1
|
Swinter K, Salah D, Rathnayake R, Gunawardena S. PolyQ-Expansion Causes Mitochondria Fragmentation Independent of Huntingtin and Is Distinct from Traumatic Brain Injury (TBI)/Mechanical Stress-Mediated Fragmentation Which Results from Cell Death. Cells 2023; 12:2406. [PMID: 37830620 PMCID: PMC10572422 DOI: 10.3390/cells12192406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Mitochondrial dysfunction has been reported in many Huntington's disease (HD) models; however, it is unclear how these defects occur. Here, we test the hypothesis that excess pathogenic huntingtin (HTT) impairs mitochondrial homeostasis, using Drosophila genetics and pharmacological inhibitors in HD and polyQ-expansion disease models and in a mechanical stress-induced traumatic brain injury (TBI) model. Expression of pathogenic HTT caused fragmented mitochondria compared to normal HTT, but HTT did not co-localize with mitochondria under normal or pathogenic conditions. Expression of pathogenic polyQ (127Q) alone or in the context of Machado Joseph Disease (MJD) caused fragmented mitochondria. While mitochondrial fragmentation was not dependent on the cellular location of polyQ accumulations, the expression of a chaperone protein, excess of mitofusin (MFN), or depletion of dynamin-related protein 1 (DRP1) rescued fragmentation. Intriguingly, a higher concentration of nitric oxide (NO) was observed in polyQ-expressing larval brains and inhibiting NO production rescued polyQ-mediated fragmented mitochondria, postulating that DRP1 nitrosylation could contribute to excess fission. Furthermore, while excess PI3K, which suppresses polyQ-induced cell death, did not rescue polyQ-mediated fragmentation, it did rescue fragmentation caused by mechanical stress/TBI. Together, our observations suggest that pathogenic polyQ alone is sufficient to cause DRP1-dependent mitochondrial fragmentation upstream of cell death, uncovering distinct physiological mechanisms for mitochondrial dysfunction in polyQ disease and mechanical stress.
Collapse
Affiliation(s)
| | | | | | - Shermali Gunawardena
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
2
|
Cheon Y, Yoon S, Lee JH, Kim K, Kim HJ, Hong SW, Yun YR, Shim J, Kim SH, Lu B, Lee M, Lee S. A Novel Interaction between MFN2/Marf and MARK4/PAR-1 Is Implicated in Synaptic Defects and Mitochondrial Dysfunction. eNeuro 2023; 10:ENEURO.0409-22.2023. [PMID: 37550059 PMCID: PMC10444538 DOI: 10.1523/eneuro.0409-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/09/2023] Open
Abstract
As cellular energy powerhouses, mitochondria undergo constant fission and fusion to maintain functional homeostasis. The conserved dynamin-like GTPase, Mitofusin2 (MFN2)/mitochondrial assembly regulatory factor (Marf), plays a role in mitochondrial fusion, mutations of which are implicated in age-related human diseases, including several neurodegenerative disorders. However, the regulation of MFN2/Marf-mediated mitochondrial fusion, as well as the pathologic mechanism of neurodegeneration, is not clearly understood. Here, we identified a novel interaction between MFN2/Marf and microtubule affinity-regulating kinase 4 (MARK4)/PAR-1. In the Drosophila larval neuromuscular junction, muscle-specific overexpression of MFN2/Marf decreased the number of synaptic boutons, and the loss of MARK4/PAR-1 alleviated the synaptic defects of MFN2/Marf overexpression. Downregulation of MARK4/PAR-1 rescued the mitochondrial hyperfusion phenotype caused by MFN2/Marf overexpression in the Drosophila muscles as well as in the cultured cells. In addition, knockdown of MARK4/PAR-1 rescued the respiratory dysfunction of mitochondria induced by MFN2/Marf overexpression in mammalian cells. Together, our results indicate that the interaction between MFN2/Marf and MARK4/PAR-1 is fine-tuned to maintain synaptic integrity and mitochondrial homeostasis, and its dysregulation may be implicated in neurologic pathogenesis.
