1
|
Gay L, Desquiret-Dumas V, Nagot N, Rapenne C, Van de Perre P, Reynier P, Molès JP. Long-term persistence of mitochondrial dysfunctions after viral infections and antiviral therapies: A review of mechanisms involved. J Med Virol 2024; 96:e29886. [PMID: 39246064 DOI: 10.1002/jmv.29886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Mitochondria are vital for most cells' functions. Viruses hijack mitochondria machinery for misappropriation of energy supply or to bypass defense mechanisms. Many of these mitochondrial dysfunctions persist after recovery from treated or untreated viral infections, particularly when mitochondrial DNA is permanently damaged. Quantitative defects and structural rearrangements of mitochondrial DNA accumulate in post-mitotic tissues as recently reported long after SARS-CoV-2 or HIV infection, or following antiviral therapy. These observations are consistent with the "hit-and-run" concept proposed decades ago to explain viro-induced cell transformation and it could apply to delayed post-viral onsets of symptoms and advocate for complementary supportive care. Thus, according to this concept, following exposure to viruses or antiviral agents, mitochondrial damage could evolve into an autonomous clinical condition. It also establishes a pathogenic link between communicable and non-communicable chronic diseases.
Collapse
Affiliation(s)
- Laetitia Gay
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Valérie Desquiret-Dumas
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Clara Rapenne
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Pascal Reynier
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| |
Collapse
|
2
|
Kim J, Ahn SJ. Risk Factors of Optic Neuropathy in Ethambutol Users: Interaction with Isoniazid and Other Associated Conditions of Toxic Optic Neuropathy. TOXICS 2024; 12:549. [PMID: 39195651 PMCID: PMC11359443 DOI: 10.3390/toxics12080549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024]
Abstract
(1) Background: To investigate the risk factors associated with optic neuropathy (ON) and validate the hypothesis that concomitant isoniazid use and other causes of toxic ON affect the development of ON in ethambutol users. (2) Methods: This cohort study identified ethambutol users who initiated ethambutol therapy between January 2015 and December 2021 and had no ON prior to ethambutol therapy. ON incidence up to 31 December 2022 was evaluated. The users were grouped on the basis of the presence of ON. Demographic and clinical characteristics were investigated for risk factor analyses of ON. Odds ratios (ORs) were calculated using multivariate logistic regression analyses. (3) Results: Among 204,598 ethambutol users, 5277 (2.6%) patients developed ON over the study period. Patients with ON included a higher percentage of women and had a higher mean age than patients without ON. In the multivariate analyses, the risk factors for ON and visual impairment included sex, age, cumulative dose, extrapulmonary indications for ethambutol use, and systemic conditions such as diabetes, hypertension, hyperlipidemia, diabetes, kidney disease, and liver disease. Malnutrition or nutritional disorders significantly increased the risk of ON (OR = 1.27, 95% confidence interval [CI] = 1.19-1.34), whereas concomitant isoniazid use decreased the risk (OR = 0.78, 95% CI = 0.72-0.86). (4) Conclusion: An increased risk of ON in patients with systemic diseases and nutritional deficiency was identified, whereas concomitant isoniazid use was associated with a decreased risk of ON. Patients with these risk factors should be carefully monitored to minimize the vision-threatening ON.
Collapse
Affiliation(s)
- Jiyeong Kim
- Department of Pre-Medicine, College of Medicine, and Biostatistics Lab, Medical Research Collaborating Center (MRCC), Hanyang University, Seoul 04763, Republic of Korea;
| | - Seong Joon Ahn
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Lambiri DW, Levin LA. Maculopapillary Bundle Degeneration in Optic Neuropathies. Curr Neurol Neurosci Rep 2024; 24:203-218. [PMID: 38833037 DOI: 10.1007/s11910-024-01343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW Degeneration of the maculopapillary bundle (MPB) is a prominent feature in a spectrum of optic neuropathies. MPB-selective degeneration is seen in specific conditions, such as nutritional and toxic optic neuropathies, Leber hereditary optic neuropathy (LHON), and dominant optic atrophy (DOA). Despite their distinct etiologies and clinical presentations, which encompass variations in age of incidence and monocular or binocular onset, these disorders share a core molecular mechanism: compromised mitochondrial homeostasis. This disruption is characterized by dysfunctions in mitochondrial metabolism, biogenesis, and protein synthesis. This article provides a comprehensive understanding of the MPB's role in optic neuropathies, emphasizing the importance of mitochondrial mechanisms in the pathogenesis of these conditions. RECENT FINDINGS Optical coherence tomography studies have characterized the retinal nerve fiber layer changes accompanying mitochondrial-affiliated optic neuropathies. Selective thinning of the temporal optic nerve head is preceded by thickening in early stages of these disorders which correlates with reductions in macular ganglion cell layer thinning and vascular atrophy. A recently proposed mechanism underpinning the selective atrophy of the MPB involves the positive feedback of reactive oxygen species generation as a common consequence of mitochondrial dysfunction. Additionally, new research has revealed that the MPB can undergo degeneration in the early stages of glaucoma, challenging the historically held belief that this area was not involved in this common optic neuropathy. A variety of anatomical risk factors influence the propensity of glaucomatous MPB degeneration, and cases present distinct patterns of ganglion cell degeneration that are distinct from those observed in mitochondria-associated diseases. This review synthesizes clinical and molecular research on primary MPB disorders, highlighting the commonalities and differences in their pathogenesis. KEY POINTS (BOX) 1. Temporal degeneration of optic nerve fibers accompanied by cecocentral scotoma is a hallmark of maculopapillary bundle (MPB) degeneration. 2. Mechanisms of MPB degeneration commonly implicate mitochondrial dysfunction. 3. Recent research challenges the traditional belief that the MPB is uninvolved in glaucoma by showing degeneration in the early stages of this common optic neuropathy, yet with features distinct from other MPB-selective neuropathies. 4. Reactive oxygen species generation is a mechanism linking mitochondrial mechanisms of MPB-selective optic neuropathies, but in-vivo and in-vitro studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Darius W Lambiri
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Leonard A Levin
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada.
- Department of Neurology & Neurosurgery, McGill University, Montreal, Canada.
| |
Collapse
|
4
|
Kulniwatcharoen P, Hansapinyo L, Chattipakorn N, Chattipakorn SC. Potential underlying mechanisms of ethambutol induced optic neuropathy: Evidence from in vitro to clinical studies. Food Chem Toxicol 2023; 182:114176. [PMID: 37949203 DOI: 10.1016/j.fct.2023.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Ethambutol is an antibiotic widely used for treatment of Mycobacterium species. Although it is safe to use in patients, the ocular toxic impact, including optic neuropathy and retinopathy, can be observed in patients using ethambutol. After discontinuation of the drug, the ocular toxic effects can be reversible in some patients, but some are not. Ethambutol-induced optic neuropathy has been recognized for more than six decades and the prevalence of optic neuropathy from a standard dose of ethambutol has been reported as 0.7-1.29%. Several factors associated with ethambutol-induced optic neuropathy include dosage/duration of drug, the medical conditions of patients such as renal and hepatic dysfunction and preexisting mitochondrial mutations. Currently, there is no specific treatment and prevention of ethambutol-induced optic neuropathy. In addition, the potential underlying mechanisms of ethambutol-induced optic neuropathy is still unclear. Therefore, this review aimed to summarize and discuss evidence from clinical, in vitro, and in vivo studies in order to explore the potential pathophysiology of ethambutol-induced optic neuropathy. Any contradictory findings are also included and discussed. The insights gained from the review will facilitate the discovery of novel approaches for prevention and treatment of optic neuropathy-induced by ethambutol.
