1
|
DeGroat W, Abdelhalim H, Peker E, Sheth N, Narayanan R, Zeeshan S, Liang BT, Ahmed Z. Multimodal AI/ML for discovering novel biomarkers and predicting disease using multi-omics profiles of patients with cardiovascular diseases. Sci Rep 2024; 14:26503. [PMID: 39489837 PMCID: PMC11532369 DOI: 10.1038/s41598-024-78553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024] Open
Abstract
Cardiovascular diseases (CVDs) are complex, multifactorial conditions that require personalized assessment and treatment. Advancements in multi-omics technologies, namely RNA sequencing and whole-genome sequencing, have provided translational researchers with a comprehensive view of the human genome. The efficient synthesis and analysis of this data through integrated approach that characterizes genetic variants alongside expression patterns linked to emerging phenotypes, can reveal novel biomarkers and enable the segmentation of patient populations based on personalized risk factors. In this study, we present a cutting-edge methodology rooted in the integration of traditional bioinformatics, classical statistics, and multimodal machine learning techniques. Our approach has the potential to uncover the intricate mechanisms underlying CVD, enabling patient-specific risk and response profiling. We sourced transcriptomic expression data and single nucleotide polymorphisms (SNPs) from both CVD patients and healthy controls. By integrating these multi-omics datasets with clinical demographic information, we generated patient-specific profiles. Utilizing a robust feature selection approach, we identified a signature of 27 transcriptomic features and SNPs that are effective predictors of CVD. Differential expression analysis, combined with minimum redundancy maximum relevance feature selection, highlighted biomarkers that explain the disease phenotype. This approach prioritizes both biological relevance and efficiency in machine learning. We employed Combination Annotation Dependent Depletion scores and allele frequencies to identify variants with pathogenic characteristics in CVD patients. Classification models trained on this signature demonstrated high-accuracy predictions for CVD. The best performing of these models was an XGBoost classifier optimized via Bayesian hyperparameter tuning, which was able to correctly classify all patients in our test dataset. Using SHapley Additive exPlanations, we created risk assessments for patients, offering further contextualization of these predictions in a clinical setting. Across the cohort, RPL36AP37 and HBA1 were scored as the most important biomarkers for predicting CVDs. A comprehensive literature review revealed that a substantial portion of the diagnostic biomarkers identified have previously been associated with CVD. The framework we propose in this study is unbiased and generalizable to other diseases and disorders.
Collapse
Affiliation(s)
- William DeGroat
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Habiba Abdelhalim
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Elizabeth Peker
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Neev Sheth
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Rishabh Narayanan
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Saman Zeeshan
- Department of Biomedical and Health Informatics, UMKC School of Medicine, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Bruce T Liang
- Pat and Jim Calhoun Cardiology Center, UConn Health, 263 Farmington Ave, Farmington, CT, USA
- UConn School of Medicine, University of Connecticut, 263 Farmington Ave, Farmington, CT, USA
| | - Zeeshan Ahmed
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, 112 Paterson St, New Brunswick, NJ, 08901, USA.
- UConn School of Medicine, University of Connecticut, 263 Farmington Ave, Farmington, CT, USA.
- Department of Medicine, Division of Cardiovascular Disease and Hypertension, Robert Wood Johnson Medical School, Rutgers Health, 125 Paterson St, New Brunswick, NJ, 08901, USA.