Collapse
Affiliation(s)
- Yeongmi Cheon
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Korea
- Laboratory of Molecular Biochemistry, Chonnam National University, Gwangju 61186, Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Sunggyu Yoon
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Korea
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Korea
| | - Jae-Hyuk Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Korea
| | - Kiyoung Kim
- Department of Medical Science, Soonchunhyang University, Asan 31538, Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41068, Korea
| | - Sung Wook Hong
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Korea
| | - Ye-Rang Yun
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Korea
| | - Sung-Hak Kim
- Laboratory of Molecular Biochemistry, Chonnam National University, Gwangju 61186, Korea
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Mihye Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Korea
| |
Collapse
|
3
|
Cheramangalam RN, Anand T, Pandey P, Balasubramanian D, Varghese R, Singhal N, Jaiswal SN, Jaiswal M. Bendless is essential for PINK1-Park mediated Mitofusin degradation under mitochondrial stress caused by loss of LRPPRC. PLoS Genet 2023; 19:e1010493. [PMID: 37098042 PMCID: PMC10162545 DOI: 10.1371/journal.pgen.1010493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/05/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Cells under mitochondrial stress often co-opt mechanisms to maintain energy homeostasis, mitochondrial quality control and cell survival. A mechanistic understanding of such responses is crucial for further insight into mitochondrial biology and diseases. Through an unbiased genetic screen in Drosophila, we identify that mutations in lrpprc2, a homolog of the human LRPPRC gene that is linked to the French-Canadian Leigh syndrome, result in PINK1-Park activation. While the PINK1-Park pathway is well known to induce mitophagy, we show that PINK1-Park regulates mitochondrial dynamics by inducing the degradation of the mitochondrial fusion protein Mitofusin/Marf in lrpprc2 mutants. In our genetic screen, we also discover that Bendless, a K63-linked E2 conjugase, is a regulator of Marf, as loss of bendless results in increased Marf levels. We show that Bendless is required for PINK1 stability, and subsequently for PINK1-Park mediated Marf degradation under physiological conditions, and in response to mitochondrial stress as seen in lrpprc2. Additionally, we show that loss of bendless in lrpprc2 mutant eyes results in photoreceptor degeneration, indicating a neuroprotective role for Bendless-PINK1-Park mediated Marf degradation. Based on our observations, we propose that certain forms of mitochondrial stress activate Bendless-PINK1-Park to limit mitochondrial fusion, which is a cell-protective response.
Collapse
Affiliation(s)
| | - Tarana Anand
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Priyanka Pandey
- CSIR–Centre For Cellular and Molecular Biology, Hyderabad, India
| | | | - Reshmi Varghese
- CSIR–Centre For Cellular and Molecular Biology, Hyderabad, India
| | - Neha Singhal
- Tata Institute of Fundamental Research, Hyderabad, India
| | | | - Manish Jaiswal
- Tata Institute of Fundamental Research, Hyderabad, India
| |
Collapse
|
4
|
Sen A, Cox RT. Loss of Drosophila Clueless differentially affects the mitochondrial proteome compared to loss of Sod2 and Pink1. Front Physiol 2022; 13:1004099. [DOI: 10.3389/fphys.2022.1004099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria contain their own DNA, mitochondrial DNA, which encodes thirteen proteins. However, mitochondria require thousands of proteins encoded in the nucleus to carry out their many functions. Identifying the definitive mitochondrial proteome has been challenging as methods isolating mitochondrial proteins differ and different tissues and organisms may have specialized proteomes. Mitochondrial diseases arising from single gene mutations in nucleus encoded genes could affect the mitochondrial proteome, but deciphering which effects are due to loss of specific pathways or to accumulated general mitochondrial damage is difficult. To identify specific versus general effects, we have taken advantage of mutations in three Drosophila genes, clueless, Sod2, and Pink1, which are required for mitochondrial function through different pathways. We measured changes in each mutant’s mitochondrial proteome using quantitative tandem mass tag mass spectrometry. Our analysis identified protein classes that are unique to each mutant and those shared between them, suggesting that some changes in the mitochondrial proteome are due to general mitochondrial damage whereas others are gene specific. For example, clueless mutants had the greatest number of less and more abundant mitochondrial proteins whereas loss of all three genes increased stress and metabolism proteins. This study is the first to directly compare in vivo steady state levels of mitochondrial proteins by examining loss of three pathways critical for mitochondrial function. These data could be useful to understand disease etiology, and how mutations in genes critical for mitochondrial function cause specific mitochondrial proteomic changes as opposed to changes due to generalized mitochondrial damage.