Collapse
Affiliation(s)
- Pichaya Kulniwatcharoen
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Linda Hansapinyo
- Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
5
|
Barliana MI, Afifah NN, Yunivita V, Ruslami R. Genetic polymorphism related to ethambutol outcomes and susceptibility to toxicity. Front Genet 2023; 14:1118102. [PMID: 37152993 PMCID: PMC10157140 DOI: 10.3389/fgene.2023.1118102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
The World Health Organization (WHO) stated that ensuring access to effective and optimal treatment is a key component to eradicate tuberculosis (TB) through the End TB Strategy. Personalized medicine that depends on the genetic profile of an individual is one way to optimize treatment. It is necessary because of diverse drug responses related to the variation in human DNA, such as single-nucleotide polymorphisms (SNPs). Ethambutol (EMB) is a drug widely used as the treatment for Mycobacterium Tuberculosis (Mtb) and/non-tuberculous mycobacteria and has become a potential supplementary agent for a treatment regimen of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. In human genetic polymorphism studies of anti-tuberculosis, the majority focus on rifampicin or isoniazid, which discuss polymorphisms related to their toxicity. Whereas there are few studies on EMB, the incidence of EMB toxicity is lower than that of other first-line anti-TB drugs. To facilitate personalized medicine practice, this article summarizes the genetic polymorphisms associated with alterations in the pharmacokinetic profile, resistance incidence, and susceptibility to EMB toxicity. This study includes 131 total human studies from 17 articles, but only eight studies that held in the low-middle income country (LMIC), while the rest is research conducted in developed countries with high incomes. Personalized medicine practices are highly recommended to maintain and obtain the optimal therapeutic effect of EMB.
Collapse
Affiliation(s)
- Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- *Correspondence: Melisa Intan Barliana,
| | - Nadiya Nurul Afifah
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Vycke Yunivita
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
6
|
Bakare AA, Moses VY, Beckely CT, Oluyemi TI, Ogunfeitimi GO, Adelaja AA, Ayorinde GT, Gbadebo AM, Fagbenro OS, Ogunsuyi OI, Ogunsuyi OM, Ige OM. The first-line antituberculosis drugs, and their fixed-dose combination induced abnormal sperm morphology and histological lesions in the testicular cells of male mice. Front Cell Dev Biol 2022; 10:1023413. [PMID: 36582470 PMCID: PMC9793334 DOI: 10.3389/fcell.2022.1023413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Rifampicin (RIF), Isoniazid (INH), Ethambutol (EMB), Pyrazinamide (PZA), and/or their fixed-dose combination (FDC) are extensively prescribed in the cure of Tuberculosis (TB) globally. In spite of the beneficial effect, these drugs are capable of inducing cellular toxicity. Existing information on the genotoxic effects of the first-line anti-TB drugs is limited and contentious. Herein, we evaluated the reproductive genotoxicity of RIF, INH, EMB, PZA, and their FDC utilizing the mouse sperm morphology assay. Histological examination of the testes of exposed mice was also performed. Male Swiss albino mice (11-13 weeks old) were intraperitoneally exposed for 5 consecutive days to each of the anti-TB drugs at four different doses of 6.25, 12.5, 25, and 50 mg/kg bw of PZA; 2.5, 5.0, 10, and 20 mg/kg bw of RIF; 1.25, 2.5, 5.0 and 10 mg/kg bw of INH; 3.75, 7.5, 15 and 30 mg/kg bw of EMB; and 7, 14, 28 and 56 mg/kg bw of FDC corresponding respectively to ×0.25, ×0.5, ×1 and ×2.0 of the standard daily dose. In comparison with the negative control (normal saline), there was no significant difference in the testicular weight and organo-somatic index of exposed mice. There was an increase (p > 0.05) in the frequency of abnormal spermatozoa at most of the tested doses of each drug and a dose-dependent decrease with the FDC. Each of the anti-TB drugs except the FDC induced pathological lesions in the testes. These findings suggest that the individual first-line anti-TB drug unlike the FDC has the potential to provoke testicular anomalies in male mice.
Collapse
Affiliation(s)
- Adekunle A. Bakare
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria,*Correspondence: Adekunle A. Bakare, ,
| | - Victoria Y. Moses
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Charles T. Beckely
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Toluwani I. Oluyemi
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Gift O. Ogunfeitimi
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Aduragbemi A. Adelaja
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Glory T. Ayorinde
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | | | - Olukunle S. Fagbenro
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Olusegun I. Ogunsuyi
- Department of Biological Sciences, College of Basic and Applied Sciences, Mountain Top University, Ibafo, Ogun State, Nigeria
| | - Opeoluwa M. Ogunsuyi
- Department of Cell Biology and Genetics, University of Lagos, Akoka, Lagos State, Nigeria
| | - Olusoji Mayowa Ige
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
7
|
Kaur P, Singh S, Kaur K, Mahesh KV, Tigari B, Sehgal V, Takkar A, Mehta S, Singh R, Malhotra S. The Genetics of Ethambutol-Induced Optic Neuropathy: A Narrative Review. Neuroophthalmology 2022; 46:304-313. [PMID: 36337233 PMCID: PMC9635551 DOI: 10.1080/01658107.2022.2100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Tuberculosis (TB) is a global health problem with the major brunt of disease occurring in developing countries. The cornerstone of treatment of TB is anti-tubercular therapy (ATT), which includes rifampicin, isoniazid, pyrazinamide and ethambutol. Because of emerging drug resistance, treatment failures, defaulters and increasing incidence of disseminated and extrapulmonary TB, the guidelines have been modified in some countries. Ethambutol is prescribed for longer times (in some cases >8 months) and hence the incidence of ethambutol-induced optic neuropathy (EtON) is expected to rise. The fundamental question which needs explanation is why only a small subset of patients on ethambutol are prone to develop loss of vision. This review focuses on available genetic studies which provide evidence that mitochondria are the likely substrates involved in the final pathway of reactive oxidative damage of the papillo-macular bundle. Genetic analysis of mitochondrial mutations encoding genes involved in oxidative phosphorylation pathways may help in isolating the subset of patients who are genetically susceptible. If the groups having high risk of developing EtON are recognised then prolonged duration of ethambutol treatment can be avoided in these susceptible individuals. A better understanding of the pathophysiology will also pave the way for the development of management strategies in this condition.
Collapse
Affiliation(s)
- Prabhjit Kaur
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sofia Singh
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kirandeep Kaur
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Karthik Vinay Mahesh
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Basavaraj Tigari
- Department of Ophthalmology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vineet Sehgal
- Department of Neurologist, Sehgals Neuro and Child Care Center, Amritsar, Punjab, India
| | - Aastha Takkar
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sahil Mehta
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ramandeep Singh
- Department of Ophthalmology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Samir Malhotra
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
8
|
Toxic Optic Neuropathy. Neuroophthalmology 2022. [DOI: 10.1007/978-981-19-4668-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Oliveira MEFAG, Silva YJA, Azevedo LA, Linhares LA, Montenegro LML, Alves S, Amorim RVS. Antimycobacterial compound of chitosan and ethambutol: ultrastructural biological evaluation in vitro against Mycobacterium tuberculosis. Appl Microbiol Biotechnol 2021; 105:9167-9179. [PMID: 34841463 DOI: 10.1007/s00253-021-11690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
Chitosan (CS) is a promising biopolymer and has been tested as a complement to the action and compensation of toxicity presented by anti-tuberculosis drugs. The present work studied the adjuvant effect of CS with the drug ethambutol (EMB) as a compound (CS-EMB), to explore its antimicrobial and cytotoxic activity, using transmission electron microscopy (TEM), to examine ultracellular changes that represent possible antimycobacterial action of CS on Mycobacterium tuberculosis (Mtb). Antimycobacterial activities were tested against reference strains Mtb ATCC® H37Rv and multidrug resistant (MDR). In vitro cytotoxicity tests were performed on Raw 264.7. For the studied compounds, morphological, ultrastructural, and physical-chemical analyses were performed. Drug-polymer interactions that occur through the H bridges were confirmed by physical-chemical analyses. The CS-EMB compound is stable at pHs of 6.5-7.5, allowing its release at physiological pH. The antibacterial activity (minimum inhibitory concentration) of the CS-EMB compound was 50% greater than that of the EMB in the H37Rv and MDR strains and the ultrastructural changes in the bacilli observed by TEM proved that the CS-EMB compound has a bactericidal action, allowing it to break down the Mtb cell wall. The cytotoxicity of CS-EMB was higher than that of isolated EMB, IC50 279, and 176 μg/mL, respectively. It is concluded that CS-EMB forms a promising composite against strains Mtb H37Rv and multidrug resistant (MDR-TB).Key points• Our study will be the first to observe ultrastructurally the effects of the CS-EMB compound on Mtb cells.• CS-EMB antimicrobial activity in a multidrug-resistant clinical strain.• The CS-EMB compound has promising potential for the development of a new drug to fight tuberculosis.