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
2
|
Yang L, Guo Q, Leng J, Wang K, Ding Y. Late onset of type 2 diabetes is associated with mitochondrial tRNA Trp A5514G and tRNA Ser(AGY) C12237T mutations. J Clin Lab Anal 2021; 36:e24102. [PMID: 34811812 PMCID: PMC8761459 DOI: 10.1002/jcla.24102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
Background Mitochondrial dysfunctions caused by mitochondrial DNA (mtDNA) pathogenic mutations play putative roles in type 2 diabetes mellitus (T2DM) progression. But the underlying mechanism remains poorly understood. Methods A large Chinese family with maternally inherited diabetes and deafness (MIDD) underwent clinical, genetic, and molecular assessment. PCR and sequence analysis are carried out to detect mtDNA variants in affected family members, in addition, phylogenetic conservation analysis, haplogroup classification, and pathogenicity scoring system are performed. Moreover, the GJB2, GJB3, GJB6, and TRMU genes mutations are screened by PCR‐Sanger sequencing. Results Six of 18 matrilineal subjects manifested different clinical phenotypes of diabetes. The average age at onset of diabetic patients is 52 years. Screening for the entire mitochondrial genomes suggests the co‐existence of two possibly pathogenic mutations: tRNATrp A5514G and tRNASer(AGY) C12237T, which belongs to East Asia haplogroup G2a. By molecular level, m.A5514G mutation resides at acceptor stem of tRNATrp (position 3), which is critical for steady‐state level of tRNATrp. Conversely, m.C12237T mutation occurs in the variable region of tRNASer(AGY) (position 31), which creates a novel base‐pairing (11A‐31T). Thus, the mitochondrial dysfunctions caused by tRNATrp A5514G and tRNASer(AGY) C12237T mutations, may be associated with T2DM in this pedigree. But we do not find any functional mutations in those nuclear genes. Conclusion Our findings suggest that m.A5514G and m.C12337T mutations are associated with T2DM, screening for mt‐tRNA mutations is useful for molecular diagnosis and prevention of mitochondrial diabetes.
Collapse
Affiliation(s)
- Liuchun Yang
- Central Laboratory, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinxian Guo
- Central Laboratory, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhang Leng
- Central Laboratory, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Keyi Wang
- Central Laboratory, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Central Laboratory, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Ding
- Central Laboratory, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Lin L, Zhang D, Jin Q, Teng Y, Yao X, Zhao T, Xu X, Jin Y. Mutational Analysis of Mitochondrial tRNA Genes in 200 Patients with Type 2 Diabetes Mellitus. Int J Gen Med 2021; 14:5719-5735. [PMID: 34557026 PMCID: PMC8454214 DOI: 10.2147/ijgm.s330973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Previous studies showed that variants in mitochondrial DNA (mtDNA) are associated with type 2 diabetes mellitus (T2DM). However, the relationships between mitochondrial tRNA (mt-tRNA) variants and T2DM remain poorly understood. Methods In this study, we performed a mutational screening of 22 mt-tRNA genes in a cohort of 200 Han Chinese subjects with T2DM and 200 control subjects through PCR–Sanger sequencing. The identified mt-tRNA variants were assessed for their pathogenicity via the phylogenetic approach, structural and functional analysis. Furthermore, two Han Chinese pedigrees with maternally inherited diabetes and deafness (MIDD) were reported by clinical and genetic assessments. Results A total of 49 genetic variants in mt-tRNA genes were identified; among them, 31 variants (17 pathogenic/likely pathogenic) were absent in controls, located at extremely conserved nucleotides, may have potential structural and functional significance, thereby considered to be T2DM-associated variants. In addition, sequence analysis of entire mitochondrial genomes of the matrilineal relatives from two MIDD pedigrees revealed the occurrence of tRNALeu(UUR) A3243G and T3290C mutations, as well as sets of polymorphisms belonging to mitochondrial haplogroups F2 and D4. However, the lack of any functional variants in connexin 26 gene (GJB2) and tRNA 5-methylaminomethyl-2-thiouridylate (TRMU) suggested that nuclear genes may not play active roles in clinical expression of MIDD in these pedigrees. Conclusion Our data indicated that mt-tRNA variants were associated with T2DM, screening for mt-tRNA pathogenic mutations was recommended for early detection and prevention of mitochondrial diabetes.
