1
|
Cao L, Feng C, Ye H, Zhao H, Shi Z, Li J, Wu Y, Wang R, Li Q, Liang J, Ji Q, Gu H, Shao M. Differential mRNA profiles reveal the potential roles of genes involved in lactate stimulation in mouse macrophages. Genomics 2024; 116:110814. [PMID: 38432499 DOI: 10.1016/j.ygeno.2024.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/28/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Lactate is a glycolysis end product, and its levels are markedly associated with disease severity, morbidity, and mortality in sepsis. It modulates key functions of immune cells, including macrophages. In this investigation, transcriptomic analysis was performed using lactic acid, sodium lactate, and hydrochloric acid-stimulated mouse bone marrow-derived macrophages (iBMDM), respectively, to identify lactate-associated signaling pathways. After 24 h of stimulation, 896 differentially expressed genes (DEG) indicated were up-regulation, whereas 792 were down-regulated in the lactic acid group, in the sodium lactate group, 128 DEG were up-regulated, and 41 were down-regulated, and in the hydrochloric acid group, 499 DEG were up-regulated, and 285 were down-regulated. Subsequently, clinical samples were used to further verify the eight genes with significant differences, among which Tssk6, Ypel4, Elovl3, Trp53inp1, and Cfp were differentially expressed in patients with high lactic acid, indicating their possible involvement in lactic acid-induced inflammation and various physiological diseases caused by sepsis. However, elongation of very long chain fatty acids protein 3 (Elovl3) was negatively correlated with lactic acid content in patients. The results of this study provide a necessary reference for better understanding the transcriptomic changes caused by lactic acid and explain the potential role of high lactic acid in the regulation of macrophages in sepsis.
Collapse
Affiliation(s)
- Limian Cao
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China.
| | - Chencheng Feng
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Haoming Ye
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Heng Zhao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhimin Shi
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Yayun Wu
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Ruojue Wang
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Qianru Li
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Jinquan Liang
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Qiang Ji
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Min Shao
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China.
| |
Collapse
|
2
|
Zhao J, Wang X, Huo Z, Chen Y, Liu J, Zhao Z, Meng F, Su Q, Bao W, Zhang L, Wen S, Wang X, Liu H, Zhou S. The Impact of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2022; 11:cells11132049. [PMID: 35805131 PMCID: PMC9265651 DOI: 10.3390/cells11132049] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and highly fatal neurodegenerative disease. Although the pathogenesis of ALS remains unclear, increasing evidence suggests that a key contributing factor is mitochondrial dysfunction. Mitochondria are organelles in eukaryotic cells responsible for bioenergy production, cellular metabolism, signal transduction, calcium homeostasis, and immune responses and the stability of their function plays a crucial role in neurons. A single disorder or defect in mitochondrial function can lead to pathological changes in cells, such as an impaired calcium buffer period, excessive generation of free radicals, increased mitochondrial membrane permeability, and oxidative stress (OS). Recent research has also shown that these mitochondrial dysfunctions are also associated with pathological changes in ALS and are believed to be commonly involved in the pathogenesis of the disease. This article reviews the latest research on mitochondrial dysfunction and its impact on the progression of ALS, with specific attention to the potential of novel therapeutic strategies targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiantao Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Xuemei Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Zijun Huo
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Yanchun Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Jinmeng Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China; (J.L.); (L.Z.)
| | - Zhenhan Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Fandi Meng
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Qi Su
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Weiwei Bao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Lingyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China; (J.L.); (L.Z.)
| | - Shuang Wen
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China;
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Huancai Liu
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China;
- Correspondence: (H.L.); or (S.Z.)
