1
|
Cheng W, Chen H, Zhou Y, You Y, Lei D, Li Y, Feng Y, Wang Y. Aged fragmented-polypropylene microplastics induced ageing statues-dependent bioenergetic imbalance and reductive stress: In vivo and liver organoids-based in vitro study. ENVIRONMENT INTERNATIONAL 2024; 191:108949. [PMID: 39213921 DOI: 10.1016/j.envint.2024.108949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Ageing is a nature process of microplastics that occurrs daily, and human beings are inevitably exposed to aged microplastics. However, a systematic understanding of ageing status and its toxic effect is currently still lacking. In this study, plastic cup lids-originated polypropylene (PP) microplastics were UV-photoaged until the carbonyl index (CI), a canonical indicator for plastic ageing, achieved 0.08, 0.17, 0.22 and 0.28. The adverse hepatic effect of these aged PPs (aPPs) was evaluated in Balb/c mice (75 ng/mL water, about 200 particles/day) and human-originated liver organoids (LOs, 50 particles/mL, ranged from 5.94 to 13.15 ng/mL) at low-dose equivalent to human exposure level. Low-dose of aged PP could induce hepatic reductive stress both in vitro and in vivo, by elevating the NADH/NAD+ratio in a CI-dependent manner, together with hepatoxicity (indicated by increased AST secretion and cytotoxicity), and disrupted the genes encoding the nutrients transporters and NADH subunits accompanied by the restricted ATP supply, declined mitochondrial membrane potential and mitochondrial complexI/IV activities, without significant increase in MDA levels in the liver. These changes in the liver disrupted systematic metabolism, representing a circulatory panel of increases in the lactate, triglyceride, Fgf21 levels, and decreases in the pyruvate level, linked the reductive stress to the declined body weight gain but elevated hepatic NADH contents following aPPs exposure. Additionally, assessing by the LOs, it was found that digestion drastically accelerated the ageing of aPPs and worsen the energy supply upon mitochondria, representing a "scattergun effect" induced by the formation of micro- and nano-plastics mixture toward NADH/NAD+imbalance.
Collapse
Affiliation(s)
- Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hange Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yue Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yifei You
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dong Lei
- Department of Plastic and Reconstructive Surgery, Department of Cardiology, Shanghai Key Lab of Tissue Engineering, Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Wang
- Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, School of Public Health, Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Chaudhari S, Acharya LP, Jasti DB, Ware AP, Gorthi SP, Satyamoorthy K. Discovery of a Novel Shared Variant Among RTEL1 Gene and RTEL1-TNFRSF6B lncRNA at Chromosome 20q13.33 in Familial Progressive Myoclonus Epilepsy. Int J Genomics 2024; 2024:7518528. [PMID: 39156922 PMCID: PMC11330336 DOI: 10.1155/2024/7518528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/17/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Background: Progressive myoclonus epilepsy (PME) is a neurodegenerative disorder marked by recurrent seizures and progressive myoclonus. To date, based on the phenotypes and causal genes, more than 40 subtypes of PMEs have been identified, and more remain to be characterized. Our study is aimed at identifying the aberrant gene(s) possibly associated with PMEs in two siblings born to asymptomatic parents, in the absence of known genetic mutations. Methods: Clinical assessments and molecular analyses, such as the repeat expansion test for CSTB; SCA1, 2, 3, 6, and 7; whole exome sequencing (WES); and mitochondrial genome sequencing coupled with computational analysis, were performed. Results: A family-based segregation analysis of WES data was performed to identify novel genes associated with PMEs. The potassium channel, KCNH8 [c.298T>C; (p.Tyr100His)], a DNA repair gene, regulator of telomere elongation helicase 1 (RTEL1) [c.691G>T; (p.Asp231Tyr)] and long noncoding RNA, RTEL1-TNFRSF6B [chr20:62298898_G>T; NR_037882.1, hg19] were among the candidate genes that were found to be associated with PMEs. These homozygous variations in siblings belong to genes with a loss-of-function intolerant (pLI) score of ≤ 0.86, expected to be detrimental by multiple computational analyses, and were heterozygous in parents. Additionally, computational analysis and the expression of RTEL1 and RTEL1-TNFRSF6B revealed that RTEL1-TNFRSF6B may modulate RTEL1 via hsa-miR-3529-3p. In the patient with the severe phenotype, a further deleterious mutation in SLC22A17 was identified. No de novo variants specific to these probands were identified in the mitochondrial genome. Conclusions: Our study is the first to report variants in KCNH8, RTEL1, and RTEL1-TNFRSF6B among PME cases. These genes when characterized fully may shed light on pathogenicity and have the potential to be used in the diagnosis of PME.