Collapse
Affiliation(s)
- Liangyan Lin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Dongdong Zhang
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Qingsong Jin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Yaqin Teng
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Xiaoyan Yao
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Tiantian Zhao
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Xinmiao Xu
- Department of Endocrinology, Yantai Yeda Hospital, Yantai, Shandong, People's Republic of China
| | - Yongjun Jin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, People's Republic of China
| |
Collapse
|
4
|
Shaukat AN, Kaliatsi EG, Stamatopoulou V, Stathopoulos C. Mitochondrial tRNA-Derived Fragments and Their Contribution to Gene Expression Regulation. Front Physiol 2021; 12:729452. [PMID: 34539450 PMCID: PMC8446549 DOI: 10.3389/fphys.2021.729452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/09/2021] [Indexed: 01/14/2023] Open
Abstract
Mutations in human mitochondrial tRNAs (mt-tRNAs) are responsible for several and sometimes severe clinical phenotypes, classified among mitochondrial diseases. In addition, post-transcriptional modifications of mt-tRNAs in correlation with several stress signals can affect their stability similarly to what has been described for their nuclear-encoded counterparts. Many of the perturbations related to either point mutations or aberrant modifications of mt-tRNAs can lead to specific cleavage and the production of mitochondrial tRNA-derived fragments (mt-tRFs). Although mt-tRFs have been detected in several studies, the exact biogenesis steps and biological role remain, to a great extent, unexplored. Several mt-tRFs are produced because of the excessive oxidative stress which predominantly affects mitochondrial DNA integrity. In addition, mt-tRFs have been detected in various diseases with possible detrimental consequences, but also their production may represent a response mechanism to external stimuli, including infections from pathogens. Finally, specific point mutations on mt-tRNAs have been reported to impact the pool of the produced mt-tRFs and there is growing evidence suggesting that mt-tRFs can be exported and act in the cytoplasm. In this review, we summarize current knowledge on mitochondrial tRNA-deriving fragments and their possible contribution to gene expression regulation.
Collapse
Affiliation(s)
| | - Eleni G Kaliatsi
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| | | | | |
Collapse
|
5
|
Yu XJ, Ding Y. The roles of mitochondrial tRNA mutations in non-dystrophic myotonias. Mitochondrial DNA B Resour 2020; 5:3796-3801. [PMID: 33367105 PMCID: PMC7682739 DOI: 10.1080/23802359.2020.1839364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
According a recent report by Heidari et al., a mutational screening for candidate pathogenic mitochondrial tRNA (mt-tRNA) mutations were performed in 45 Iranian patients with non-dystrophic myotonia (NDM) and 70 control subjects. Through PCR amplification and direct sequence analysis, nine mt-tRNA mutations were identified: tRNAMet T4454C, tRNATrp A5568G, tRNACys T5794C, tRNAArg A10438T and T10462C, tRNALeu(CUN) A12308G, tRNAThr A15907G, A15924G and G15928A. However, through the database searches and phylogenetic conservation analysis, we noticed that the tRNAThr A15924G, G15928A and tRNALeu(CUN) A12308G mutations should be classified 'pathogenic'. Thus, the roles of mt-tRNA mutations in clinical expression of NDM needed to be further experimentally addressed.
Collapse
Affiliation(s)
- Xue-Jiao Yu
- Department of Clinical Laboratory, Quzhou People's Hospital, Quzhou, China
| | - Yu Ding
- Central Laboratory, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Mossman JA, Biancani LM, Rand DM. Mitochondrial genomic variation drives differential nuclear gene expression in discrete regions of Drosophila gene and protein interaction networks. BMC Genomics 2019; 20:691. [PMID: 31477008 PMCID: PMC6719383 DOI: 10.1186/s12864-019-6061-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mitochondria perform many key roles in their eukaryotic hosts, from integrating signaling pathways through to modulating whole organism phenotypes. The > 1 billion years of nuclear and mitochondrial gene co-evolution has necessitated coordinated expression of gene products from both genomes that maintain mitochondrial, and more generally, eukaryotic cellular function. How mitochondrial DNA (mtDNA) variation modifies host fitness has proved a challenging question but has profound implications for evolutionary and medical genetics. In Drosophila, we have previously shown that recently diverged mtDNA haplotypes within-species can have more impact on organismal phenotypes than older, deeply diverged haplotypes from different species. Here, we tested the effects of mtDNA haplotype variation on gene expression in Drosophila under standardized conditions. Using the Drosophila Genetic Reference Panel (DGRP), we constructed a panel of mitonuclear genotypes that consists of factorial variation in nuclear and mtDNA genomes, with mtDNAs originating in D. melanogaster (2x haplotypes) and D. simulans (2x haplotypes). RESULTS We show that mtDNA haplotype variation unequivocally alters nuclear gene expression in both females and males, and mitonuclear interactions are pervasive modifying factors for gene expression. There was appreciable overlap between the sexes for mtDNA-sensitive genes, and considerable transcriptional variation attributed to particular mtDNA contrasts. These genes are generally found in low-connectivity gene co-expression networks, occur in gene clusters along chromosomes, are often flanked by non-coding RNA, and are under-represented among housekeeping genes. Finally, we identify the giant (gt) transcription factor motif as a putative regulatory sequence associated with mtDNA-sensitive genes. CONCLUSIONS There are predictive conditions for nuclear genes that are influenced by mtDNA variation.
