1
|
Giuga M, Ferrito V, Calogero GS, Traina A, Bonsignore M, Sprovieri M, Pappalardo AM. Differential Cellular Response to Mercury in Non-Farmed Fish Species Based on Mitochondrial DNA Copy Number Variation Analysis. BIOLOGY 2024; 13:691. [PMID: 39336118 PMCID: PMC11429374 DOI: 10.3390/biology13090691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024]
Abstract
Mercury (Hg) pro-oxidant role on biological systems and its biogeochemical cycle represent a serious threat due to its persistence in marine environment. As the mitochondrial genome is exposed to reactive oxygen species (ROS), the aim of the present study is the validation of the variation in the number of mitochondrial DNA copies (mtDNAcn) as biomarker of oxidative stress in aquatic environment. During summer 2021, three selected fish species (Mullus barbatus, Diplodus annularis and Pagellus erythrinus) were collected in Augusta Bay, one of the most Mediterranean contaminated areas remarkable by past Hg inputs, and in a control area, both in the south-east of Sicily. The relative mtDNAcn was evaluated by qPCR on specimens of each species from both sites, characterized respectively by higher and lower Hg bioaccumulation. M. barbatus and P. erythrinus collected in Augusta showed a dramatic mtDNAcn reduction compared to their control groups while D. annularis showed an incredible mtDNAcn rising suggesting a higher resilience of this species. These results align with the mitochondrial dynamics of fission and fusion triggered by environmental toxicants. In conclusion, we suggest the implementation of the mtDNAcn variation as a valid tool for the early warning stress-related impacts in aquatic system.
Collapse
Affiliation(s)
- Marta Giuga
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
- National Research Council of Italy, Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), Via De Marini 16, 16149 Genova, Italy
| | - Venera Ferrito
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Giada Santa Calogero
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Anna Traina
- National Research Council of Italy, Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), Lungomare Cristoforo Colombo 452, 90149 Palermo, Italy
| | - Maria Bonsignore
- National Research Council of Italy, Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), Via del Mare, 91021 Campobello di Mazara, Italy
| | - Mario Sprovieri
- National Research Council of Italy, Institute of Marine Sciences (ISMAR-CNR), Tesa 104-Arsenale, Castello 2737/F, 30122 Venezia, Italy
| | - Anna Maria Pappalardo
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| |
Collapse
|
2
|
Robeck TR, Haghani A, Fei Z, Lindemann DM, Russell J, Herrick KES, Montano G, Steinman KJ, Katsumata E, Zoller JA, Horvath S. Multi-tissue DNA methylation aging clocks for sea lions, walruses and seals. Commun Biol 2023; 6:359. [PMID: 37005462 PMCID: PMC10067968 DOI: 10.1038/s42003-023-04734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/21/2023] [Indexed: 04/04/2023] Open
Abstract
Age determination of wild animals, including pinnipeds, is critical for accurate population assessment and management. For most pinnipeds, current age estimation methodologies utilize tooth or bone sectioning which makes antemortem estimations problematic. We leveraged recent advances in the development of epigenetic age estimators (epigenetic clocks) to develop highly accurate pinniped epigenetic clocks. For clock development, we applied the mammalian methylation array to profile 37,492 cytosine-guanine sites (CpGs) across highly conserved stretches of DNA in blood and skin samples (n = 171) from primarily three pinniped species representing the three phylogenetic families: Otariidae, Phocidae and Odobenidae. We built an elastic net model with Leave-One-Out-Cross Validation (LOOCV) and one with a Leave-One-Species-Out-Cross-Validation (LOSOCV). After identifying the top 30 CpGs, the LOOCV produced a highly correlated (r = 0.95) and accurate (median absolute error = 1.7 years) age estimation clock. The LOSOCV elastic net results indicated that blood and skin clock (r = 0.84) and blood (r = 0.88) pinniped clocks could predict age of animals from pinniped species not used for clock development to within 3.6 and 4.4 years, respectively. These epigenetic clocks provide an improved and relatively non-invasive tool to determine age in skin or blood samples from all pinniped species.