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (H.L.); or (S.Z.)
| |
Collapse
|
3
|
Li H, Uittenbogaard M, Hao L, Chiaramello A. Clinical Insights into Mitochondrial Neurodevelopmental and Neurodegenerative Disorders: Their Biosignatures from Mass Spectrometry-Based Metabolomics. Metabolites 2021; 11:233. [PMID: 33920115 PMCID: PMC8070181 DOI: 10.3390/metabo11040233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are dynamic multitask organelles that function as hubs for many metabolic pathways. They produce most ATP via the oxidative phosphorylation pathway, a critical pathway that the brain relies on its energy need associated with its numerous functions, such as synaptic homeostasis and plasticity. Therefore, mitochondrial dysfunction is a prevalent pathological hallmark of many neurodevelopmental and neurodegenerative disorders resulting in altered neurometabolic coupling. With the advent of mass spectrometry (MS) technology, MS-based metabolomics provides an emerging mechanistic understanding of their global and dynamic metabolic signatures. In this review, we discuss the pathogenetic causes of mitochondrial metabolic disorders and the recent MS-based metabolomic advances on their metabolomic remodeling. We conclude by exploring the MS-based metabolomic functional insights into their biosignatures to improve diagnostic platforms, stratify patients, and design novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Haorong Li
- Department of Chemistry, George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, DC 20052, USA;
| | - Martine Uittenbogaard
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W. Ross Hall 111, Washington, DC 20037, USA;
| | - Ling Hao
- Department of Chemistry, George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, DC 20052, USA;
| | - Anne Chiaramello
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W. Ross Hall 111, Washington, DC 20037, USA;
| |
Collapse
|
4
|
Esterhuizen K, Lindeque JZ, Mason S, van der Westhuizen FH, Rodenburg RJ, de Laat P, Smeitink JAM, Janssen MCH, Louw R. One mutation, three phenotypes: novel metabolic insights on MELAS, MIDD and myopathy caused by the m.3243A > G mutation. Metabolomics 2021; 17:10. [PMID: 33438095 DOI: 10.1007/s11306-020-01769-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The m.3243A > G mitochondrial DNA mutation is one of the most common mitochondrial disease-causing mutations, with a carrier rate as high as 1:400. This point mutation affects the MT-TL1 gene, ultimately affecting the oxidative phosphorylation system and the cell's energy production. Strikingly, the m.3243A > G mutation is associated with different phenotypes, including mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), maternally inherited diabetes and deafness (MIDD) and myopathy. OBJECTIVES We investigated urine metabolomes of MELAS, MIDD and myopathy patients in order to identify affected metabolic pathways and possible treatment options. METHODS A multiplatform metabolomics approach was used to comprehensively analyze the metabolome and compare metabolic profiles of different phenotypes caused by the m.3243A > G mutation. Our analytical array consisted of NMR spectroscopy, LC-MS/MS and GC-TOF-MS. RESULTS The investigation revealed phenotypic specific metabolic perturbations, as well as metabolic similarities between the different phenotypes. We show that glucose metabolism is highly disturbed in the MIDD phenotype, but not in MELAS or myopathy, remodeled fatty acid oxidation is characteristic of the MELAS patients, while one-carbon metabolism is strongly modified in both MELAS and MIDD, but not in the myopathy group. Lastly we identified increased creatine in the urine of the myopathy patients, but not in MELAS or MIDD. CONCLUSION We conclude by giving novel insight on the phenotypes of the m.3243A > G mutation from a metabolomics point of view. Directives are also given for future investigations that could lead to better treatment options for patients suffering from this debilitating disease.
Collapse
Affiliation(s)
- Karien Esterhuizen
- Mitochondria Research Laboratory, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - J Zander Lindeque
- Mitochondria Research Laboratory, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Shayne Mason
- Mitochondria Research Laboratory, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | | - Richard J Rodenburg
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Paul de Laat
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Mirian C H Janssen
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud Center for Mitochondrial Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Roan Louw
- Mitochondria Research Laboratory, Human Metabolomics, North-West University, Potchefstroom, South Africa.