Collapse
|
5
|
Schöck F, González-Morales N. The insect perspective on Z-disc structure and biology. J Cell Sci 2022; 135:277280. [PMID: 36226637 DOI: 10.1242/jcs.260179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibrils are the intracellular structures formed by actin and myosin filaments. They are paracrystalline contractile cables with unusually well-defined dimensions. The sliding of actin past myosin filaments powers contractions, and the entire system is held in place by a structure called the Z-disc, which anchors the actin filaments. Myosin filaments, in turn, are anchored to another structure called the M-line. Most of the complex architecture of myofibrils can be reduced to studying the Z-disc, and recently, important advances regarding the arrangement and function of Z-discs in insects have been published. On a very small scale, we have detailed protein structure information. At the medium scale, we have cryo-electron microscopy maps, super-resolution microscopy and protein-protein interaction networks, while at the functional scale, phenotypic data are available from precise genetic manipulations. All these data aim to answer how the Z-disc works and how it is assembled. Here, we summarize recent data from insects and explore how it fits into our view of the Z-disc, myofibrils and, ultimately, muscles.
Collapse
Affiliation(s)
- Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | | |
Collapse
|
6
|
Dubal D, Moghe P, Verma RK, Uttekar B, Rikhy R. Mitochondrial fusion regulates proliferation and differentiation in the type II neuroblast lineage in Drosophila. PLoS Genet 2022; 18:e1010055. [PMID: 35157701 PMCID: PMC8880953 DOI: 10.1371/journal.pgen.1010055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/25/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
Optimal mitochondrial function determined by mitochondrial dynamics, morphology and activity is coupled to stem cell differentiation and organism development. However, the mechanisms of interaction of signaling pathways with mitochondrial morphology and activity are not completely understood. We assessed the role of mitochondrial fusion and fission in the differentiation of neural stem cells called neuroblasts (NB) in the Drosophila brain. Depleting mitochondrial inner membrane fusion protein Opa1 and mitochondrial outer membrane fusion protein Marf in the Drosophila type II NB lineage led to mitochondrial fragmentation and loss of activity. Opa1 and Marf depletion did not affect the numbers of type II NBs but led to a decrease in differentiated progeny. Opa1 depletion decreased the mature intermediate precursor cells (INPs), ganglion mother cells (GMCs) and neurons by the decreased proliferation of the type II NBs and mature INPs. Marf depletion led to a decrease in neurons by a depletion of proliferation of GMCs. On the contrary, loss of mitochondrial fission protein Drp1 led to mitochondrial clustering but did not show defects in differentiation. Depletion of Drp1 along with Opa1 or Marf also led to mitochondrial clustering and suppressed the loss of mitochondrial activity and defects in proliferation and differentiation in the type II NB lineage. Opa1 depletion led to decreased Notch signaling in the type II NB lineage. Further, Notch signaling depletion via the canonical pathway showed mitochondrial fragmentation and loss of differentiation similar to Opa1 depletion. An increase in Notch signaling showed mitochondrial clustering similar to Drp1 mutants. Further, Drp1 mutant overexpression combined with Notch depletion showed mitochondrial fusion and drove differentiation in the lineage, suggesting that fused mitochondria can influence differentiation in the type II NB lineage. Our results implicate crosstalk between proliferation, Notch signaling, mitochondrial activity and fusion as an essential step in differentiation in the type II NB lineage. Mitochondrial morphology and function are coupled to stem cell differentiation and organism development. It is of interest to examine the mechanisms of interaction of mitochondrial dynamics with signaling pathways during stem cell differentiation. We have assessed the role of mitochondrial fusion and fission in the differentiation of neural stem cells called neuroblasts (NB) in the Drosophila brain. Depleting mitochondrial fusion proteins Opa1 and Marf led to mitochondrial fragmentation, loss of mitochondrial activity and proliferation, thereby causing a decrease in the numbers of differentiated cells in each type II NB lineage. Mutants in mitochondrial fission protein Drp1 led to mitochondrial fusion but did not cause any differentiation defects. Decreased Notch signaling by the canonical pathway led to mitochondrial fragmentation and a decrease in differentiated cells in each type II NB lineage. Expression of Drp1 mutants in type II NB lineages depleted of Opa1 and Marf suppressed their proliferation and differentiation defects. Expression of Drp1 mutant in type II NB lineages depleted of Notch also led to a rescue of differentiated progeny in each lineage. Our results implicate crosstalk between Notch signaling, mitochondrial activity and fusion as important steps for proliferation and differentiation in the type II NB lineage.