Collapse
Affiliation(s)
- Todd R Robeck
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA.
- Species Preservation Lab, SeaWorld Parks and Entertainment, San Diego, CA, USA.
| | - Amin Haghani
- Department of Human Genetics, Gonda Research Center, David Geffen School of Medicine, Los Angeles, CA, USA
- Altos Labs, San Diego, USA
| | - Zhe Fei
- Department of Biostatistics, School of Public Health, University of California-Los Angeles, Los Angeles, CA, USA
| | | | | | | | - Gisele Montano
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
- Species Preservation Lab, SeaWorld Parks and Entertainment, San Diego, CA, USA
| | - Karen J Steinman
- Species Preservation Lab, SeaWorld Parks and Entertainment, San Diego, CA, USA
| | | | - Joseph A Zoller
- Department of Biostatistics, School of Public Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Steve Horvath
- Department of Human Genetics, Gonda Research Center, David Geffen School of Medicine, Los Angeles, CA, USA.
- Altos Labs, San Diego, USA.
- Department of Biostatistics, School of Public Health, University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Poirier MC. DNA damage in cetaceans: A mini review. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 870-871:503392. [PMID: 34583821 DOI: 10.1016/j.mrgentox.2021.503392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 11/27/2022]
Abstract
DNA damage has long been known to play an essential role in tumorigenesis induced by chemical carcinogen exposure. The preponderance of data generated during the past approximately 50 years of cancer research indicates that DNA damage and DNA adduct formation are necessary but not sufficient for tumor induction by chemical carcinogenesis. This is true for all of the species studied, including experimental animals, some animals in the wild, and humans. Cetaceans, which include whales, dolphins and porpoises, are a challenge to evaluate because tissues are difficult to obtain, and cancer rates, with a single exception, are low (0.7-2.0 %). However, both non-specific (chromosomal aberrations, DNA strand breaks, 8-hydroxy-2'-deoxyguanosine, mitochondrial DNA damage), and chemical-specific (aromatic DNA adducts, and carcinogenic polycyclic aromatic hydrocarbon [PAH]-DNA adducts) DNA damage have been found in cetaceans. For some types of DNA damage, cetaceans may carry a burden similar to that seen in many other species, including humans, but linking DNA damage to cancer rates in cetaceans has been largely impossible. The one exception is a population of beluga whales in the St. Lawrence Estuary (SLE) in Quebec, Canada, where correlations have been found between long-term PAH exposure, PAH-DNA adducts in small intestinal crypt cells, and a high rate (7%) of gastrointestinal cancers. Taken together, the current literature demonstrates that cetaceans may carry a burden of many types of DNA damage and, given the example of the SLE beluga, cetaceans may sustain a potential susceptibility to pollution-induced tumorigenesis. Knowledge of DNA damage and cancer rates in whales is critically important for understanding and predicting the health of marine life, human life, and the aquatic environment of our planet.
Collapse
Affiliation(s)
- Miriam C Poirier
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bldg 37, Rm 4060, NIH, 37 Convent Dr. MSC-4255, Bethesda, MD, 20892-4255, United States.
| |
Collapse
|
4
|
Mitochondrial DNA as a Sensitive Biomarker of UV-Induced Cellular Damage in Human Skin. Methods Mol Biol 2021. [PMID: 34080161 DOI: 10.1007/978-1-0716-1270-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Mitochondrial DNA (mtDNA) has been demonstrated to be a reliable biomarker of UV-induced genetic damage in both animal and human skin. Properties of the mitochondrial genome which allow for its use as a biomarker of damage include its presence in multiple copies within a cell, its limited repair mechanisms, and its lack of protective histones. To measure UV-induced mtDNA damage (particularly in the form of strand breaks), real-time quantitative PCR (qPCR) is used, based on the observation that PCR amplification efficiency is decreased in the presence of high levels of damage. Here, we describe the measurement of UV-induced mtDNA damage which includes the extraction of cellular DNA, qPCR to determine the relative amount of mtDNA, qPCR to determine UV-induced damage within a long strand of mtDNA, and the verification of the amplification process using gel electrophoresis.