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
5
|
Mitochondrial stress and GDF15 in the pathophysiology of sepsis. Arch Biochem Biophys 2020; 696:108668. [PMID: 33188737 DOI: 10.1016/j.abb.2020.108668] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are multifunctional organelles that regulate diverse cellular processes. Mitochondrial stress, including stress generated by electron transport chain defects and impaired mitochondrial proteostasis, is intimately involved in various diseases and pathological conditions. Sepsis is a life-threatening condition that occurs when an imbalanced host response to infection leads to organ dysfunction. Metabolic disturbances and impaired immune responses are implicated in the pathogenesis and development of sepsis. Given that mitochondria play central roles in cellular metabolism, mitochondrial stress is predicted to be involved in the pathological mechanism of sepsis. Under mitochondrial stress, cells activate stress response systems to maintain homeostasis. This mitochondrial stress response transcriptionally activates genes involved in cell survival and death. Mitochondrial stress also induces the release of distinctive secretory proteins from cells. Recently, we showed that growth differentiation factor 15 (GDF15) is a major secretory protein induced by mitochondrial dysfunction. In this article, we provide a brief overview of mitochondrial stress response and GDF15, and discuss the potential role of GDF15 in the pathophysiology of sepsis.
Collapse
|
6
|
PET Imaging for Oxidative Stress in Neurodegenerative Disorders Associated with Mitochondrial Dysfunction. Antioxidants (Basel) 2020; 9:antiox9090861. [PMID: 32937849 PMCID: PMC7554831 DOI: 10.3390/antiox9090861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress based on mitochondrial dysfunction is assumed to be the principal molecular mechanism for the pathogenesis of many neurodegenerative disorders. However, the effects of oxidative stress on the neurodegeneration process in living patients remain to be elucidated. Molecular imaging with positron emission tomography (PET) can directly evaluate subtle biological changes, including the redox status. The present review focuses on recent advances in PET imaging for oxidative stress, in particular the use of the Cu-ATSM radioligand, in neurodegenerative disorders associated with mitochondrial dysfunction. Since reactive oxygen species are mostly generated by leakage of excess electrons from an over-reductive state due to mitochondrial respiratory chain impairment, PET with 62Cu-ATSM, the accumulation of which depends on an over-reductive state, is able to image oxidative stress. 62Cu-ATSM PET studies demonstrated enhanced oxidative stress in the disease-related brain regions of patients with mitochondrial disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Furthermore, the magnitude of oxidative stress increased with disease severity, indicating that oxidative stress based on mitochondrial dysfunction contributes to promoting neurodegeneration in these diseases. Oxidative stress imaging has improved our insights into the pathological mechanisms of neurodegenerative disorders, and is a promising tool for monitoring further antioxidant therapies.
Collapse
|
7
|
Nakada C, Hijiya N, Tsukamoto Y, Yano S, Kai T, Uchida T, Kimoto M, Takahashi M, Daa T, Matsuura K, Shin T, Mimata H, Moriyama M. A transgenic mouse expressing miR-210 in proximal tubule cells shows mitochondrial alteration: possible association of miR-210 with a shift in energy metabolism. J Pathol 2020; 251:12-25. [PMID: 32073141 DOI: 10.1002/path.5394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/21/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Previously we reported that the microRNA miR-210 is aberrantly upregulated in clear cell renal cell carcinoma (ccRCC) via deregulation of the VHL-HIF pathway. In the present study, to investigate the biological impact of miR-210 in ccRCC tumorigenesis, we developed a transgenic mouse line expressing miR-210 in proximal tubule cells under control of the mouse SGLT2/Slc5a2 promoter. Light microscopy revealed desquamation of the tubule cells and regeneration of the proximal tubule, suggesting that miR-210 expression led to damage of the proximal tubule cells. Electron microscopy revealed alterations to the mitochondria in proximal tubule cells, with marked reduction of the mitochondrial inner membrane, which is the main site of ATP production via oxidative phosphorylation (OxPhos). An