Collapse
Affiliation(s)
- M E F A G Oliveira
- Programa de Pós-Graduação Em Morfotecnologia, Universidade Federal de Pernambuco (UFPE), Recife, PE, 50670-420, Brazil.
| | - Y J A Silva
- Programa de Pós-Graduação Em Ciência de Materiais, Universidade Federal de Pernambuco (UFPE), Recife, PE, 50740-560, Brazil
| | - L A Azevedo
- Programa de Pós-Graduação Em Ciência de Materiais, Universidade Federal de Pernambuco (UFPE), Recife, PE, 50740-560, Brazil
| | - L A Linhares
- Instituto Aggeu Magalhães/Fundação Oswaldo Cruz (IAM/FIOCRUZ), 50740-465, Recife-PE, Brazil
| | - L M L Montenegro
- Instituto Aggeu Magalhães/Fundação Oswaldo Cruz (IAM/FIOCRUZ), 50740-465, Recife-PE, Brazil
| | - S Alves
- Departamento de Química Fundamental (dQF), Universidade Federal de Pernambuco (UFPE), Recife, PE, 50740-560, Brazil
| | - R V S Amorim
- Departamento de Histologia E Embriologia (DHE-CB), Universidade Federal de Pernambuco (UFPE), Recife, PE, 50670-420, Brazil
| |
Collapse
|
10
|
Cahill C, Cox DJ, O’Connell F, Basdeo SA, Gogan KM, Ó’Maoldomhnaigh C, O’Sullivan J, Keane J, Phelan JJ. The Effect of Tuberculosis Antimicrobials on the Immunometabolic Profiles of Primary Human Macrophages Stimulated with Mycobacterium tuberculosis. Int J Mol Sci 2021; 22:ijms222212189. [PMID: 34830070 PMCID: PMC8624646 DOI: 10.3390/ijms222212189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) remains a global health challenge. Patients with drug-sensitive and drug-resistant TB undergo long, arduous, and complex treatment regimens, often involving multiple antimicrobials. While these drugs were initially implemented based on their bactericidal effects, some studies show that TB antimicrobials can also directly affect cells of the immune system, altering their immune function. As use of these antimicrobials has been the mainstay of TB therapy for over fifty years now, it is more important than ever to understand how these antimicrobials affect key pathways of the immune system. One such central pathway, which underpins the immune response to a variety of infections, is immunometabolism, namely glycolysis and oxidative phosphorylation (OXPHOS). We hypothesise that in addition to their direct bactericidal effect on Mycobacterium tuberculosis (Mtb), current TB antimicrobials can modulate immunometabolic profiles and alter mitochondrial function in primary human macrophages. Human monocyte-derived macrophages (hMDMs) were differentiated from PBMCs isolated from healthy blood donors, and treated with four first-line and six second-line TB antimicrobials three hours post stimulation with either iH37Rv-Mtb or lipopolysaccharide (LPS). 24 h post stimulation, baseline metabolism and mitochondrial function were determined using the Seahorse Extracellular Flux Analyser. The effect of these antimicrobials on cytokine and chemokine production was also assayed using Meso Scale Discovery Multi-Array technology. We show that some of the TB antimicrobials tested can significantly alter OXPHOS and glycolysis in uninfected, iH37Rv-Mtb, and LPS-stimulated hMDMs. We also demonstrate how these antimicrobial-induced immunometabolic effects are linked with alterations in mitochondrial function. Our results show that TB antimicrobials, specifically clofazimine, can modify host immunometabolism and mitochondrial function. Moreover, clofazimine significantly increased the production of IL-6 in human macrophages that were stimulated with iH37Rv-Mtb. This provides further insight into the use of some of these TB antimicrobials as potential host-directed therapies in patients with early and active disease, which could help to inform TB treatment strategies in the future.
Collapse
Affiliation(s)
- Christina Cahill
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Dónal J. Cox
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Fiona O’Connell
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (F.O.); (J.O.)
| | - Sharee A. Basdeo
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Karl M. Gogan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Cilian Ó’Maoldomhnaigh
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (F.O.); (J.O.)
| | - Joseph Keane
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - James J. Phelan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
- Correspondence: ; Tel.: +35-318-963-265
| |
Collapse
|
11
|
Zhang XH, Xie Y, Xu QG, Cao K, Xu K, Jin ZB, Li Y, Wei SH. Mitochondrial Mutations in Ethambutol-Induced Optic Neuropathy. Front Cell Dev Biol 2021; 9:754676. [PMID: 34676220 PMCID: PMC8525703 DOI: 10.3389/fcell.2021.754676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Ethambutol-induced optic neuropathy (EON) is a well-recognized ocular complication in patients who take ethambutol as a tuberculosis treatment. The aim of the current study was to investigate the presence of mitochondrial mutations, including OPA1 and Leber's hereditary optic neuropathy (LHON)-mitochondrial DNA (mtDNA), in patients with EON and to determine their effect on clinical features of these patients. Methods: All 47 patients underwent clinical evaluations, including best-corrected visual acuity, fundus examination, and color fundus photography; 37 patients were then followed up over time. Molecular screening methods, including PCR-based sequencing of the OPA1 gene and LHON-mtDNA mutations, together with targeted exome sequencing, were used to detect mutations. Results: We detected 15 OPA1 mutations in 18 patients and two LHON-mtDNA mutations in four patients, for an overall mutation detection rate of 46.8%. The mean presentation age was significantly younger in the patients with the mitochondrial mutations (27.5 years) than in those without mutations (48 years). Fundus examination revealed a greater prevalence of optic disc hyperemia in the patients with mutations (70.5%) than without mutations (48%). Half of the patients with mutations and 91% of the patients without mutations had improved vision. After adjusting for confounders, the logistic regression revealed that the patients with optic disc pallor on the first visit (p = 0.004) or the patients with the mitochondrial mutations (p < 0.001) had a poorer vision prognosis. Conclusion: Our results indicated that carriers with OPA1 mutations might be more vulnerable for the toxicity of EMB to develop EON.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China.,Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yue Xie
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Quan-Gang Xu
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China
| | - Kai Cao
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ke Xu
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zi-Bing Jin
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Li
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shi-Hui Wei
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China
| |
Collapse
|
12
|
Lin CW, Huang CW, Luo AC, Chou YT, Huang YS, Chen PL, Chen TC. Genetic Spectrum and Characteristics of Hereditary Optic Neuropathy in Taiwan. Genes (Basel) 2021; 12:genes12091378. [PMID: 34573359 PMCID: PMC8467776 DOI: 10.3390/genes12091378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
Hereditary optic neuropathy (HON) is a group of genetically heterogeneous diseases that cause optic nerve atrophy and lead to substantial visual impairment. HON may present with optic nerve atrophy only or in association with various systemic abnormalities. Although a genetic survey is indispensable for diagnosing HON, conventional sequencing techniques could render its diagnosis challenging. In this study, we attempted to explore the genetic background of patients with HON in Taiwan through capture-based next-generation sequencing targeting 52 HON-related genes. In total, 57 patients from 48 families were recruited, with 6 patients diagnosed as having Leber hereditary optic neuropathy through initial screening for three common variants (m.3460G>A, m.11778G>A, m.14484T>C). Disease-causing genotypes were identified in 14 (33.3%) probands, and OPA1 variants were the most prevalent cause of autosomal HON. Exposure to medications such as ethambutol could trigger an attack of autosomal dominant optic atrophy. WFS1 variants were identified in three probands with variable clinical features in our cohort. Hearing impairment could occur in patients with OPA1 or WFS1 variants. This is the first comprehensive study investigating the genetic characteristics of HON in Taiwan, especially for autosomal HON. Our results could provide useful information for clinical diagnosis and genetic counseling in this field.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Child
- Child, Preschool
- DNA Mutational Analysis/statistics & numerical data
- Female
- GTP Phosphohydrolases/genetics
- Genetic Counseling
- Genetic Testing/statistics & numerical data
- Humans
- Male
- Membrane Proteins/genetics
- Middle Aged
- Mutation
- Optic Atrophy, Autosomal Dominant/diagnosis
- Optic Atrophy, Autosomal Dominant/epidemiology
- Optic Atrophy, Autosomal Dominant/genetics
- Optic Atrophy, Hereditary, Leber/diagnosis
- Optic Atrophy, Hereditary, Leber/epidemiology
- Optic Atrophy, Hereditary, Leber/genetics
- Taiwan/epidemiology
- Young Adult
Collapse
Affiliation(s)
- Chao-Wen Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-W.H.); (Y.-S.H.)