Collapse
|
5
|
Kesäniemi J, Lavrinienko A, Tukalenko E, Moutinho AF, Mappes T, Møller AP, Mousseau TA, Watts PC. Exposure to environmental radionuclides alters mitochondrial DNA maintenance in a wild rodent. Evol Ecol 2020. [DOI: 10.1007/s10682-019-10028-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AbstractMitochondria are sensitive to oxidative stress, including that derived from ionizing radiation. To quantify the effects of exposure to environmental radionuclides on mitochondrial DNA (mtDNA) dynamics in wildlife, bank voles (Myodes glareolus) were collected from the chernobyl exclusion zone (CEZ), where animals are exposed to elevated levels of radionuclides, and from uncontaminated areas within the CEZ and elsewhere in Ukraine. Brains of bank voles from outside the CEZ were characterized by low mtDNA copy number and low mtDNA damage; by contrast, bank voles within the CEZ had high mtDNA copy number and high mtDNA damage, consistent with putative damaging effects of elevated radiation and a compensatory response to maintain sufficient functioning mitochondria. In animals outside the CEZ, the expression levels of PGC-1α gene and mtDNA copy number were positively correlated as expected from this gene’s prominent role in mitochondrial biogenesis; this PGC-1α-mtDNA copy number association is absent in samples from the CEZ. Our data imply that exposure to radionuclides is associated with altered mitochondrial dynamics, evident in level of mtDNA and mtDNA damage and the level of activity in mitochondrial synthesis.
Collapse
|
6
|
Van Bressem MF, Van Waerebeek K, Duignan PJ. Epidemiology of tattoo skin disease in captive common bottlenose dolphins (Tursiops truncatus): Are males more vulnerable than females? J APPL ANIM WELF SCI 2018; 21:305-315. [PMID: 29353509 DOI: 10.1080/10888705.2017.1421076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clinical and epidemiological features of tattoo skin disease (TSD) are reported for 257 common bottlenose dolphins held in 31 facilities in the Northern Hemisphere. Photographs and biological data of 146 females and 111 males were analyzed. Dolphins were classified into three age classes: 0-3 years, 4-8 years, and older than 9 years. From 2012 to 2014, 20.6% of the 257 dolphins showed clinical TSD. The youngest dolphins with tattoo lesions were 14 and 15 months old. TSD persisted from 4 to 65 months in 30 dolphins. Prevalence varied between facilities from 5.6% to 60%, possibly reflecting variation in environmental factors. Unlike in free-ranging Delphinidae, TSD prevalence was significantly higher in males (31.5%) than in females (12.3%). Infection was age-dependent only in females. Prevalence of very large tattoos was also higher in males (28.6%) than in females (11.1%). These data suggest that male T. truncatus are more vulnerable to TSD than females, possibly because of differences in immune response and susceptibility to captivity-related stress.