additional in vitro study revealed that this loss of the inner membrane was associated with downregulation of Iscu and Ndufa4, the target genes of miR-210, suggesting that the miR-210-ISCU/NDUFA4 axis may affect mitochondrial energy metabolism. Furthermore, metabolome analysis revealed activation of anaerobic glycolysis in miR-210-transfected cells, and consistent with this the secretion of lactate, the final metabolite of anaerobic glycolysis, was significantly increased. Lactate concentration was higher in the kidney cortex of transgenic mice relative to wild-type mice, although the difference was not significant (p = 0.070). On the basis of these findings, we propose that miR-210 may induce a shift of energy metabolism from OxPhos to glycolysis by acting on the mitochondrial inner membrane. In addition to activation of glycolysis, we observed activation of the pentose phosphate pathway (PPP) and an increase in the total amount of amino acids in miR-210-transfected cells. This may help cells synthesize nucleotides and proteins for building new cells. These results suggest that miR-210 may be involved in the metabolic changes in the early stage of ccRCC development, helping the cancer cells to acquire growth and survival advantages. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chisato Nakada
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan.,Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Naoki Hijiya
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Shinji Yano
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Tomoki Kai
- Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Mami Kimoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Mika Takahashi
- Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Keiko Matsuura
- Department of Biomedicine, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Toshitaka Shin
- Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Hiromitsu Mimata
- Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Masatsugu Moriyama
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| |
Collapse
|
8
|
Esterhuizen K, Lindeque JZ, Mason S, van der Westhuizen FH, Suomalainen A, Hakonen AH, Carroll CJ, Rodenburg RJ, de Laat PB, Janssen MC, Smeitink JA, Louw R. A urinary biosignature for mitochondrial myopathy, encephalopathy, lactic acidosis and stroke like episodes (MELAS). Mitochondrion 2019; 45:38-45. [DOI: 10.1016/j.mito.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/27/2018] [Accepted: 02/15/2018] [Indexed: 12/27/2022]
|
9
|
Koga Y, Povalko N, Inoue E, Nashiki K, Tanaka M. Biomarkers and clinical rating scales for sodium pyruvate therapy in patients with mitochondrial disease. Mitochondrion 2019; 48:11-15. [PMID: 30738201 DOI: 10.1016/j.mito.2019.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/19/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
Biomarkers and two clinical rating scales-the Japanese mitochondrial disease-rating scale (JMDRS) and Newcastle mitochondrial disease adult scale (NMDAS)-are clinically used when treating patients with mitochondrial disease. We explored the biomarker(s) and clinical rating scale(s) that are appropriate in preparing the protocol for a future clinical trial of sodium pyruvate (SP) therapy. A 48-week, prospective, single-centre, exploratory, clinical study enrolled 11 Japanese adult patients with genetically, biochemically, and clinically confirmed mitochondrial disease; they had intractable lactic acidosis and received SP (0.5 g/kg t.i.d. PO). Plasma concentrations of lactate and pyruvate, lateral ventricular levels of lactate, and serum concentrations of growth differentiation factor 15 (GDF15) and fibroblast growth factor 21 were measured at baseline and at weeks 12 and 48 of SP therapy. At week 48, plasma lactate (P = .004), the lactate/pyruvate ratio (P = .012), serum GDF15 (P = .020), and lateral ventricular lactate (P = .038) decreased significantly from the baseline values; the JMDRS and NMDAS scores did not decrease significantly, although the NMDAS overall score showed a strong tendency (P = .059). Two patients with end-stage MELAS at baseline died during SP therapy. The present study showed significant decreases in plasma and lateral ventricular lactate, the L/P ratio, and serum GDF15. Therefore, the protocol for a future clinical study of SP therapy in this patient population needs to include plasma and lateral ventricular lactate, the L/P ratio, and serum GDF15 as diagnostic indicators, and exclude patients with end-stage mitochondrial disease.