Collapse
Affiliation(s)
- Jim A Mossman
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI, 02912, USA.
| | - Leann M Biancani
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI, 02912, USA
- Present Address: Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
7
|
Venter M, Tomas C, Pienaar IS, Strassheim V, Erasmus E, Ng WF, Howell N, Newton JL, Van der Westhuizen FH, Elson JL. MtDNA population variation in Myalgic encephalomyelitis/Chronic fatigue syndrome in two populations: a study of mildly deleterious variants. Sci Rep 2019; 9:2914. [PMID: 30814539 PMCID: PMC6393470 DOI: 10.1038/s41598-019-39060-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Myalgic Encephalomyelitis (ME), also known as Chronic Fatigue Syndrome (CFS) is a debilitating condition. There is growing interest in a possible etiologic or pathogenic role of mitochondrial dysfunction and mitochondrial DNA (mtDNA) variation in ME/CFS. Supporting such a link, fatigue is common and often severe in patients with mitochondrial disease. We investigate the role of mtDNA variation in ME/CFS. No proven pathogenic mtDNA mutations were found. We then investigated population variation. Two cohorts were analysed, one from the UK (n = 89 moderately affected; 29 severely affected) and the other from South Africa (n = 143 moderately affected). For both cohorts, ME/CFS patients had an excess of individuals without a mildly deleterious population variant. The differences in population variation might reflect a mechanism important to the pathophysiology of ME/CFS.
Collapse
Affiliation(s)
- Marianne Venter
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Cara Tomas
- Institute of Cellular Medicine & NIHR Biomedical Research Centre in Ageing and Chronic Disease, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, United Kingdom
- Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
| | - Victoria Strassheim
- Institute of Cellular Medicine & NIHR Biomedical Research Centre in Ageing and Chronic Disease, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
| | - Elardus Erasmus
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Wan-Fai Ng
- Institute of Cellular Medicine & NIHR Biomedical Research Centre in Ageing and Chronic Disease, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Neil Howell
- Department of Radiation Therapy, UTMB, Galveston, Texas, USA
| | - Julia L Newton
- Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | | | - Joanna L Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom.
| |
Collapse
|
8
|
Detection of mitochondrial transfer RNA (mt-tRNA) gene mutations in patients with idiopathic pulmonary fibrosis and sarcoidosis. Mitochondrion 2018; 43:43-52. [PMID: 30473003 DOI: 10.1016/j.mito.2018.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 09/10/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Abstract
Mitochondrial reactive oxygen species production may lead to tissue injury associated with two respiratory disorders of unknown origin which are shared by common tissue fibrosis, IPF and sarcoidosis. Sequence analysis of 22 mt-tRNA genes and parts of their flanking genes revealed 32 and 45 mutations in 38/40 IPF and 69/85 sarcoidosis patients respectively. 4 novel mutations were identified. 15/32 and 25/45 mutations were exclusively expressed while 12/32 and 17/45 mutations predominantly occurred in IPF and sarcoidosis group respectively, compared to healthy controls. Novel mutation combinations were solely expressed in disease. Hence, a mitochondrial-mediated pathogenic pathway seems to underlie both entities.