Collapse
Affiliation(s)
| | - Koen Van Waerebeek
- a Cetacean Conservation Medicine Group , Peruvian Centre for Cetacean Research (CEPEC) , Lima , Peru
| | - Pádraig J Duignan
- b Department of Veterinary Science, The Marine Mammal Center, Fort Cronkhite , Sausalito , California , USA
| |
Collapse
|
7
|
Morales-Guerrero B, Barragán-Vargas C, Silva-Rosales GR, Ortega-Ortiz CD, Gendron D, Martinez-Levasseur LM, Acevedo-Whitehouse K. Melanin granules melanophages and a fully-melanized epidermis are common traits of odontocete and mysticete cetaceans. Vet Dermatol 2016; 28:213-e50. [PMID: 27943433 DOI: 10.1111/vde.12392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND The cellular mechanisms used to counteract or limit damage caused by exposure of marine vertebrates to solar ultraviolet (UV) radiation are poorly understood. Cetaceans are vulnerable because they lack protective skin appendages and are obliged to surface continuously to breathe, thus being exposed repeatedly to UV light. Although molecular mechanisms of photoprotection of cetaceans have been studied, there is limited knowledge about their epidermal structure and photoprotective effectors. OBJECTIVE To describe and compare the epidermis of mysticete and odontocete cetaceans and identify potentially photoprotective traits. ANIMALS Twenty eight free-living individuals belonging to six cetacean species were sampled in the Mexican Central Pacific and Gulf of California. Species sampled were the bottlenose dolphin, pantropical spotted dolphin, spinner dolphin, Bryde's whale, fin whale and humpback whale. METHODS Histological and cytological evaluation of skin biopsy tissue collected in the field between 2014 and 2016. RESULTS All cetaceans had only three epidermal layers, lacking both the stratum granulosum and stratum lucidum. A relatively thick stratum corneum with a parakeratosis-like morphology was noted. Melanin was observed within keratinocytes in all epidermal layers, including the stratum corneum and apical melanin granules obscured the keratinocyte nucleus. Keratinocytes had a perinuclear halo. Keratinocyte diameter differed between cetacean suborders and amongst species. Melanophage clusters were common in most cetacean species. CONCLUSIONS The widespread presence of melanin and the unexpectedly high number of melanophages may constitute a unique photoprotective trait of cetaceans and could reflect primitive adaptations to their environment and to their obligate marine-bound life.
Collapse
Affiliation(s)
- Blanca Morales-Guerrero
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Avenida de las Ciencias s/n. Juriquilla, 76230, Queretaro, México
| | - Cecilia Barragán-Vargas
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Avenida de las Ciencias s/n. Juriquilla, 76230, Queretaro, México
| | - German R Silva-Rosales
- Departamento de Patología, Instituto Mexicano del Seguro Social, 76000, Queretaro, México
| | - Christian D Ortega-Ortiz
- Facultad de Ciencias Marinas, Universidad de Colima, Campus El Naranjo, km 20 carretera Manzanillo-Cihuatlán, 28860, Manzanillo, Colima, México
| | - Diane Gendron
- Laboratorio de Ecología de Cetáceos y Quelonios, Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Avenida IPN s/n Colonia Playa Palo de Santa Rita, 23096, La Paz, Baja California Sur, México
| | | | - Karina Acevedo-Whitehouse
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Avenida de las Ciencias s/n. Juriquilla, 76230, Queretaro, México.,The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA, 94965, USA
| |
Collapse
|
8
|
Kandola K, Bowman A, Birch-Machin MA. Oxidative stress - a key emerging impact factor in health, ageing, lifestyle and aesthetics. Int J Cosmet Sci 2015; 37 Suppl 2:1-8. [DOI: 10.1111/ics.12287] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/05/2015] [Indexed: 01/18/2023]
Affiliation(s)
- K. Kandola
- Dermatology; Medical School Newcastle University; Newcastle upon Tyne NE24HH U.K
| | - A. Bowman
- Dermatology; Medical School Newcastle University; Newcastle upon Tyne NE24HH U.K
| | - M. A. Birch-Machin
- Dermatology; Medical School Newcastle University; Newcastle upon Tyne NE24HH U.K
| |
Collapse
|
9
|
Boulton SJ, Bowman A, Koohgoli R, Birch-Machin MA. Skin manifestations of mitochondrial dysfunction: more important than previously thought. Exp Dermatol 2015; 24:12-3. [DOI: 10.1111/exd.12597] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Sarah Jayne Boulton
- Dermatological Sciences; Institute of Cellular Medicine; Newcastle University; Newcastle UK
| | - Amy Bowman
- Dermatological Sciences; Institute of Cellular Medicine; Newcastle University; Newcastle UK
| | - Roxanna Koohgoli
- Department of Human Health and Nutritional Sciences; College of Biological Science; University of Guelph; Guelph ON Canada
| | - Mark A. Birch-Machin
- Dermatological Sciences; Institute of Cellular Medicine; Newcastle University; Newcastle UK
| |
Collapse
|
10
|
Häder DP, Williamson CE, Wängberg SÅ, Rautio M, Rose KC, Gao K, Helbling EW, Sinha RP, Worrest R. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochem Photobiol Sci 2015; 14:108-26. [DOI: 10.1039/c4pp90035a] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Combined effects of anthropogenic changes in the environmental condition in marine ecosystems, including UV, CO2and temperature.