Collapse
Affiliation(s)
- Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, Kurume, Japan.
| | - Nataliya Povalko
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, Kurume, Japan; Institute of Fundamental Medicine and Biology, OpenLab Gene and Cell Technology, Kazan Federal University, Kazan Respublika Tatarstan, Russia
| | - Eisuke Inoue
- Division of Medical Informatics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kazutaka Nashiki
- Center for Diagnostic Imaging, Kurume University Hospital, Kurume, Japan
| | - Masashi Tanaka
- Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| |
Collapse
|
10
|
Metabolomics of mitochondrial disease. Mitochondrion 2017; 35:97-110. [DOI: 10.1016/j.mito.2017.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 05/08/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022]
|
11
|
Schaffer SW, Shimada-Takaura K, Jong CJ, Ito T, Takahashi K. Impaired energy metabolism of the taurine‑deficient heart. Amino Acids 2016; 48:549-58. [PMID: 26475290 DOI: 10.1007/s00726-015-2110-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022]
Abstract
Taurine is a β-amino acid found in high concentrations in excitable tissues, including the heart. A significant reduction in myocardial taurine content leads to the development of a unique dilated, atrophic cardiomyopathy. One of the major functions of taurine in the heart is the regulation of the respiratory chain. Hence, we tested the hypothesis that taurine deficiency-mediated defects in respiratory chain function lead to impaired energy metabolism and reduced ATP generation. We found that while the rate of glycolysis was significantly enhanced in the taurine-deficient heart, glucose oxidation was diminished. The major site of reduced glucose oxidation was pyruvate dehydrogenase, an enzyme whose activity is reduced by the increase in the NADH/NAD+ ratio and by decreased availability of pyruvate for oxidation to acetyl CoA and changes in [Mg2+]i. Also diminished in the taurine-deficient heart was the oxidation of two other precursors of acetyl CoA, endogenous fatty acids and exogenous acetate. In the taurine-deficient heart, impaired citric acid cycle activity decreased both acetate oxidation and endogenous fatty acid oxidation, but reductions in the activity of the mitochondrial transporter, carnitine palmitoyl transferase, appeared to also contribute to the reduction in fatty acid oxidation. These changes diminished the rate of ATP production, causing a decline in the phosphocreatine/ATP ratio, a sign of reduced energy status. The findings support the hypothesis that the taurine-deficient heart is energy starved primarily because of impaired respiratory chain function, an increase in the NADH/NAD+ ratio and diminished long chain fatty acid uptake by the mitochondria. The results suggest that improved energy metabolism contributes to the beneficial effect of taurine therapy in patients suffering from heart failure.
Collapse
Affiliation(s)
- Stephen W Schaffer
- Department of Pharmacology, University of South Alabama, College of Medicine, Mobile, AL 36688, USA.
| | | | | | | | | |
Collapse
|
12
|
Ehinger JK, Piel S, Ford R, Karlsson M, Sjövall F, Frostner EÅ, Morota S, Taylor RW, Turnbull DM, Cornell C, Moss SJ, Metzsch C, Hansson MJ, Fliri H, Elmér E. Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency. Nat Commun 2016; 7:12317. [PMID: 27502960 PMCID: PMC4980488 DOI: 10.1038/ncomms12317] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial complex I (CI) deficiency is the most prevalent defect in the respiratory chain in paediatric mitochondrial disease. This heterogeneous group of diseases includes serious or fatal neurological presentations such as Leigh syndrome and there are very limited evidence-based treatment options available. Here we describe that cell membrane-permeable prodrugs of the complex II substrate succinate increase ATP-linked mitochondrial respiration in CI-deficient human blood cells, fibroblasts and heart fibres. Lactate accumulation in platelets due to rotenone-induced CI inhibition is reversed and rotenone-induced increase in lactate:pyruvate ratio in white blood cells is alleviated. Metabolomic analyses demonstrate delivery and metabolism of [(13)C]succinate. In Leigh syndrome patient fibroblasts, with a recessive NDUFS2 mutation, respiration and spare respiratory capacity are increased by prodrug administration. We conclude that prodrug-delivered succinate bypasses CI and supports electron transport, membrane potential and ATP production. This strategy offers a potential future therapy for metabolic decompensation due to mitochondrial CI dysfunction.