Collapse
Affiliation(s)
- Sima Chaudhari
- Department of Cell and Molecular BiologyManipal School of Life SciencesManipal Academy of Higher Education 576104, Manipal, Karnataka, India
| | - Lavanya Prakash Acharya
- Department of Cell and Molecular BiologyManipal School of Life SciencesManipal Academy of Higher Education 576104, Manipal, Karnataka, India
| | - Dushyanth Babu Jasti
- Department of NeurologyKasturba Medical College 576104, Manipal, Karnataka, India
| | - Akshay Pramod Ware
- Department of BioinformaticsManipal School of Life SciencesManipal Academy of Higher Education 576104, Manipal, Karnataka, India
| | - Sankar Prasad Gorthi
- Department of NeurologyKasturba Medical College 576104, Manipal, Karnataka, India
- Department of NeurologyBharati Hospital and Research CenterBharati Vidyapeeth (Deemed to Be University) Medical College and Hospital, Dhankawadi 411043, Pune, Maharashtra, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular BiologyManipal School of Life SciencesManipal Academy of Higher Education 576104, Manipal, Karnataka, India
- SDM College of Medical Sciences and HospitalShri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur 580009, Dharwad, Karnataka, India
| |
Collapse
|
3
|
Liu S, Xu H, Feng Y, Kahlert UD, Du R, Torres-de la Roche LA, Xu K, Shi W, Meng F. Oxidative stress genes define two subtypes of triple-negative breast cancer with prognostic and therapeutic implications. Front Genet 2023; 14:1230911. [PMID: 37519893 PMCID: PMC10372428 DOI: 10.3389/fgene.2023.1230911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction: Oxidative stress (OS)-related genes have been confirmed to be closely related to the prognosis of triple-negative breast cancer (TNBC) patients; despite this fact, there is still a lack of TNBC subtype strategies based on this gene guidance. Here, we aimed to explore OS-related subtypes and their prognostic value in TNBC. Methods: Data from The Cancer Genome Atlas (TCGA)-TNBC and Sequence Read Archive (SRA) (SRR8518252) databases were collected, removing batch effects using a combat method before analysis. Consensus clustering analysis identified two OS subtypes (clusters A and B), with cluster A showing a better prognosis. Immune infiltration characteristics were analyzed using ESTIMATE and single-sample gene set enrichment analysis (ssGSEA) algorithms, revealing higher ImmuneScore and ESTIMATEscore in cluster A. Tumor-suppressive immune cells, human leukocyte antigen (HLA) genes, and three immune inhibitors were more prevalent in cluster A. Results: An eight-gene signature, derived from differentially expressed genes, was developed and validated as an independent risk factor for TNBC. A nomogram combining the risk score and clinical variables accurately predicted patient outcomes. Finally, we also validated the classification effect of subtypes using hub markers of each subtype in the test dataset. Conclusion: Our study reveals distinct molecular clusters based on OS-related genes to better clarify the reactive oxygen species (ROS)-mediated progression and the crosstalk between the ROS and tumor microenvironment (TME) in this heterogenetic disease, and construct a risk prognostic model which could provide more support for clinical treatment decisions.
Collapse
Affiliation(s)
- Shenting Liu
- Department of Oncology Medicine, Hainan Cancer Hospital, Haikou, Hainan, China
| | - He Xu
- Department of Thyroid and Breast Surgery, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Ying Feng
- Department of Thyroid and Breast Surgery, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Ulf D. Kahlert
- Molecular and Experimental Surgery, University Clinic for General- Visceral- Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke UniversityMagdeburg, Germany
| | - Renfei Du
- Molecular and Experimental Surgery, University Clinic for General- Visceral- Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke UniversityMagdeburg, Germany
| | - Luz Angela Torres-de la Roche
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Kai Xu
- Department of Thyroid and Breast Surgery, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Wenjie Shi
- Molecular and Experimental Surgery, University Clinic for General- Visceral- Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke UniversityMagdeburg, Germany
| | - Fanshuai Meng
- Translational and Trauma Surgery Laboratory, University of Ulm, Ulm, Germany
| |
Collapse
|
4
|
Liu H, Chen Y, Hu W, Luo Y, Zhu P, You S, Li Y, Jiang Z, Wu X, Li X. Impacts of PFOA C8, GenX C6, and their mixtures on zebrafish developmental toxicity and gene expression provide insight about tumor-related disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160085. [PMID: 36356740 DOI: 10.1016/j.scitotenv.2022.160085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Concerns about per- and polyfluoroalkyl substances (PFASs) have grown in importance in the fields of ecotoxicology and public health. This study aims to compare the potential effects of long-chain (carbon atoms ≥ 7) and short-chain derivatives and their mixtures' exposure according to PFASs-exposed (1, 2, 5, 10, and 20 mg/L) zebrafish's (Danio rerio) toxic effects and their differential gene expression. Here, PFOAC8, GenXC6, and their mixtures (v/v, 1:1) could reduce embryo hatchability and increase teratogenicity and mortality. The toxicity of PFOAC8 was higher than that of GenXC6, and the toxicity of their mixtures was irregular. Their exposure (2 mg/L) caused zebrafish ventricular edema, malformation of the spine, blood accumulation, or developmental delay. In addition, all of them had significant differences in gene expression. PFOAC8 exposure causes overall genetic changes, and the pathways of this transformation were autophagy and apoptosis. More importantly, in order to protect cells from PFOAC8, GenXC6, and their mixtures' influences, zebrafish inhibited the expression of ATPase and Ca2+ transport gene (atp1b2b), mitochondrial function-related regulatory genes (mt-co2, mt-co3, and mt-cyb), and tumor or carcinogenic cell proliferation genes (laptm4b and ctsbb). Overall, PFOAC8, GenXC6, and their mixtures' exposures will affect the gene expression effects of zebrafish embryos, indicating that PFASs may pose a potential threat to aquatic biological safety. These results showed that the relevant genes in zebrafish that were inhibited by PFASs exposure were related to tumorigenesis. Therefore, the effect of PFASs on zebrafish can be further used to study the pathogenesis of tumors.