Collapse
|
9
|
Fiedorczuk K, Sazanov LA. Mammalian Mitochondrial Complex I Structure and Disease-Causing Mutations. Trends Cell Biol 2018; 28:835-867. [PMID: 30055843 DOI: 10.1016/j.tcb.2018.06.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022]
Abstract
Complex I has an essential role in ATP production by coupling electron transfer from NADH to quinone with translocation of protons across the inner mitochondrial membrane. Isolated complex I deficiency is a frequent cause of mitochondrial inherited diseases. Complex I has also been implicated in cancer, ageing, and neurodegenerative conditions. Until recently, the understanding of complex I deficiency on the molecular level was limited due to the lack of high-resolution structures of the enzyme. However, due to developments in single particle cryo-electron microscopy (cryo-EM), recent studies have reported nearly atomic resolution maps and models of mitochondrial complex I. These structures significantly add to our understanding of complex I mechanism and assembly. The disease-causing mutations are discussed here in their structural context.
Collapse
Affiliation(s)
- Karol Fiedorczuk
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria; Present address: The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria.
| |
Collapse
|
10
|
Stefano GB, Bjenning C, Wang F, Wang N, Kream RM. Mitochondrial Heteroplasmy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:577-594. [PMID: 28551808 DOI: 10.1007/978-3-319-55330-6_30] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic polymorphisms, in concert with well-characterized etiology and progression of major pathologies, plays a significant role in aberrant processes afflicting human populations. Mitochondrial heteroplasmy represents a dynamically determined co-expression of inherited polymorphisms and somatic pathology in varying ratios within individual mitochondrial DNA (mtDNA) genomes with repetitive patterns of tissue specificity. The ratios of the MtDNA genomes represent a balance between healthy and pathological cellular outcomes. Mechanistically, cardiomyopathies have profound alterations of normative mitochondrial function. Certain allele imbalances in the nuclear mitochondrial genome are associated with key energy mitochondrial proteins. Mitochondrial heteroplasmy may manifest itself at critical protein expression points, e.g., cytochrome c oxidase (COX). Pathological mtDNA mutations also are associated with the development of congestive heart failure. Interestingly, mitochondrial 'normal vs. abnormal' ratios of various heteroplasmic populations may occur in families. In the translational context of human health and disease, we discuss the need for determining critical foci to probe multiple biological roles of mitochondrial heteroplasmy in cardiomyopathy.
Collapse
Affiliation(s)
- George B Stefano
- International Scientific Information, Inc., 150 Broadhollow Rd, Ste 114, Melville, NY, 11747, USA.
| | - Christina Bjenning
- Cardiometabolic Designs LLC, 160 W15th Ave, Suite 303, Sea Cliff, NY, 11579, USA
| | - Fuzhou Wang
- Division of Neuroscience, Bonoi Academy of Science & Education, Chapel Hill, NC, 27510, USA
| | - Nan Wang
- Department of Anesthesiology, Affiliated Hospital of OB/GYN, Nanjing Medical University, Nanjing, 210004, China
| | - Richard M Kream
- International Scientific Information, Inc., 150 Broadhollow Rd, Ste 114, Melville, NY, 11747, USA
| |
Collapse
|
11
|
Abstract
Ischaemic heart disease and stroke are vascular events with serious health consequences worldwide. Recent genetic and epigenetic techniques have revealed many genetic determinants of these vascular events and simplified the approaches to research focused on ischaemic heart disease and stroke. The pathogenetic mechanisms of ischaemic heart disease and stroke are complex, with mitochondrial involvement (partially or entirely) recently gaining substantial support. Not only can mitochondrial reactive oxygen species give rise to ischaemic heart disease and stroke by production of oxidised low-density lipoprotein and induction of apoptosis, but the impact on pericytes contributes directly to the pathogenesis. Over the past two decades, publications implicate the causative role of nuclear genes in the development of ischaemic heart disease and stroke, in contrast to the potential role of mitochondrial DNA (mtDNA) in the pathophysiology of the disorders, which is much less understood, although recent studies do demonstrate that the involvement of mitochondria and mtDNA in the development of ischaemic heart disease and stroke is likely to be larger than originally thought, with the novel discovery of links among mitochondria, mtDNA and vascular events. Here we explore the molecular events and mtDNA alterations in relation to the role of mitochondria in ischaemic heart disease and stroke.