Collapse
Affiliation(s)
- Johannes K Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden.,NeuroVive Pharmaceutical AB, Medicon Village, 223 81 Lund, Sweden.,Department of Otorhinolaryngology, Head and Neck Surgery, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Sarah Piel
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden.,NeuroVive Pharmaceutical AB, Medicon Village, 223 81 Lund, Sweden
| | - Rhonan Ford
- Selcia Ltd, Fyfield Business and Research Park, Fyfield Road, Ongar CM5 0GS, Essex, UK
| | - Michael Karlsson
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden.,NeuroVive Pharmaceutical AB, Medicon Village, 223 81 Lund, Sweden
| | - Fredrik Sjövall
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden.,Department of Intensive Care and Perioperative Medicine, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Eleonor Åsander Frostner
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden.,NeuroVive Pharmaceutical AB, Medicon Village, 223 81 Lund, Sweden
| | - Saori Morota
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Clive Cornell
- Selcia Ltd, Fyfield Business and Research Park, Fyfield Road, Ongar CM5 0GS, Essex, UK
| | - Steven J Moss
- Isomerase Therapeutics Ltd, Chesterford Research Park, Cambridge CB10 1XL, UK
| | - Carsten Metzsch
- Anaesthesiology and Intensive Care, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, 221 85 Lund, Sweden
| | - Magnus J Hansson
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden.,NeuroVive Pharmaceutical AB, Medicon Village, 223 81 Lund, Sweden
| | - Hans Fliri
- Mitopharm Ltd, Fyfield Business and Research Park, Fyfield Road, Ongar CM5 0GS, Essex, UK
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden.,NeuroVive Pharmaceutical AB, Medicon Village, 223 81 Lund, Sweden.,Clinical Neurophysiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| |
Collapse
|
13
|
Mohanty K, Dada R, Dada T. Neurodegenerative Eye Disorders: Role of Mitochondrial Dynamics and Genomics. Asia Pac J Ophthalmol (Phila) 2016; 5:293-9. [PMID: 27101384 DOI: 10.1097/apo.0000000000000203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
As a major source of cellular energy, mitochondria are critical for optimal ocular function. They are also essential for cell differentiation and survival. Mitochondrial mutations and oxidative damage to the mitochondrial DNA are important factors underlying the pathology of many ocular disorders. With increasing age, mitochondrial DNA damage accumulates and results in several eye diseases. It is evident that the mitochondrial genome is more susceptible to stress and damage than the nuclear genome, as it lacks histone protection, a nucleotide excision repair system, and recombination repair, and it is the source and target of free radicals. Accumulation of mitochondrial mutations beyond a certain threshold explains the marked variations in phenotypes seen in mitochondrial diseases and the molecular mechanisms related to the pathogenesis of several chronic disorders in the eye. This review details the structure and function of mitochondria and the mitochondrial genome along with the mitochondrial involvement in various neurodegenerative ophthalmic disorders.