Collapse
Affiliation(s)
- Donat-P. Häder
- Emeritus from Friedrich-Alexander Universität Erlangen-Nürnberg
- Dept. Biology
- 91096 Möhrendorf
- Germany
| | | | - Sten-Åke Wängberg
- Dept. Biological and Environmental Science
- University of Gothenburg
- SE-40530 Göteborg
- Sweden
| | - Milla Rautio
- Département des Sciences Fondamentales and Centre for Northern Studies (CEN)
- Université du Québec à Chicoutimi
- Saguenay
- Canada
| | - Kevin C. Rose
- Department of Zoology
- University of Wisconsin, Madison
- Madison
- USA
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science
- Xiamen University (XiangAn Campus, ZhouLongQuan A1-211)
- Xiamen
- China
| | | | - Rajeshwar P. Sinha
- Centre of Advanced Study in Botany
- Banaras Hindu University
- Varanasi-221005
- India
| | | |
Collapse
|
11
|
Abstract
Mitochondrial DNA (mtDNA) has been demonstrated to be a reliable biomarker of UV-induced genetic damage in both animal and human skin. Properties of the mitochondrial genome which allow for its use as a biomarker of damage include its presence in multiple copies within a cell, its limited repair mechanisms, and its lack of protective histones. To measure UV-induced mtDNA damage (particularly in the form of strand breaks), real-time quantitative PCR (qPCR) is used, based on the observation that PCR amplification efficiency is decreased in the presence of high levels of damage. Here, we describe the measurement of UV-induced mtDNA damage, including the extraction of cellular DNA, qPCR to determine the relative amount of mtDNA, qPCR to determine UV-induced damage within a long strand of mtDNA, and the verification of the amplification process using gel electrophoresis.
Collapse
Affiliation(s)
- Amy Bowman
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
12
|
Martinez-Levasseur LM, Birch-Machin MA, Bowman A, Gendron D, Weatherhead E, Knell RJ, Acevedo-Whitehouse K. Whales use distinct strategies to counteract solar ultraviolet radiation. Sci Rep 2014; 3:2386. [PMID: 23989080 PMCID: PMC3757271 DOI: 10.1038/srep02386] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/23/2013] [Indexed: 12/24/2022] Open
Abstract
A current threat to the marine ecosystem is the high level of solar ultraviolet radiation (UV). Large whales have recently been shown to suffer sun-induced skin damage from continuous UV exposure. Genotoxic consequences of such exposure remain unknown for these long-lived marine species, as does their capacity to counteract UV-induced insults. We show that UV exposure induces mitochondrial DNA damage in the skin of seasonally sympatric fin, sperm, and blue whales and that this damage accumulates with age. However, counteractive molecular mechanisms are markedly different between species. For example, sperm whales, a species that remains for long periods at the sea surface, activate genotoxic stress pathways in response to UV exposure whereas the paler blue whale relies on increased pigmentation as the season progresses. Our study also shows that whales can modulate their responses to fluctuating levels of UV, and that different evolutionary constraints may have shaped their response strategies.
Collapse
|