| | - Ching-Wen Huang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-W.H.); (Y.-S.H.)
| | - Allen Chilun Luo
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan; (A.C.L.); (Y.-T.C.)
| | - Yuh-Tsyr Chou
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan; (A.C.L.); (Y.-T.C.)
| | - Yu-Shu Huang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-W.H.); (Y.-S.H.)
| | - Pei-Lung Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan; (A.C.L.); (Y.-T.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: (P.-L.C.); (T.-C.C.); Tel.: +886-2-23123456 (ext. 71942) (P.-L.C.); +886-2-23123456 (ext. 63783) (T.-C.C.); Fax: +886-2-23934420 (T.-C.C.)
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-W.H.); (Y.-S.H.)
- Correspondence: (P.-L.C.); (T.-C.C.); Tel.: +886-2-23123456 (ext. 71942) (P.-L.C.); +886-2-23123456 (ext. 63783) (T.-C.C.); Fax: +886-2-23934420 (T.-C.C.)
| |
Collapse
|
13
|
Romero-Cordero S, Kirwan R, Noguera-Julian A, Cardellach F, Fortuny C, Morén C. A Mitocentric View of the Main Bacterial and Parasitic Infectious Diseases in the Pediatric Population. Int J Mol Sci 2021; 22:3272. [PMID: 33806981 PMCID: PMC8004694 DOI: 10.3390/ijms22063272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 01/04/2023] Open
Abstract
Infectious diseases occur worldwide with great frequency in both adults and children. Both infections and their treatments trigger mitochondrial interactions at multiple levels: (i) incorporation of damaged or mutated proteins to the complexes of the electron transport chain, (ii) mitochondrial genome (depletion, deletions, and point mutations) and mitochondrial dynamics (fusion and fission), (iii) membrane potential, (iv) apoptotic regulation, (v) generation of reactive oxygen species, among others. Such alterations may result in serious adverse clinical events with great impact on children's quality of life, even resulting in death. As such, bacterial agents are frequently associated with loss of mitochondrial membrane potential and cytochrome c release, ultimately leading to mitochondrial apoptosis by activation of caspases-3 and -9. Using Rayyan QCRI software for systematic reviews, we explore the association between mitochondrial alterations and pediatric infections including (i) bacterial: M. tuberculosis, E. cloacae, P. mirabilis, E. coli, S. enterica, S. aureus, S. pneumoniae, N. meningitidis and (ii) parasitic: P. falciparum. We analyze how these pediatric infections and their treatments may lead to mitochondrial deterioration in this especially vulnerable population, with the intention of improving both the understanding of these diseases and their management in clinical practice.
Collapse
Affiliation(s)
- Sonia Romero-Cordero
- Faculty of Medicine, Pompeu Fabra University and Universitat Autònoma de Barcelona, 08002 Barcelona, Spain;
| | - Richard Kirwan
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L2 2QP, UK
| | - Antoni Noguera-Julian
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en Pediatria, Unitat d’Infeccions, Servei de Pediatria, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain; (A.N.-J.); (C.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Red de Investigación Translacional en Infectología Pediátrica (RITIP), 28029 Madrid, Spain
| | - Francesc Cardellach
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain;
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (ISCIII), 28029 Madrid, Spain
- Internal Medicine Department-Hospital Clínic of Barcelona (HCB), 08036 Barcelona, Spain
| | - Clàudia Fortuny
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en Pediatria, Unitat d’Infeccions, Servei de Pediatria, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain; (A.N.-J.); (C.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Red de Investigación Translacional en Infectología Pediátrica (RITIP), 28029 Madrid, Spain
| | - Constanza Morén
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain;
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (ISCIII), 28029 Madrid, Spain
- Internal Medicine Department-Hospital Clínic of Barcelona (HCB), 08036 Barcelona, Spain
| |
Collapse
|
14
|
Su L, Li Q, Zhu L, Wu S, Sha X, Sheng W, Bao Z, Ge W, Xu Q. Characterisation of macular superficial vessel density alteration in preclinical ethambutol-induced optic neuropathy using optical coherence tomography angiography. Br J Ophthalmol 2020; 106:422-426. [PMID: 33243831 DOI: 10.1136/bjophthalmol-2020-317742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
AIM To investigate the changes in macular vessel density (mVD) and its relationship to macular ganglion cell-inner plexiform layer (mGCIPL) thickness in patients receiving ethambutol (EMB) therapy for tuberculosis without recognisable clinical symptoms or signs of EMB-induced optic neuropathy (EON). METHODS A total of 23 eyes of 13 patients using EMB therapy for 6 months without EON (preclinical EON) as the EMB group, 40 eyes of 23 healthy individuals as the normal control group and 18 eyes of 10 patients with tuberculosis before receiving EMB therapy as the blank control group were retrospectively analysed. The mean peripapillary retinal nerve fibre layer (pRNFL) and mGCIPL thicknesses and mVD were measured using optical coherence tomography angiography. Patients in the EMB group were compared with individuals in the normal and blank control groups, and changes in macular parameters were evaluated. RESULTS Central circle mVD (cCVD) was significantly lower in the EMB group than in both control groups (generalised estimating equation (GEE), p=0.003 and 0.029, respectively). The mGCIPL thickness in all regions and the mean pRNFL thickness were not significantly different between the EMB group and both control groups (GEE, p=1.000 for all). There were no significant differences in mVD, mGCIPL thickness and mean pRNFL thickness between the normal control and blank control groups (p>0.05). In the generalised linear model analyses, the minimum and inferonasal mGCIPL thicknesses were positively correlated with cCVD in the EMB group (β=1.285, p=0.003 and β=0.770, p=0.024, respectively). CONCLUSIONS cCVD decreased with no changes in mGCIPL and mean pRNFL thicknesses in patients with preclinical EON. The minimum and inferonasal mGCIPL thicknesses were positively correlated with cCVD. cCVD might be an early indicator for monitoring early-stage EMB toxicity.