Collapse
Affiliation(s)
- Dnyanesh Dubal
- Biology, Indian Institute of Science Education and Research, Pune, India
| | - Prachiti Moghe
- Biology, Indian Institute of Science Education and Research, Pune, India
| | - Rahul Kumar Verma
- Biology, Indian Institute of Science Education and Research, Pune, India
| | - Bhavin Uttekar
- Biology, Indian Institute of Science Education and Research, Pune, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Pune, India
- * E-mail:
| |
Collapse
|
7
|
Ho CH, Paolantoni C, Bawankar P, Tang Z, Brown S, Roignant J, Treisman JE. An exon junction complex-independent function of Barentsz in neuromuscular synapse growth. EMBO Rep 2022; 23:e53231. [PMID: 34726300 PMCID: PMC8728599 DOI: 10.15252/embr.202153231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023] Open
Abstract
The exon junction complex controls the translation, degradation, and localization of spliced mRNAs, and three of its core subunits also play a role in splicing. Here, we show that a fourth subunit, Barentsz, has distinct functions within and separate from the exon junction complex in Drosophila neuromuscular development. The distribution of mitochondria in larval muscles requires Barentsz as well as other exon junction complex subunits and is not rescued by a Barentsz transgene in which residues required for binding to the core subunit eIF4AIII are mutated. In contrast, interactions with the exon junction complex are not required for Barentsz to promote the growth of neuromuscular synapses. We find that the Activin ligand Dawdle shows reduced expression in barentsz mutants and acts downstream of Barentsz to control synapse growth. Both barentsz and dawdle are required in motor neurons, muscles, and glia for normal synapse growth, and exogenous Dawdle can rescue synapse growth in the absence of barentsz. These results identify a biological function for Barentsz that is independent of the exon junction complex.
Collapse
Affiliation(s)
- Cheuk Hei Ho
- Skirball Institute for Biomolecular Medicine and Department of Cell BiologyNYU School of MedicineNew YorkNYUSA
| | - Chiara Paolantoni
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Praveen Bawankar
- Institute of Pharmaceutical and Biomedical SciencesJohannes Gutenberg‐University MainzMainzGermany
| | - Zuojian Tang
- Center for Health Informatics and BioinformaticsNYU Langone Medical CenterNew YorkNYUSA
- Present address:
Computational Biology at Ridgefield US, Global Computational Biology and Digital ScienceBoehringer IngelheimRidgefieldCTUSA
| | - Stuart Brown
- Center for Health Informatics and BioinformaticsNYU Langone Medical CenterNew YorkNYUSA
- Present address:
ExxonMobil Corporate Strategic ResearchAnnandaleNJUSA
| | - Jean‐Yves Roignant
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
- Institute of Pharmaceutical and Biomedical SciencesJohannes Gutenberg‐University MainzMainzGermany
| | - Jessica E Treisman
- Skirball Institute for Biomolecular Medicine and Department of Cell BiologyNYU School of MedicineNew YorkNYUSA
| |
Collapse
|
8
|
Krzystek TJ, Banerjee R, Thurston L, Huang J, Swinter K, Rahman SN, Falzone TL, Gunawardena S. Differential mitochondrial roles for α-synuclein in DRP1-dependent fission and PINK1/Parkin-mediated oxidation. Cell Death Dis 2021; 12:796. [PMID: 34404758 PMCID: PMC8371151 DOI: 10.1038/s41419-021-04046-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/18/2023]
Abstract
Mitochondria are highly dynamic organelles with strict quality control processes that maintain cellular homeostasis. Within axons, coordinated cycles of fission-fusion mediated by dynamin related GTPase protein (DRP1) and mitofusins (MFN), together with regulated motility of healthy mitochondria anterogradely and damaged/oxidized mitochondria retrogradely, control mitochondrial shape, distribution and size. Disruption of this tight regulation has been linked to aberrant oxidative stress and mitochondrial dysfunction causing mitochondrial disease and neurodegeneration. Although pharmacological induction of Parkinson's disease (PD) in humans/animals with toxins or in mice overexpressing α-synuclein (α-syn) exhibited mitochondrial dysfunction and oxidative stress, mice lacking α-syn showed resistance to mitochondrial toxins; yet, how α-syn influences mitochondrial dynamics and turnover is unclear. Here, we isolate the mechanistic role of α-syn in mitochondrial homeostasis in vivo in a humanized Drosophila model of Parkinson's disease (PD). We show that excess α-syn causes fragmented mitochondria, which persists with either truncation of the C-terminus (α-syn1-120) or deletion of the NAC region (α-synΔNAC). Using in vivo oxidation reporters Mito-roGFP2-ORP1/GRX1 and MitoTimer, we found that α-syn-mediated fragments were oxidized/damaged, but α-syn1-120-induced fragments were healthy, suggesting that the C-terminus is required for oxidation. α-syn-mediated oxidized fragments showed biased retrograde motility, but α-syn1-120-mediated healthy fragments did not, demonstrating that the C-terminus likely mediates the retrograde motility of oxidized mitochondria. Depletion/inhibition or excess DRP1-rescued α-syn-mediated fragmentation, oxidation, and the biased retrograde motility, indicating that DRP1-mediated fragmentation is likely upstream of oxidation and motility changes. Further, excess PINK/Parkin, two PD-associated proteins that function to coordinate mitochondrial turnover via induction of selective mitophagy, rescued α-syn-mediated membrane depolarization, oxidation and cell death in a C-terminus-dependent manner, suggesting a functional interaction between α-syn and PINK/Parkin. Taken together, our findings identify distinct roles for α-syn in mitochondrial homeostasis, highlighting a previously unknown pathogenic pathway for the initiation of PD.