Collapse
|
12
|
Brunel-Guitton C, Levtova A, Sasarman F. Mitochondrial Diseases and Cardiomyopathies. Can J Cardiol 2015; 31:1360-76. [DOI: 10.1016/j.cjca.2015.08.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 12/31/2022] Open
|
13
|
Alila OF, Rebai EM, Tabebi M, Tej A, Chamkha I, Tlili A, Bouguila J, Tilouche S, Soyah N, Boughamoura L, Fakhfakh F. Whole mitochondrial genome analysis in two families with dilated mitochondrial cardiomyopathy: detection of mutations in MT-ND2 and MT-TL1 genes. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2873-80. [PMID: 26258512 DOI: 10.3109/19401736.2015.1060417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pathogenic mitochondrial DNA (mtDNA) mutations leading to mitochondrial dysfunction can cause cardiomyopathy and heart failure. These mutations were described in the mt-tRNA genes and in the mitochondrial protein-coding genes. The aim of this study was to identify the genetic defect in two patients belonging to two families with cardiac dysfunction associated to a wide spectrum of clinical phenotypes. The sequencing analysis of the whole mitochondrial DNA in the two patients and their parents revealed the presence of known polymorphisms associated to cardiomyopathy and two pathogenic mutations in DNA extracted from blood leucocytes: the heteroplasmic m.3243A > G mutation in the MT-TL1 gene in patient A; and the homoplasmic m.5182C > T mutation in the ND2 gene in patient B. Secondary structure analysis of the ND2 protein further supported the deleterious role of the m.5182C > T mutation, as it was found to be involved an extended imbalance in its hydrophobicity and affect its function. In addition, the mitochondrial variants identified in patients A and B classify both of them in the same haplogroup H2a2a1.
Collapse
Affiliation(s)
- Olfa Fersi Alila
- a Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax , Sfax , Tunisia
| | - Emna Mkaouar Rebai
- a Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax , Sfax , Tunisia
| | - Mouna Tabebi
- a Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax , Sfax , Tunisia
| | - Amel Tej
- b Service de Pédiatrie, C.H.U. Farhat Hached de Sousse , Sousse , Tunisia , and
| | - Imen Chamkha
- a Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax , Sfax , Tunisia
| | - Abdelaziz Tlili
- c Department of Applied Biology , College of Sciences, University of Sharjah , Sharjah , UAE
| | - Jihene Bouguila
- b Service de Pédiatrie, C.H.U. Farhat Hached de Sousse , Sousse , Tunisia , and
| | - Samia Tilouche
- b Service de Pédiatrie, C.H.U. Farhat Hached de Sousse , Sousse , Tunisia , and
| | - Nejla Soyah
- b Service de Pédiatrie, C.H.U. Farhat Hached de Sousse , Sousse , Tunisia , and
| | - Lamia Boughamoura
- b Service de Pédiatrie, C.H.U. Farhat Hached de Sousse , Sousse , Tunisia , and
| | - Faiza Fakhfakh
- a Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax , Sfax , Tunisia
| |
Collapse
|
14
|
Abstract
It has been shown that mitochondrial deoxyribo nucleic acid mutations may play an important role in the development of cardiomyopathy, and various types of cardiomyopathy can be attributed to disturbed mitochondrial oxidative energy metabolism. Several studies have described many mutations in mitochondrial genes encoding for subunits of respiratory chain complexes. Thus, recent studies confirm that pathologic mitochondrial deoxyribo nucleic acid mutations are a major reason of diseases and determining them by next-generation sequencing will improve our understanding of dysregulation of heart development. To analyse mitochondrial deoxyribo nucleic acid mutations, the entire mitochondrial deoxyribo nucleic acid was amplified in two overlapping polymerase chain reaction fragments from the cardiac tissue of the 22 patients with congenital heart disease, undergoing cardiac surgery. Mitochondrial deoxyribo nucleic acid was deep sequenced by next-generation sequencing. A total of 13 novel mitochondrial deoxyribo nucleic acid mutations were identified in nine patients. Of the patients, three have novel mutations together with reported cardiomyopathy mutations. In all, 65 mutations were found, and 13 of them were unreported. This study represents the most comprehensive mitochondrial deoxyribo nucleic acid mutational analysis in patients with congenital heart disease.