Collapse
Affiliation(s)
- Lingya Su
- Department of Ophthalmology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China
| | - Qiushi Li
- Department of Ophthalmology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China
| | - Liwei Zhu
- Department of Ophthalmology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China
| | - Shuangqing Wu
- Department of Ophthalmology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China
| | - Xiaotong Sha
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenyan Sheng
- Department of Ophthalmology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China
| | - Zhijian Bao
- Department of Respiratory Medicine, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China
| | - Wei Ge
- Department of Ophthalmology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China
| | - Qibin Xu
- Department of Ophthalmology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Cahill C, Phelan JJ, Keane J. Understanding and Exploiting the Effect of Tuberculosis Antimicrobials on Host Mitochondrial Function and Bioenergetics. Front Cell Infect Microbiol 2020; 10:493. [PMID: 33042867 PMCID: PMC7522306 DOI: 10.3389/fcimb.2020.00493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Almost 140 years after its discovery, tuberculosis remains the leading infectious cause of death globally. For half a century, patients with drug-sensitive and drug-resistant tuberculosis have undergone long, arduous, and complex treatment processes with several antimicrobials that primarily function through direct bactericidal activity. Long-term utilization of these antimicrobials has been well-characterized and associated with numerous toxic side-effects. With the prevalence of drug-resistant strains on the rise and new therapies for tuberculosis urgently required, a more thorough understanding of these antimicrobials is a necessity. In order to progress from the “one size fits all” treatment approach, understanding how these antimicrobials affect mitochondrial function and bioenergetics may provide further insight into how these drugs affect the overall functions of host immune cells during tuberculosis infection. Such insights may help to inform future studies, instigate discussion, and help toward establishing personalized approaches to using such antimicrobials which could help to pave the way for more tailored treatment regimens. While recent research has highlighted the important role mitochondria and bioenergetics play in infected host cells, only a small number of studies have examined how these antimicrobials affect mitochondrial function and immunometabolic processes within these immune cells. This short review highlights how these antimicrobials affect key elements of mitochondrial function, leading to further discussion on how they affect bioenergetic processes, such as glycolysis and oxidative phosphorylation, and how antimicrobial-induced alterations in these processes can be linked to downstream changes in inflammation, autophagy, and altered bactericidal activity.
Collapse
Affiliation(s)
- Christina Cahill
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - James Joseph Phelan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Joseph Keane
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Schultz DT, Eizenga JM, Corbett-Detig RB, Francis WR, Christianson LM, Haddock SH. Conserved novel ORFs in the mitochondrial genome of the ctenophore Beroe forskalii. PeerJ 2020; 8:e8356. [PMID: 32025367 PMCID: PMC6991124 DOI: 10.7717/peerj.8356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/04/2019] [Indexed: 11/20/2022] Open
Abstract
To date, five ctenophore species' mitochondrial genomes have been sequenced, and each contains open reading frames (ORFs) that if translated have no identifiable orthologs. ORFs with no identifiable orthologs are called unidentified reading frames (URFs). If truly protein-coding, ctenophore mitochondrial URFs represent a little understood path in early-diverging metazoan mitochondrial evolution and metabolism. We sequenced and annotated the mitochondrial genomes of three individuals of the beroid ctenophore Beroe forskalii and found that in addition to sharing the same canonical mitochondrial genes as other ctenophores, the B. forskalii mitochondrial genome contains two URFs. These URFs are conserved among the three individuals but not found in other sequenced species. We developed computational tools called pauvre and cuttlery to determine the likelihood that URFs are protein coding. There is evidence that the two URFs are under negative selection, and a novel Bayesian hypothesis test of trinucleotide frequency shows that the URFs are more similar to known coding genes than noncoding intergenic sequence. Protein structure and function prediction of all ctenophore URFs suggests that they all code for transmembrane transport proteins. These findings, along with the presence of URFs in other sequenced ctenophore mitochondrial genomes, suggest that ctenophores may have uncharacterized transmembrane proteins present in their mitochondria.
Collapse
Affiliation(s)
- Darrin T. Schultz
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA, USA
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Jordan M. Eizenga
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Russell B. Corbett-Detig
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Warren R. Francis
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | | | - Steven H.D. Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
17
|
Rebollo-Ramirez S, Krokowski S, Lobato-Márquez D, Thomson M, Pennisi I, Mostowy S, Larrouy-Maumus G. Intact Cell Lipidomics Reveal Changes to the Ratio of Cardiolipins to Phosphatidylinositols in Response to Kanamycin in HeLa and Primary Cells. Chem Res Toxicol 2018; 31:688-696. [PMID: 29947513 PMCID: PMC6103485 DOI: 10.1021/acs.chemrestox.8b00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Indexed: 01/03/2023]
Abstract
Antimicrobial resistance is a major threat the world is currently facing. Development of new antibiotics and the assessment of their toxicity represent important challenges. Current methods for addressing antibiotic toxicity rely on measuring mitochondrial damage using ATP and/or membrane potential as a readout. In this study, we propose an alternative readout looking at changes in the lipidome on intact and unprocessed cells by matrix-assisted laser desorption ionization mass spectrometry. As a proof of principle, we evaluated the impact of known antibiotics (levofloxacin, ethambutol, and kanamycin) on the lipidome of HeLa cells and mouse bone marrow-derived macrophages. Our methodology revealed that clinically relevant concentrations of kanamycin alter the ratio of cardiolipins to phosphatidylinositols. Unexpectedly, only kanamycin had this effect even though all antibiotics used in this study led to a decrease in the maximal mitochondrial respiratory capacity. Altogether, we report that intact cell-targeted lipidomics can be used as a qualitative method to rapidly assess the toxicity of aminoglycosides in HeLa and primary cells. Moreover, these results demonstrate there is no direct correlation between the ratio of cardiolipins to phosphatidylinositols and the maximal mitochondrial respiratory capacity.
Collapse
Affiliation(s)
- Sonia Rebollo-Ramirez
- MRC
Centre for Molecular Bacteriology and Infection, Department of Life
Sciences, Faculty of Natural Sciences, Imperial
College London, London SW7 2AZ, U.K.
| | - Sina Krokowski
- MRC
Centre for Molecular Bacteriology and Infection, Department of Medicine,
Section of Microbiology, Imperial College
London, London W12 0NN, U.K.
- Department
of Immunology and Infection, London School
of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
| | - Damian Lobato-Márquez
- MRC
Centre for Molecular Bacteriology and Infection, Department of Medicine,
Section of Microbiology, Imperial College
London, London W12 0NN, U.K.
- Department
of Immunology and Infection, London School
of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
| | - Michael Thomson
- MRC
Centre for Molecular Bacteriology and Infection, Department of Life
Sciences, Faculty of Natural Sciences, Imperial
College London, London SW7 2AZ, U.K.
| | - Ivana Pennisi
- MRC
Centre for Molecular Bacteriology and Infection, Department of Life
Sciences, Faculty of Natural Sciences, Imperial
College London, London SW7 2AZ, U.K.
| | - Serge Mostowy
- MRC
Centre for Molecular Bacteriology and Infection, Department of Medicine,
Section of Microbiology, Imperial College
London, London W12 0NN, U.K.