Collapse
Affiliation(s)
- Thomas J Krzystek
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Rupkatha Banerjee
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Layne Thurston
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - JianQiao Huang
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Kelsey Swinter
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Saad Navid Rahman
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Tomas L Falzone
- Instituto de Biología Celular y Neurociencias IBCN (CONICET-UBA), Universidad De Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
9
|
Zhou H, Ren J, Toan S, Mui D. Role of mitochondrial quality surveillance in myocardial infarction: From bench to bedside. Ageing Res Rev 2021; 66:101250. [PMID: 33388396 DOI: 10.1016/j.arr.2020.101250] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Myocardial infarction (MI) is the irreversible death of cardiomyocyte secondary to prolonged lack of oxygen or fresh blood supply. Historically considered as merely cardiomyocyte powerhouse that manufactures ATP and other metabolites, mitochondrion is recently being identified as a signal regulator that is implicated in the crosstalk and signal integration of cardiomyocyte contraction, metabolism, inflammation, and death. Mitochondria quality surveillance is an integrated network system modifying mitochondrial structure and function through the coordination of various processes including mitochondrial fission, fusion, biogenesis, bioenergetics, proteostasis, and degradation via mitophagy. Mitochondrial fission favors the elimination of depolarized mitochondria through mitophagy, whereas mitochondrial fusion preserves the mitochondrial network upon stress through integration of two or more small mitochondria into an interconnected phenotype. Mitochondrial biogenesis represents a regenerative program to replace old and damaged mitochondria with new and healthy ones. Mitochondrial bioenergetics is regulated by a metabolic switch between glucose and fatty acid usage, depending on oxygen availability. To maintain the diversity and function of mitochondrial proteins, a specialized protein quality control machinery regulates protein dynamics and function through the activity of chaperones and proteases, and induction of the mitochondrial unfolded protein response. In this review, we provide an overview of the molecular mechanisms governing mitochondrial quality surveillance and highlight the most recent preclinical and clinical therapeutic approaches to restore mitochondrial fitness during both MI and post-MI heart failure.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812, USA
| | - David Mui
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Katti P, Rai M, Srivastava S, D'Silva P, Nongthomba U. Marf-mediated mitochondrial fusion is imperative for the development and functioning of indirect flight muscles (IFMs) in drosophila. Exp Cell Res 2021; 399:112486. [PMID: 33450208 DOI: 10.1016/j.yexcr.2021.112486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/15/2022]
Abstract
Dynamic changes in mitochondrial shape and size are vital for mitochondrial health and for tissue development and function. Adult Drosophila indirect flight muscles contain densely packed mitochondria. We show here that mitochondrial fusion is critical during early muscle development (in pupa) and that silencing of the outer mitochondrial membrane fusion gene, Marf, in muscles results in smaller mitochondria that are functionally defective. This leads to abnormal muscle development resulting in muscle dysfunction in adult flies. However, post-developmental silencing of Marf has no obvious effects on mitochondrial and muscle phenotype in adult flies, indicating the importance of mitochondrial fusion during early muscle development.