Collapse
|
15
|
Mkaouar-Rebai E, Chamkha I, Mezghani N, Ben Ayed I, Fakhfakh F. Screening of mitochondrial mutations in Tunisian patients with mitochondrial disorders: an overview study. ACTA ACUST UNITED AC 2013; 24:163-78. [PMID: 23301511 DOI: 10.3109/19401736.2012.748045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To investigate the spectrum of common mitochondrial mutations in Tunisia during the years of 2002-2012, 226 patients with mitochondrial disorders were clinically diagnosed with hearing loss, Leigh syndrome (LS), diabetes, cardiomyopathy, Kearns-Sayre syndrome (KSS), Pearson syndrome (PS), myopathy, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS) and Wolfram syndrome. Restriction fragment length polymorphism (PCR-RFLP), radioactive PCR, single specific primer-PCR (SSP-PCR) analysis and PCR-sequencing methods were used to identify the mutations. Two cases with m.1555A>G mutation and two families with the novel 12S rRNA m.735A>G transition were detected in patients with hearing loss. Three cases with m.8993T>G mutation, two patients with the novel m.5523T>G and m.5559A>G mutations in the tRNA(Trp) gene, and two individuals with the undescribed m.9478T>C mutation in the cytochrome c oxidase subunit III (COXIII) gene were found with LS. In addition, one case with hypertrophic cardiomyopathy and deafness presented the ND1 m.3395A>G mutation and the tRNA(Ile) m.4316A>G variation. Besides, multiple mitochondrial deletions were detected in patients with KSS, PS, and Wolfram syndrome. The m.14709T>C mutation in the tRNA(Glu) was reported in four maternally inherited diabetes and deafness patients and a novel tRNA(Val) m.1640A>G mutation was detected in a MELAS patient.
Collapse
Affiliation(s)
- Emna Mkaouar-Rebai
- Human Molecular Genetic Laboratory, Faculty of Medicine of Sfax, Avenue Magida Boulila, 3029 Sfax, Tunisia.
| | | | | | | | | |
Collapse
|
16
|
Komurcu-Bayrak E, Ozsait B, Erginel-Unaltuna N. Isolation and analysis of genes mainly expressed in adult mouse heart using subtractive hybridization cDNA library. Mol Biol Rep 2012; 39:8065-74. [PMID: 22544609 DOI: 10.1007/s11033-012-1653-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 04/16/2012] [Indexed: 01/11/2023]
Abstract
Subtractive hybridization cDNA library (SHL) is one of the powerful approaches for isolating differentially expressed genes. Using this technique between mouse heart and skeletal muscle (skm) tissues, we aimed to construct a cDNA-library that was specific to heart tissue and to identify the potential candidate genes that might be responsible for the development of cardiac diseases or related pathophysiological conditions. In the first step of the study, we created a cDNA-library between mouse heart and skm tissues. The homologies of the randomly selected 215 clones were analyzed and then classified by function. A total of 146 genes were analyzed for their expression profiles in the heart and skm tissues in published mouse microarray dataset. In the second step, we analyzed the expression patterns of the selected genes by Northern blot and RNA in situ hybridization (RISH). In Northern blot analyses, the expression levels of Myl3, Myl2, Mfn2, Dcn, Pdlim4, mt-Co3, mt-Co1, Atpase6 and Tsc22d1 genes were higher in heart than skm. For first time with this study, expression patterns of Pdlim4 and Tsc22d1 genes in mouse heart and skm were shown by RISH. In the last step, 43 genes in this library were identified to have relationships mostly with cardiac diseases and/or related phenotypes. This is the first study reporting differentially expressed genes in healthy mouse heart using SHL technique. This study confirms our hypothesis that tissue-specific genes are most likely to have a disease association, if they possess mutations.