- Department
of Immunology and Infection, London School
of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
| | - Gerald Larrouy-Maumus
- MRC
Centre for Molecular Bacteriology and Infection, Department of Life
Sciences, Faculty of Natural Sciences, Imperial
College London, London SW7 2AZ, U.K.
| |
Collapse
|
18
|
Yu JJ, Lee DH, Gallagher SP, Kenney MC, Boisvert CJ. Mitochondrial Impairment in Antibiotic Induced Toxic Optic Neuropathies. Curr Eye Res 2018; 43:1199-1204. [DOI: 10.1080/02713683.2018.1504086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jeffrey J. Yu
- Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Daniel H. Lee
- Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Shea P. Gallagher
- Department of Ophthalmology, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
19
|
Palandri A, Martin E, Russi M, Rera M, Tricoire H, Monnier V. Identification of cardioprotective drugs by medium-scale in vivo pharmacological screening on a Drosophila cardiac model of Friedreich's ataxia. Dis Model Mech 2018; 11:dmm033811. [PMID: 29898895 PMCID: PMC6078405 DOI: 10.1242/dmm.033811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
Friedreich's ataxia (FA) is caused by reduced levels of frataxin, a highly conserved mitochondrial protein. There is currently no effective treatment for this disease, which is characterized by progressive neurodegeneration and cardiomyopathy, the latter being the most common cause of death in patients. We previously developed a Drosophila melanogaster cardiac model of FA, in which the fly frataxin is inactivated specifically in the heart, leading to heart dilatation and impaired systolic function. Methylene Blue (MB) was highly efficient to prevent these cardiac dysfunctions. Here, we used this model to screen in vivo the Prestwick Chemical Library, comprising 1280 compounds. Eleven drugs significantly reduced the cardiac dilatation, some of which may possibly lead to therapeutic applications in the future. The one with the strongest protective effects was paclitaxel, a microtubule-stabilizing drug. In parallel, we characterized the histological defects induced by frataxin deficiency in cardiomyocytes and observed strong sarcomere alterations with loss of striation of actin fibers, along with full disruption of the microtubule network. Paclitaxel and MB both improved these structural defects. Therefore, we propose that frataxin inactivation induces cardiac dysfunction through impaired sarcomere assembly or renewal due to microtubule destabilization, without excluding additional mechanisms. This study is the first drug screening of this extent performed in vivo on a Drosophila model of cardiac disease. Thus, it also brings the proof of concept that cardiac functional imaging in adult Drosophila flies is usable for medium-scale in vivo pharmacological screening, with potent identification of cardioprotective drugs in various contexts of cardiac diseases.
Collapse
Affiliation(s)
- Amandine Palandri
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| | - Elodie Martin
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| | - Maria Russi
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| | - Michael Rera
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| | - Hervé Tricoire
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| | - Véronique Monnier
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| |
Collapse
|
20
|
Lee JY, Han J, Seo JG, Park KA, Oh SY. Diagnostic value of ganglion cell-inner plexiform layer for early detection of ethambutol-induced optic neuropathy. Br J Ophthalmol 2018; 103:379-384. [PMID: 29699978 DOI: 10.1136/bjophthalmol-2018-312063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/12/2018] [Indexed: 01/18/2023]
Abstract
AIM To evaluate the diagnostic value of macular ganglion cell-inner plexiform layer (mGCIPL) thickness versus peripapillary retinal nerve fibre layer (pRNFL) thickness for the early detection of ethambutol-induced optic neuropathy (EON). METHODS Twenty-eight eyes of 15 patients in the EON group and 100 eyes of 53 healthy subjects in the control group were included. All patients with EON demonstrated the onset of visual symptoms within 3 weeks. Diagnostic power for pRNFL and mGCIPL thicknesses measured by Cirrus spectral-domain optical coherence tomography was assessed by area under the receiver operating characteristic (AUROC) curves and sensitivity. RESULTS All of the mGCIPL thickness measurements were thinner in the EON group than in the control group in early EON (p<0.001). All of pRNFL thicknesses except inferior RNFL showed AUROC curves above 0.5, and all of the mGCIPL thicknesses showed AUROC curves above 0.5. The AUROC of the average mGCIPL (0.812) thickness was significantly greater than that of the average pRNFL (0.507) thickness (p<0.001). Of all the mGCIPL-related parameters considered, the minimum thickness showed the greatest AUROC value (0.863). The average mGCIPL thickness showed a weak correlation with visual field pattern standard deviations (r2=0.158, p<0.001). CONCLUSIONS In challenging cases of EON, the mGCIPL thickness has better diagnostic performance in detecting early-onset EON as compared with using pRNFL thickness. Among the early detection ability of mGCIPL thickness, minimum GCIPL thickness has high diagnostic ability.
Collapse
Affiliation(s)
- Ju-Yeun Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jinu Han
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong Gi Seo
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sei Yeul Oh
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Jayanetti V, Rossiter-Thornton M, Azar D, Fraser CL. Sibling Ethambutol Optic Chiasmopathy. Neuroophthalmology 2018; 42:40-43. [PMID: 29467808 DOI: 10.1080/01658107.2017.1322616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022] Open
Abstract
Ethambutol is utilised in the treatment of Mycobacterium avium and Mycobacterium tuberculosis infection. The authors report two siblings who developed the adverse effect of ethambutol-induced optic chiasmopathy, with recovery following cessation of ethambutol. Discussion explores potential genetic predisposition to development of this condition and its resolution. Ethambutol optic neuropathy (EON), Leber's hereditary optic neuropathy (LHON), and other optic neuropathies of mitochondrial origin share a common pathophysiology. Consequently, the authors postulate treatments utilised in LHON, including vitamin B supplementation and idebenone, may have benefit in EON. This article presents concepts for further research, suggesting a potential genetic susceptibility to EON and its treatment.
Collapse
Affiliation(s)
- Viran Jayanetti
- Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | | | - Domit Azar
- Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Clare L Fraser
- Macquarie University Clinic, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Meyer JN, Leuthner TC, Luz AL. Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology 2017; 391:42-53. [PMID: 28789970 PMCID: PMC5681418 DOI: 10.1016/j.tox.2017.07.019] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/10/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
Abstract
Mitochondrial dynamics are regulated by two sets of opposed processes: mitochondrial fusion and fission, and mitochondrial biogenesis and degradation (including mitophagy), as well as processes such as intracellular transport. These processes maintain mitochondrial homeostasis, regulate mitochondrial form, volume and function, and are increasingly understood to be critical components of the cellular stress response. Mitochondrial dynamics vary based on developmental stage and age, cell type, environmental factors, and genetic background. Indeed, many mitochondrial homeostasis genes are human disease genes. Emerging evidence indicates that deficiencies in these genes often sensitize to environmental exposures, yet can also be protective under certain circumstances. Inhibition of mitochondrial dynamics also affects elimination of irreparable mitochondrial DNA (mtDNA) damage and transmission of mtDNA mutations. We briefly review the basic biology of mitodynamic processes with a focus on mitochondrial fusion and fission, discuss what is known and unknown regarding how these processes respond to chemical and other stressors, and review the literature on interactions between mitochondrial toxicity and genetic variation in mitochondrial fusion and fission genes. Finally, we suggest areas for future research, including elucidating the full range of mitodynamic responses from low to high-level exposures, and from acute to chronic exposures; detailed examination of the physiological consequences of mitodynamic alterations in different cell types; mechanism-based testing of mitotoxicant interactions with interindividual variability in mitodynamics processes; and incorporating other environmental variables that affect mitochondria, such as diet and exercise.
Collapse
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| | - Tess C Leuthner
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| | - Anthony L Luz
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| |
Collapse
|
23
|
Pineles S. Other acquired optic disc abnormalities in children. TAYLOR AND HOYT'S PEDIATRIC OPHTHALMOLOGY AND STRABISMUS 2017:592-598.e1. [DOI: 10.1016/b978-0-7020-6616-0.00055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Rao A, Nayak G, Kumari S, Prabhu AD, Khandige N, Kalthur SG, Mutalik S, Kalthur G, Adiga SK. Ethambutol induces testicular damage and decreases the sperm functional competence in Swiss albino mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 47:28-37. [PMID: 27579587 DOI: 10.1016/j.etap.2016.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
The present study reports the effect of ethambutol (EMB) on testicular function. Prepubertal and adult male Swiss albino mice were treated with 40, 80, 160mg/kg body weight of EMB, intraperitoneally, every alternate day for 4 weeks. After 2 weeks gap, mice were sacrificed to collect caudal spermatozoa. EMB treatment resulted in a dose-dependent decrease in the testicular weight, sperm count and motility while the percentage of sperm with head abnormalities, immature chromatin (P<0.001) and DNA damage increased (P<0.01). In addition, EMB treatment resulted in significant depletion of glutathione (P<0.05-P<0.01) and histopathological abnormalities such as large cells, vacuolation of tubules and isolated colonies of spermatogenic cells were observed. Oct4, 17β-Hsd and c-Kit mRNA was marginally elevated in EMB treated testes at the highest dose studied. In conclusion, the result of the present study indicates that EMB has adverse effect on testicular function and impairs the sperm functional competence.