Collapse
Affiliation(s)
- Prasanna Katti
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560 012, India.
| | - Mamta Rai
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560 012, India
| | - Shubhi Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
11
|
Štětina T, Des Marteaux LE, Koštál V. Insect mitochondria as targets of freezing-induced injury. Proc Biol Sci 2020; 287:20201273. [PMID: 32693722 DOI: 10.1098/rspb.2020.1273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many insects survive internal freezing, but the great complexity of freezing stress hinders progress in understanding the ultimate nature of freezing-induced injury. Here, we use larvae of the drosophilid fly, Chymomyza costata to assess the role of mitochondrial responses to freezing stress. Respiration analysis revealed that fat body mitochondria of the freeze-sensitive (non-diapause) phenotype significantly decrease oxygen consumption upon lethal freezing stress, while mitochondria of the freeze-tolerant (diapausing, cold-acclimated) phenotype do not lose respiratory capacity upon the same stress. Using transmission electron microscopy, we show that fat body and hindgut mitochondria swell, and occasionally burst, upon exposure of the freeze-sensitive phenotype to lethal freezing stress. By contrast, mitochondrial swelling is not observed in the freeze-tolerant phenotype exposed to the same stress. We hypothesize that mitochondrial swelling results from permeability transition of the inner mitochondrial membrane and loss of its barrier function, which causes osmotic influx of cytosolic water into the matrix. We therefore suggest that the phenotypic transition to diapause and cold acclimation could be associated with adaptive changes that include the protection of the inner mitochondrial membrane against permeability transition and subsequent mitochondrial swelling. Accumulation of high concentrations of proline and other cryoprotective substances might be a part of such adaptive changes as we have shown that freezing-induced mitochondrial swelling was abolished by feeding the freeze-sensitive phenotype larvae on a proline-augmented diet.
Collapse
Affiliation(s)
- T Štětina
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branišovská 31, České Budějovice 37005, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
| | - L E Des Marteaux
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branišovská 31, České Budějovice 37005, Czech Republic
| | - V Koštál
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branišovská 31, České Budějovice 37005, Czech Republic
| |
Collapse
|
12
|
Poovathumkadavil P, Jagla K. Genetic Control of Muscle Diversification and Homeostasis: Insights from Drosophila. Cells 2020; 9:cells9061543. [PMID: 32630420 PMCID: PMC7349286 DOI: 10.3390/cells9061543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
In the fruit fly, Drosophila melanogaster, the larval somatic muscles or the adult thoracic flight and leg muscles are the major voluntary locomotory organs. They share several developmental and structural similarities with vertebrate skeletal muscles. To ensure appropriate activity levels for their functions such as hatching in the embryo, crawling in the larva, and jumping and flying in adult flies all muscle components need to be maintained in a functionally stable or homeostatic state despite constant strain. This requires that the muscles develop in a coordinated manner with appropriate connections to other cell types they communicate with. Various signaling pathways as well as extrinsic and intrinsic factors are known to play a role during Drosophila muscle development, diversification, and homeostasis. In this review, we discuss genetic control mechanisms of muscle contraction, development, and homeostasis with particular emphasis on the contractile unit of the muscle, the sarcomere.
Collapse
|
13
|
Forgiarini A, Wang Z, D’Amore C, Jay-Smith M, Li FF, Hopkins B, Brimble MA, Pagetta A, Bersani S, De Martin S, Napoli B, Bova S, Rennison D, Orso G. Live applications of norbormide-based fluorescent probes in Drosophila melanogaster. PLoS One 2019; 14:e0211169. [PMID: 30958824 PMCID: PMC6453474 DOI: 10.1371/journal.pone.0211169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/26/2019] [Indexed: 11/20/2022] Open
Abstract
In this study we investigated the performance of two norbormide (NRB)-derived fluorescent probes, NRBMC009 (green) and NRBZLW0047 (red), on dissected, living larvae of Drosophila, to verify their potential application in live cell imaging confocal microscopy. To this end, larval tissues were exposed to NRB probes alone or in combination with other commercial dyes or GFP-tagged protein markers. Both probes were rapidly internalized by most tissues (except the central nervous system) allowing each organ in the microscope field to be readily distinguished at low magnification. At the cellular level, the probes showed a very similar distribution (except for fat bodies), defined by loss of signal in the nucleus and plasma membrane, and a preferential localization to endoplasmic reticulum (ER) and mitochondria. They also recognized ER and mitochondrial phenotypes in the skeletal muscles of fruit fly models that had loss of function mutations in the atlastin and mitofusin genes, suggesting NRBMC009 and NRBZLW0047 as potentially useful screening tools for characterizing ER and mitochondria morphological alterations. Feeding of larvae and adult Drosophilae with the NRB-derived dyes led to staining of the gut and its epithelial cells, revealing a potential role in food intake assays. In addition, when flies were exposed to either dye over their entire life cycle no apparent functional or morphological abnormalities were detected. Rapid internalization, a bright signal, a compatibility with other available fluorescent probes and GFP-tagged protein markers, and a lack of toxicity make NRBZLW0047 and, particularly, NRBMC009 highly performing fluorescent probes for live cell microscopy studies and food intake assays in Drosophila.