Collapse
Affiliation(s)
- Kuldeep Mohanty
- From the *Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, AIIMS, New Delhi, India; and †Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, AIIMS, New Delhi, India
| | | | | |
Collapse
|
14
|
Fujita Y, Ito M, Kojima T, Yatsuga S, Koga Y, Tanaka M. GDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mitochondrial diseases. Mitochondrion 2015; 20:34-42. [DOI: 10.1016/j.mito.2014.10.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/02/2014] [Accepted: 10/29/2014] [Indexed: 01/15/2023]
|
15
|
Fujii T, Nozaki F, Saito K, Hayashi A, Nishigaki Y, Murayama K, Tanaka M, Koga Y, Hiejima I, Kumada T. Efficacy of pyruvate therapy in patients with mitochondrial disease: a semi-quantitative clinical evaluation study. Mol Genet Metab 2014; 112:133-8. [PMID: 24830361 DOI: 10.1016/j.ymgme.2014.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Disorders of oxidative phosphorylation (OXPHOS) cause an increase in the NADH/NAD(+) ratio, which impairs the glycolysis pathway. Treatment with pyruvate is expected to decrease the ratio and thereby restore glycolysis. There are some case reports on the efficacy of pyruvate treatment for mitochondrial diseases. However, few of these reports assessed their results using a standardized scale. METHODS We monitored 4 bedridden patients with OXPHOS disorders who continued therapies of 0.5-1.0 g/kg/day of sodium pyruvate for more than 12 months. The efficacies of these treatments were evaluated with the Newcastle Pediatric Mitochondrial Disease Scale and the Gross Motor Function Measure with 88 items. RESULTS The ages of the patients at the treatment initiation ranged from 8-100 months. Of the 4 patients, 3 exhibited improvements within 1-3 months from the initiation of treatment. Among these 3 patients, one maintained the improvement for over 2 years. The remaining 2 regressed 3-6 months after the initiation of treatment. The blood lactate/pyruvate ratios did not correlate with the efficacy of treatment. CONCLUSION Pyruvate was effective even in bedridden patients with OXPHOS disorders, at least in the short term. Clinical trials with more patients and less severe disabilities are necessary to evaluate the long-term efficacy of this treatment. Biomarkers other than lactate and pyruvate need to be identified to biochemically monitor the efficacy of this treatment.
Collapse
Affiliation(s)
- Tatsuya Fujii
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan.
| | - Fumihito Nozaki
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan
| | - Keiko Saito
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan
| | - Anri Hayashi
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan
| | - Yutaka Nishigaki
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakane-cho, Itabashi, Tokyo 173-0015, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori, Chiba 266-0007, Japan
| | - Masashi Tanaka
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakane-cho, Itabashi, Tokyo 173-0015, Japan
| | - Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Ikuko Hiejima
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan
| | - Tomohiro Kumada
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan
| |
Collapse
|
16
|
Booth SC, Weljie AM, Turner RJ. Computational tools for the secondary analysis of metabolomics experiments. Comput Struct Biotechnol J 2013; 4:e201301003. [PMID: 24688685 PMCID: PMC3962093 DOI: 10.5936/csbj.201301003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 12/17/2012] [Accepted: 12/24/2012] [Indexed: 01/30/2023] Open
Abstract
Metabolomics experiments have become commonplace in a wide variety of disciplines. By identifying and quantifying metabolites researchers can achieve a systems level understanding of metabolism. These studies produce vast swaths of data which are often only lightly interpreted due to the overwhelmingly large amount of variables that are measured. Recently, a number of computational tools have been developed which enable much deeper analysis of metabolomics data. These data have been difficult to interpret as understanding the connections between dozens of altered metabolites has often relied on the biochemical knowledge of researchers and their speculations. Modern biochemical databases provide information about the interconnectivity of metabolism which can be automatically polled using metabolomics secondary analysis tools. Starting with lists of altered metabolites, there are two main types of analysis: enrichment analysis computes which metabolic pathways have been significantly altered whereas metabolite mapping contextualizes the abundances and significances of measured metabolites into network visualizations. Many different tools have been developed for one or both of these applications. In this review the functionality and use of these software is discussed. Together these novel secondary analysis tools will enable metabolomics researchers to plumb the depths of their data and produce farther reaching biological conclusions than ever before.
Collapse
Affiliation(s)
- Sean C Booth
- Department of Biological Sciences, University of Calgary, Calgary, AB. 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Aalim M Weljie
- Department of Pharmacology, University of Pennsylvania, Philadelphia, United States
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB. 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|