Collapse
Affiliation(s)
- Arpitha Rao
- Department of Clinical Embryology, Level 2, Central Research Lab., Manipal 576104, Karnataka, India
| | - Guruprasad Nayak
- Department of Clinical Embryology, Level 2, Central Research Lab., Manipal 576104, Karnataka, India
| | - Sandhya Kumari
- Department of Clinical Embryology, Level 2, Central Research Lab., Manipal 576104, Karnataka, India
| | - Amratha D Prabhu
- Department of Clinical Embryology, Level 2, Central Research Lab., Manipal 576104, Karnataka, India
| | - Nalini Khandige
- Department of Biochemistry, Manipal 576104, Karnataka, India
| | | | - Srinivas Mutalik
- Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Level 2, Central Research Lab., Manipal 576104, Karnataka, India.
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Level 2, Central Research Lab., Manipal 576104, Karnataka, India
| |
Collapse
|
25
|
Gueguen N, Desquiret-Dumas V, Leman G, Chupin S, Baron S, Nivet-Antoine V, Vessières E, Ayer A, Henrion D, Lenaers G, Reynier P, Procaccio V. Resveratrol Directly Binds to Mitochondrial Complex I and Increases Oxidative Stress in Brain Mitochondria of Aged Mice. PLoS One 2015; 10:e0144290. [PMID: 26684010 PMCID: PMC4694087 DOI: 10.1371/journal.pone.0144290] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/16/2015] [Indexed: 12/23/2022] Open
Abstract
Resveratrol is often described as a promising therapeutic molecule for numerous diseases, especially in metabolic and neurodegenerative disorders. While the mechanism of action is still debated, an increasing literature reports that resveratrol regulates the mitochondrial respiratory chain function. In a recent study we have identified mitochondrial complex I as a direct target of this molecule. Nevertheless, the mechanisms and consequences of such an interaction still require further investigation. In this study, we identified in silico by docking study a binding site for resveratrol at the nucleotide pocket of complex I. In vitro, using solubilized complex I, we demonstrated a competition between NAD+ and resveratrol. At low doses (<5μM), resveratrol stimulated complex I activity, whereas at high dose (50 μM) it rather decreased it. In vivo, in brain mitochondria from resveratrol treated young mice, we showed that complex I activity was increased, whereas the respiration rate was not improved. Moreover, in old mice with low antioxidant defenses, we demonstrated that complex I activation by resveratrol led to oxidative stress. These results bring new insights into the mechanism of action of resveratrol on mitochondria and highlight the importance of the balance between pro- and antioxidant effects of resveratrol depending on its dose and age. These parameters should be taken into account when clinical trials using resveratrol or analogues have to be designed.
Collapse
Affiliation(s)
- Naïg Gueguen
- Université d’Angers, Angers, F-49000, France
- Département de Biochimie et Génétique, CHU d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
- * E-mail:
| | - Valérie Desquiret-Dumas
- Université d’Angers, Angers, F-49000, France
- Département de Biochimie et Génétique, CHU d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| | - Géraldine Leman
- Université d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| | - Stéphanie Chupin
- Université d’Angers, Angers, F-49000, France
- Département de Biochimie et Génétique, CHU d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| | - Stéphanie Baron
- EA 4466, Université Paris Descartes, Faculté de Pharmacie, Paris, F-75270, France
| | | | - Emilie Vessières
- Université d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| | - Audrey Ayer
- Université d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| | - Daniel Henrion
- Université d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| | - Guy Lenaers
- Université d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| | - Pascal Reynier
- Université d’Angers, Angers, F-49000, France
- Département de Biochimie et Génétique, CHU d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| | - Vincent Procaccio
- Université d’Angers, Angers, F-49000, France
- Département de Biochimie et Génétique, CHU d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| |
Collapse
|
26
|
Han J, Byun MK, Lee J, Han SY, Lee JB, Han SH. Longitudinal analysis of retinal nerve fiber layer and ganglion cell–inner plexiform layer thickness in ethambutol-induced optic neuropathy. Graefes Arch Clin Exp Ophthalmol 2015; 253:2293-9. [DOI: 10.1007/s00417-015-3150-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/02/2015] [Accepted: 08/21/2015] [Indexed: 11/30/2022] Open
|
27
|
Shah R, Venkatesan P. Drug-induced myopathy in a patient with pulmonary tuberculosis. BMJ Case Rep 2015; 2015:bcr2014206906. [PMID: 26177994 PMCID: PMC4513556 DOI: 10.1136/bcr-2014-206906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 11/03/2022] Open
Abstract
A 26-year-old man, who had started treatment for pulmonary tuberculosis, developed polyarthralgia, generalised myalgia, weakness, and elevated uric acid and creatine kinase levels. His polyarthralgia improved on cessation of pyrazinamide, but the improvement in his myalgia and creatine kinase was delayed. Drug-induced myopathy was considered as there were no clear alternative explanations.
Collapse
Affiliation(s)
- Rajiv Shah
- Department of Infectious Diseases, Nottingham University Hospitals City Campus, Nottingham, UK
| | - Pradhib Venkatesan
- Department of Infectious Diseases, Nottingham University Hospitals City Campus, Nottingham, UK
| |
Collapse
|
28
|
Huang SP, Chien JY, Tsai RK. Ethambutol induces impaired autophagic flux and apoptosis in the rat retina. Dis Model Mech 2015; 8:977-87. [PMID: 26092127 PMCID: PMC4527287 DOI: 10.1242/dmm.019737] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/07/2015] [Indexed: 12/11/2022] Open
Abstract
Ethambutol (EMB), an effective first-line antituberculosis agent, can cause serious visual impairment or irreversible vision loss in a significant number of patients. However, the mechanism underlying this ocular cytotoxicity remains to be elucidated. In this study, we found that there were statistically significant dose- and time-dependent increases in the number of cytoplasmic vacuoles and the level of cell death in EMB-treated RGC-5 cells (retinal ganglion cells). The protein kinase C (PKC)δ inhibitor rottlerin markedly reduced the EMB-induced activation of caspase-3 and the subsequent apoptosis of RGC-5 cells. Western blot analysis revealed that the expression levels of class III PI3K, Beclin-1, p62 and LC3-II were upregulated, and LC3 immunostaining results showed activation of the early phase and inhibition of the late stage of autophagy in retinas of the EMB-intraperitoneal (IP)-injected rat model. We further demonstrated that exposure to EMB induces autophagosome accumulation, which results from the impaired autophagic flux that is mediated by a PKCδ-dependent pathway, inhibits the PI3K/Akt/mTOR signaling pathway and leads to apoptotic death in retina neuronal cells. These results indicate that autophagy dysregulation in retinal neuronal cells might play a substantial role in EMB-induced optic neuroretinopathy. Summary: This study provides the first evidence that EMB induces autophagosome accumulation, which results from the impaired autophagic flux that is mediated by a PKCδ-dependent pathway, and leads to apoptotic death in retina neuronal cells.