Collapse
Affiliation(s)
- Alessia Forgiarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Zifei Wang
- University of Auckland, School of Chemical Sciences, Auckland, New Zealand
| | - Claudio D’Amore
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Morgan Jay-Smith
- University of Auckland, School of Chemical Sciences, Auckland, New Zealand
| | - Freda Fan Li
- University of Auckland, School of Chemical Sciences, Auckland, New Zealand
| | | | | | - Andrea Pagetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Sara Bersani
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Barbara Napoli
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Sergio Bova
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - David Rennison
- University of Auckland, School of Chemical Sciences, Auckland, New Zealand
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
14
|
Yu B, Ma L, Jin J, Jiang F, Zhou G, Yan K, Liu Y. Mitochondrial toxicity induced by a thiourea gold(i) complex: mitochondrial permeability transition and respiratory deficit. Toxicol Res (Camb) 2018; 7:1081-1090. [PMID: 30542602 PMCID: PMC6240812 DOI: 10.1039/c8tx00169c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022] Open
Abstract
Gold(i) complexes have been widely used as antibacterial and antitumor agents because of their excellent biological activities. However, there are few reports on the study of gold(i) complexes at the subcellular level. Herein, we investigated the toxicity of a gold(i) complex (N,N'-disubstituted cyclic thiourea ligand) - AuTuCl - to isolated mitochondria via various methods. The results showed that AuTuCl induced mitochondrial swelling, elevated ROS generation and triggered collapse of the membrane potential, which indicated the induction of mitochondrial permeability transition (MPT). It also enhanced the permeability of H+ and K+ of the inner membrane and declined membrane fluidity, which might be the result of MPT. Moreover, AuTuCl impaired the mitochondrial respiratory chain and suppressed the activities of complexes II and IV in the respiratory chain. It also triggered the deficiency of ATP and the effusion of Cyt c, which were strictly related to respiration and apoptosis. These results indicated that AuTuCl severely affected the structure and function of mitochondria. It was proposed that MPT and impairment of the respiratory chain were responsible for the mitotoxicity of AuTuCl, thus causing energy deficiency and even apoptosis. This conceivable mechanism can serve as a clue for better understanding of the toxicology of AuTuCl.
Collapse
Affiliation(s)
- Bingqiong Yu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +8627-68753465
| | - Long Ma
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +8627-68753465
| | - Jiancheng Jin
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +8627-68753465
| | - Fenglei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +8627-68753465
| | - Gangcheng Zhou
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +8627-68753465
| | - Kun Yan
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +8627-68753465
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +8627-68753465
- College of Chemistry and Material Sciences , Guangxi Teachers Education University , Nanning 530001 , P. R. China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province , College of Chemistry and Chemical Engineering , Wuhan University of Science and Technology , Wuhan 430081 , P. R. China
| |
Collapse
|
15
|
Lu Y, Chen HY, Wang XQ, Wang JX. Correlations between Mitofusin 2 Expression in Fibroblasts and Pelvic Organ Prolapse: An In vitro Study. Chin Med J (Engl) 2017; 130:2951-2959. [PMID: 29237928 PMCID: PMC5742923 DOI: 10.4103/0366-6999.220307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Both Mitofusin 2 (Mfn2) and pelvic organ prolapse (POP) are related to aging. The aim of the present study was to investigate the variations of Mfn2 expression in the uterosacral ligaments of patients with and/or without POP and their correlations with the expression of procollagen. METHODS Fibroblasts were cultured using tissue specimens that were harvested from the uterosacral ligaments of POP and non-POP (NPOP) patients (n = 10 for each group) from September 2016 to December 2016. The Cell Counting Kit-8 (CCK-8) assay was used to compare the differences in cell proliferation between the two groups. Relative quantitative reverse transcription-polymerase chain reaction and Western blotting assays were employed to assess the differences in the mRNA and protein expression levels of Mfn2 and procollagen 1A1/1A2/3A1 between the two groups. The changes in procollagen expression were assessed following the downregulation of Mfn2 in the POP group using RNAi. The data were assessed with independent sample