was to characterize changes of mitochondria during remodeling. Hepatocytes were cultured one to five days in complete serumcontaining Waymouth's medium. In rat hepatocytes loaded with MitoTracker Green (MTG), tetramethylrhodamine methylester (TMRM), and/or LysoTracker Red (LTR), confocal microscopy revealed that mitochondria number and mass decreased by approximately 50% between Day 1 and Day 3 of culture. As mitochondria disappeared, lysosomes/autophagosomes proliferated five-fold. Decreased mitochondrial content correlated with (a) decreased cytochrome c oxidase activity and mitochondrial number observed by electron microscopy and (b) a profound decrease of PGC-1alpha mRNA expression. By contrast, mtDNA content per cell remained constant from the first to the third day of culture, although ethidium bromide (de novo mtDNA synthesis inhibitor) caused mtDNA to decrease by half from the first to the third culture day. As mitochondria disappeared, their MTG label moved into LTR-labeled lysosomes, which was indicative of autophagic degradation. A multiwell fluorescence assay revealed a 2.5-fold increase of autophagy on Day 3 of culture, which was decreased by 3-methyladenine, an inhibitor of autophagy, and also by cyclosporin A and NIM811, both selective inhibitors of the mitochondrial permeability transition (MPT). These findings indicate that mitochondrial autophagy (mitophagy) and the MPT underlie mitochondrial remodeling in cultured hepatocytes.
Collapse
Affiliation(s)
- Sara Rodriguez-Enriquez
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
26
|
Kalifa L, Beutner G, Phadnis N, Sheu SS, Sia EA. Evidence for a role of FEN1 in maintaining mitochondrial DNA integrity. DNA Repair (Amst) 2009; 8:1242-9. [PMID: 19699691 DOI: 10.1016/j.dnarep.2009.07.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/21/2009] [Accepted: 07/23/2009] [Indexed: 02/05/2023]
Abstract
Although the nuclear processes responsible for genomic DNA replication and repair are well characterized, the pathways involved in mitochondrial DNA (mtDNA) replication and repair remain unclear. DNA repair has been identified as being particularly important within the mitochondrial compartment due to the organelle's high propensity to accumulate oxidative DNA damage. It has been postulated that continual accumulation of mtDNA damage and subsequent mutagenesis may function in cellular aging. Mitochondrial base excision repair (mtBER) plays a major role in combating mtDNA oxidative damage; however, the proteins involved in mtBER have yet to be fully characterized. It has been established that during nuclear long-patch (LP) BER, FEN1 is responsible for cleavage of 5' flap structures generated during DNA synthesis. Furthermore, removal of 5' flaps has been observed in mitochondrial extracts of mammalian cell lines; yet, the mitochondrial localization of FEN1 has not been clearly demonstrated. In this study, we analyzed the effects of deleting the yeast FEN1 homolog, RAD27, on mtDNA stability in Saccharomyces cerevisiae. Our findings demonstrate that Rad27p/FEN1 is localized in the mitochondrial compartment of both yeast and mice and that Rad27p has a significant role in maintaining mtDNA integrity.
Collapse
Affiliation(s)
- Lidza Kalifa
- Department of Biology, University of Rochester, NY 14627, United States
| | | | | | | | | |
Collapse
|
27
|
Abstract
Mitochondrial DNA is thought to be especially prone to oxidative damage by reactive oxygen species generated through electron transport during cellular respiration. This damage is mitigated primarily by the base excision repair (BER) pathway, one of the few DNA repair pathways with confirmed activity on mitochondrial DNA. Through genetic epistasis analysis of the yeast Saccharomyces cerevisiae, we examined the genetic interaction between each of the BER proteins previously shown to localize to the mitochondria. In addition, we describe a series of genetic interactions between BER components and the MutS homolog MSH1, a respiration-essential gene. We show that, in addition to their variable effects on mitochondrial function, mutant msh1 alleles conferring partial function interact genetically at different points in mitochondrial BER. In addition to this separation of function, we also found that the role of Msh1p in BER is unlikely to be involved in the avoidance of large-scale deletions and rearrangements.
Collapse
|
28
|
Clay Montier LL, Deng JJ, Bai Y. Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics 2009; 36:125-31. [PMID: 19302968 PMCID: PMC4706993 DOI: 10.1016/s1673-8527(08)60099-5] [Citation(s) in RCA: 378] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/13/2009] [Accepted: 01/19/2009] [Indexed: 12/15/2022]
Abstract
Regulation of mitochondrial biogenesis is essential for proper cellular functioning. Mitochondrial DNA (mtDNA) depletion and the resulting mitochondrial malfunction have been implicated in cancer, neurodegeneration, diabetes, aging, and many other human diseases. Although it is known that the dynamics of the mammalian mitochondrial genome are not linked with that of the nuclear genome, very little is known about the mechanism of mtDNA propagation. Nevertheless, our understanding of the mode of mtDNA replication has advanced in recent years, though not without some controversies. This review summarizes our current knowledge of mtDNA copy number control in mammalian cells, while focusing on both mtDNA replication and turnover. Although mtDNA copy number is seemingly in excess, we reason that mtDNA copy number control is an important aspect of mitochondrial genetics and biogenesis and is essential for normal cellular function.
Collapse
Affiliation(s)
- Laura L Clay Montier
- Department of Cellular and Structural Biology, The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|