Collapse
Affiliation(s)
- Evrim Komurcu-Bayrak
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Vakif Gureba Cad., 34080 Sehremini, Istanbul, Turkey
| | | | | |
Collapse
|
17
|
Fridman C, Cardena M, Krieger J, Pereira A. Evaluation of the relationship between mitochondrial haplogroup and development of heart failure in Brazilian sample. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2011. [DOI: 10.1016/j.fsigss.2011.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy. Biochem Biophys Res Commun 2011; 411:247-52. [DOI: 10.1016/j.bbrc.2011.06.106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/16/2011] [Indexed: 11/24/2022]
|
19
|
A novel m.3395A>G missense mutation in the mitochondrial ND1 gene associated with the new tRNAIle m.4316A>G mutation in a patient with hypertrophic cardiomyopathy and profound hearing loss. Biochem Biophys Res Commun 2011; 404:504-10. [DOI: 10.1016/j.bbrc.2010.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 12/20/2022]
|
20
|
Wei YL, Yu CA, Yang P, Li AL, Wen JY, Zhao SM, Liu HX, Ke YN, Campbell W, Zhang YG, Li XH, Liao WQ. NOVEL MITOCHONDRIAL DNA MUTATIONS ASSOCIATED WITH CHINESE FAMILIAL HYPERTROPHIC CARDIOMYOPATHY. Clin Exp Pharmacol Physiol 2009; 36:933-9. [DOI: 10.1111/j.1440-1681.2009.05183.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Bhardwaj A, Mukerji M, Sharma S, Paul J, Gokhale CS, Srivastava AK, Tiwari S. MtSNPscore: a combined evidence approach for assessing cumulative impact of mitochondrial variations in disease. BMC Bioinformatics 2009; 10 Suppl 8:S7. [PMID: 19758471 PMCID: PMC2745589 DOI: 10.1186/1471-2105-10-s8-s7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human mitochondrial DNA (mtDNA) variations have been implicated in a broad spectrum of diseases. With over 3000 mtDNA variations reported across databases, establishing pathogenicity of variations in mtDNA is a major challenge. We have designed and developed a comprehensive weighted scoring system (MtSNPscore) for identification of mtDNA variations that can impact pathogenicity and would likely be associated with disease. The criteria for pathogenicity include information available in the literature, predictions made by various in silico tools and frequency of variation in normal and patient datasets. The scoring scheme also assigns scores to patients and normal individuals to estimate the cumulative impact of variations. The method has been implemented in an automated pipeline and has been tested on Indian ataxia dataset (92 individuals), sequenced in this study, and other publicly available mtSNP dataset comprising of 576 mitochondrial genomes of Japanese individuals from six different groups, namely, patients with Parkinson's disease, patients with Alzheimer's disease, young obese males, young non-obese males, and type-2 diabetes patients with or without severe vascular involvement. MtSNPscore, for analysis can extract information from variation data or from mitochondrial DNA sequences. It has a web-interface http://bioinformatics.ccmb.res.in/cgi-bin/snpscore/Mtsnpscore.pl that provides flexibility to update/modify the parameters for estimating pathogenicity. RESULTS Analysis of ataxia and mtSNP data suggests that rare variants comprise the largest part of disease associated variations. MtSNPscore predicted possible role of eight and 79 novel variations in ataxia and mtSNP datasets, respectively, in disease etiology. Analysis of cumulative scores of patient and normal data resulted in Matthews Correlation Coefficient (MCC) of ~0.5 and accuracy of ~0.7 suggesting that the method may also predict involvement of mtDNA variation in diseases. CONCLUSION We have developed a novel and comprehensive method for evaluation of mitochondrial variation and their involvement in disease. Our method has the most comprehensive set of parameters to assess mtDNA variations and overcomes the undesired bias generated as a result of better-studied diseases and genes. These variations can be prioritized for functional assays to confirm their pathogenic status.
Collapse
Affiliation(s)
- Anshu Bhardwaj
- Institute of Genomics and Integrative Biology, CSIR, Delhi, India.
| | | | | | | | | | | | | |
Collapse
|