t- test or general linear model univariate analysis using the SPSS 13.0 software. RESULTS The results from CCK-8 assay indicated that cell viability in the POP group was significantly lower compared with that of the NPOP group (td5, 7, 9, 11= -5.925, -6.851, -9.129, and -9.661, respectively, all P < 0.001, from D5 to D11). The mRNA and protein expression levels of Mfn2 in the cultured fibroblasts of the POP group were significantly higher compared with those of the NPOP group (mRNA: t = 2.425, P = 0.032; protein: t = 2.392, P = 0.037, respectively), whereas only the expression levels of procollagen 1A1/1A2/3A1 were significantly higher in the NPOP group (mRNA: t = -2.165, P1A1 = 0.041; t = -2.741, P1A2 = 0.026; t = -2.147, P3A1 = 0.045, respectively; protein: t = -2.418, P1A1 = 0.029; t = -2.405, P1A2 = 0.033; t = -2.470, P3A1 = 0.012, respectively). The expression levels of procollagen in the POP group increased following the downregulation of Mfn2. CONCLUSIONS The proliferation rate and cell viability of the fibroblasts in the POP group were significantly lower compared with those in the NPOP group. In the POP fibroblasts, Mfn2 expression was increased, while procollagen expression was decreased.
Collapse
Affiliation(s)
- Ye Lu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Hua-Yun Chen
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgeng Hospital, Beijing 102218, China
| | - Xiao-Qing Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Jing-Xue Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
16
|
Mitochondria in the Aging Muscles of Flies and Mice: New Perspectives for Old Characters. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9057593. [PMID: 27630760 PMCID: PMC5007348 DOI: 10.1155/2016/9057593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/30/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022]
Abstract
Sarcopenia is the loss of muscle mass accompanied by a decrease in muscle strength and resistance and is the main cause of disability among the elderly. Muscle loss begins long before there is any clear physical impact in the senior adult. Despite all this, the molecular mechanisms underlying muscle aging are far from being understood. Recent studies have identified that not only mitochondrial metabolic dysfunction but also mitochondrial dynamics and mitochondrial calcium uptake could be involved in the degeneration of skeletal muscle mass. Mitochondrial homeostasis influences muscle quality which, in turn, could play a triggering role in signaling of systemic aging. Thus, it has become apparent that mitochondrial status in muscle cells could be a driver of whole body physiology and organismal aging. In the present review, we discuss the existing evidence for the mitochondria related mechanisms underlying the appearance of muscle aging and sarcopenia in flies and mice.
Collapse
|
17
|
Wang ZH, Clark C, Geisbrecht ER. Drosophila clueless is involved in Parkin-dependent mitophagy by promoting VCP-mediated Marf degradation. Hum Mol Genet 2016; 25:1946-1964. [PMID: 26931463 PMCID: PMC5062585 DOI: 10.1093/hmg/ddw067] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/22/2016] [Indexed: 12/31/2022] Open
Abstract
PINK1/Parkin-mediated mitochondrial quality control (MQC) requires valosin-containing protein (VCP)-dependent Mitofusin/Marf degradation to prevent damaged organelles from fusing with the healthy mitochondrial pool, facilitating mitochondrial clearance by autophagy. Drosophila clueless (clu) was found to interact genetically with PINK1 and parkin to regulate mitochondrial clustering in germ cells. However, whether Clu acts in MQC has not been investigated. Here, we show that overexpression of Drosophila Clu complements PINK1, but not parkin, mutant muscles. Loss of clu leads to the recruitment of Parkin, VCP/p97, p62/Ref(2)P and Atg8a to depolarized swollen mitochondria. However, clearance of damaged mitochondria is impeded. This paradox is resolved by the findings that excessive mitochondrial fission or inhibition of fusion alleviates mitochondrial defects and impaired mitophagy caused by clu depletion. Furthermore, Clu is upstream of and binds to VCP in vivo and promotes VCP-dependent Marf degradation in vitro Marf accumulates in whole muscle lysates of clu-deficient flies and is destabilized upon Clu overexpression. Thus, Clu is essential for mitochondrial homeostasis and functions in concert with Parkin and VCP for Marf degradation to promote damaged mitochondrial clearance.
Collapse
Affiliation(s)
- Zong-Heng Wang
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA and
| | - Cheryl Clark
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Erika R Geisbrecht
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA and Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|