Collapse
Affiliation(s)
- Shun-Ping Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97002, Taiwan
| | - Jia-Ying Chien
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97002, Taiwan
| | - Rong-Kung Tsai
- Institute of Eye Research, Buddhist Tzu Chi General Hospital, Hualien 97002, Taiwan Institute of Medical Sciences, Tzu Chi University, Hualien 97002, Taiwan
| |
Collapse
|
29
|
Ethambutol-related impaired visual function in childrens less than 5 years of age treated for a mycobacterial infection: diagnosis and evolution. Pediatr Infect Dis J 2015; 34:346-50. [PMID: 25764095 DOI: 10.1097/inf.0000000000000589] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The effects of ethambutol (EMB) on vision are particularly difficult to detect in children less than 5 years of age because of a lack of complaints and objective clinical signs. The aim of this study was to assess the frequency of visual abnormalities and the utility of visual-evoked potentials (VEPs) recordings in monitoring the visual function of children less than 5 years of age who were exposed to EMB during anti-mycobacterial treatment. METHODS We performed a retrospective study in Robert-Debré University Hospital, Paris, France, including all children less than 5 years of age, who were treated with EMB for a mycobacterial infection from January 2002 to December 2012. RESULTS Fourteen patients were enrolled, including 12 treated for Mycobacterium tuberculosis infection. The sex ratio was 1:1. The median age was 1.65 years (0.3 to 4.7). Five patients had subarachnoid involvement. The median EMB dose was 22 mg/kg/day (15 to 27). Only 11 patients were monitored using VEPs. Three children (27.3%) developed a visual impairment secondary to EMB, with delays of 4, 7 and 36 weeks. One of the 3 patients developed an impairment of the retrochiasmatic visual pathways, and 2 other patients developed classical retrobulbar optic neuritis. In all cases, the discontinuation of EMB resulted in a normalization of these findings. CONCLUSION Alterations in visual function related to the use of EMB are not uncommon in young children and are most likely underestimated. Systematic close monitoring using VEPs recordings is needed in young children treated with EMB.
Collapse
|
30
|
|
31
|
Mitochondrial dysfunction affecting visual pathways. Rev Neurol (Paris) 2014; 170:344-54. [DOI: 10.1016/j.neurol.2014.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/08/2014] [Accepted: 03/26/2014] [Indexed: 01/08/2023]
|
32
|
|
33
|
Fonkem E, Skordilis MA, Binkley EM, Raymer DS, Epstein A, Arnold WD, Kissel JT, Lawson VH. Ethambutol toxicity exacerbating the phenotype of CMT2A2. Muscle Nerve 2013; 48:140-4. [PMID: 23733358 DOI: 10.1002/mus.23766] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2012] [Indexed: 11/07/2022]
Abstract
INTRODUCTION CMT2A2 is associated with mutations in the mitofusin 2 gene, which encodes a protein involved in mitochondrial fusion. Ethambutol is an antimycobacterial agent associated with toxic optic neuropathies. Ethambutol-induced optic neuropathy occurs in patients with mutations in a related fusion gene, OPA1, which is responsible for autosomal dominant optic atrophy. METHODS We describe a patient with CMT2A2 (MFN2 mutation: T669G, F223L) who developed accelerated weakness, vocal cord paralysis, and optic atrophy after receiving ethambutol. RESULTS Deterioration began within months of initiating ethambutol therapy. After discontinuation of ethambutol, neurologic deterioration stabilized with subsequent improvement in visual fields. CONCLUSIONS CMT2A2 is part of a group of genetic disorders which share an association with the process of mitochondrial fusion. This case shows that patients with CMT2A2, and possibly other mitochondrial fusion defects, may be uniquely susceptible to ethambutol-induced neurotoxicity. This has implications regarding the underlying pathophysiology of mitochondrial fusion defects.
Collapse
Affiliation(s)
- Ekokobe Fonkem
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Saada A. The use of individual patient's fibroblasts in the search for personalized treatment of nuclear encoded OXPHOS diseases. Mol Genet Metab 2011; 104:39-47. [PMID: 21835663 DOI: 10.1016/j.ymgme.2011.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/12/2011] [Accepted: 07/12/2011] [Indexed: 11/19/2022]
Abstract
Mitochondrial diseases, are a prevalent but diverse group of inherited disorders affecting the oxidative phosphorylation (OXPHOS) system. Vast amount of information with respect to pathomechanism and the assembly of the various OXPHOS complexes has been accumulated by studying the different variants of these diseases. Conversely, the investigation of therapeutic strategies has been hampered by this extreme variability. Individual patient's fibroblast may therefore provide a suitable platform in the search for personalized treatments, of nuclear encoded defects, when the phenotype is expressed in multiple tissues. Examples and different approaches in the search for treatment options, while using fibroblasts from patients with nuclear encoded OXPHOS defects as model systems, are summarized and discussed.
Collapse
Affiliation(s)
- Ann Saada
- Department of Genetics and Metabolic Diseases and the Monique and Jacques Roboh, Hadassah-Hebrew University Medical Center, POB 1200, 91120 Jerusalem, Israel.
| |
Collapse
|
36
|
Yu-Wai-Man P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies - disease mechanisms and therapeutic strategies. Prog Retin Eye Res 2011; 30:81-114. [PMID: 21112411 PMCID: PMC3081075 DOI: 10.1016/j.preteyeres.2010.11.002] [Citation(s) in RCA: 440] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leber hereditary optic neuropathy (LHON) and autosomal-dominant optic atrophy (DOA) are the two most common inherited optic neuropathies in the general population. Both disorders share striking pathological similarities, marked by the selective loss of retinal ganglion cells (RGCs) and the early involvement of the papillomacular bundle. Three mitochondrial DNA (mtDNA) point mutations; m.3460G>A, m.11778G>A, and m.14484T>C account for over 90% of LHON cases, and in DOA, the majority of affected families harbour mutations in the OPA1 gene, which codes for a mitochondrial inner membrane protein. Optic nerve degeneration in LHON and DOA is therefore due to disturbed mitochondrial function and a predominantly complex I respiratory chain defect has been identified using both in vitro and in vivo biochemical assays. However, the trigger for RGC loss is much more complex than a simple bioenergetic crisis and other important disease mechanisms have emerged relating to mitochondrial network dynamics, mtDNA maintenance, axonal transport, and the involvement of the cytoskeleton in maintaining a differential mitochondrial gradient at sites such as the lamina cribosa. The downstream consequences of these mitochondrial disturbances are likely to be influenced by the local cellular milieu. The vulnerability of RGCs in LHON and DOA could derive not only from tissue-specific, genetically-determined biological factors, but also from an increased susceptibility to exogenous influences such as light exposure, smoking, and pharmacological agents with putative mitochondrial toxic effects. Our concept of inherited mitochondrial optic neuropathies has evolved over the past decade, with the observation that patients with LHON and DOA can manifest a much broader phenotypic spectrum than pure optic nerve involvement. Interestingly, these phenotypes are sometimes clinically indistinguishable from other neurodegenerative disorders such as Charcot-Marie-Tooth disease, hereditary spastic paraplegia, and multiple sclerosis, where mitochondrial dysfunction is also thought to be an important pathophysiological player. A number of vertebrate and invertebrate disease models has recently been established to circumvent the lack of human tissues, and these have already provided considerable insight by allowing direct RGC experimentation. The ultimate goal is to translate these research advances into clinical practice and new treatment strategies are currently being investigated to improve the visual prognosis for patients with mitochondrial optic neuropathies.
Collapse
MESH Headings
- Animals
- DNA, Mitochondrial/genetics
- Disease Models, Animal
- Humans
- Optic Atrophy, Autosomal Dominant/pathology
- Optic Atrophy, Autosomal Dominant/physiopathology
- Optic Atrophy, Autosomal Dominant/therapy
- Optic Atrophy, Hereditary, Leber/pathology
- Optic Atrophy, Hereditary, Leber/physiopathology
- Optic Atrophy, Hereditary, Leber/therapy
- Optic Nerve/pathology
- Phenotype
- Point Mutation
- Retinal Ganglion Cells/pathology
Collapse
Affiliation(s)
- Patrick Yu-Wai-Man
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, UK.
| | | | | |
Collapse
|
37
|
|
38
|
Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2010. [DOI: 10.1002/pds.1857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|