Collapse
Affiliation(s)
- Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yu Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Wenli Hu
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuan Luo
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Shiqi You
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yunxuan Li
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhaobiao Jiang
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xiushan Wu
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
5
|
Yang Q, Wu C, Zhu G, Ren F, Lin B, Huang R, Hu X, Zhao D, Peng K, Wu Y, Wang Q, Huang C, Zhang D. ML390 inhibits enterovirus 71 replication by targeting de novo pyrimidine biosynthesis pathway. Antiviral Res 2023; 209:105498. [PMID: 36563943 DOI: 10.1016/j.antiviral.2022.105498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Enterovirus 71 (EV71), a small, single-stranded, positive-sense RNA virus belonging to the enterovirus genus in the family Picornaviridae, causes hand, foot, and mouth disease. Although EV71 seriously threatens to public health, no effective antiviral drugs are available for treating this disease. In this study, we found that ML390, a dihydroorotate dehydrogenase inhibitor, has potential anti-EV71 activity. ML390 dose-dependently inhibited EV71 replication with IC50 and selectivity index values of 0.06601 μM and 156.5, respectively. Supplementation with the downstream product orotate significantly suppressed the ability of ML390 to inhibit EV71 replication. Moreover, an adequate supply of exogenous uridine and cytosine suppressed the anti-EV71 activity of ML390. Thus, the antiviral activity of ML390 is mediated by the inhibition of the pyrimidine synthesis pathway. In an EV71-infected mouse model, ML390 reduced the load of EV71 in the brain, liver, heart, spleen, front legs, and hind legs, and significantly increased the survival rate of the mice infected by EV71. ML390 shows potential for the treatment of hand, foot, and mouth disease caused by EV71 infection.
Collapse
Affiliation(s)
- Qingyu Yang
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China; Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Chengyuan Wu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Guangyan Zhu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Fuli Ren
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Binbin Lin
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Rui Huang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Xujuan Hu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Dingran Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Qiongya Wang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China.
| | - Chaolin Huang
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China; Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China.
| | - Dingyu Zhang
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China; Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China.
| |
Collapse
|
6
|
Altered genome-wide hippocampal gene expression profiles following early life lead exposure and their potential for reversal by environmental enrichment. Sci Rep 2022; 12:11937. [PMID: 35879375 PMCID: PMC9314447 DOI: 10.1038/s41598-022-15861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Early life lead (Pb) exposure is detrimental to neurobehavioral development. The quality of the environment can modify negative influences from Pb exposure, impacting the developmental trajectory following Pb exposure. Little is known about the molecular underpinnings in the brain of the interaction between Pb and the quality of the environment. We examined relationships between early life Pb exposure and living in an enriched versus a non-enriched postnatal environment on genome-wide transcription profiles in hippocampus CA1. RNA-seq identified differences in the transcriptome of enriched vs. non-enriched Pb-exposed animals. Most of the gene expression changes associated with Pb exposure were reversed by enrichment. This was also true for changes in upstream regulators, splicing events and long noncoding RNAs. Non-enriched rats also had memory impairments; enriched rats had no deficits. The results demonstrate that an enriched environment has a profound impact on behavior and the Pb-modified CA1 transcriptome. These findings show the potential for interactions between Pb exposure and the environment to result in significant transcriptional changes in the brain and, to the extent that this may occur in Pb-exposed children, could influence neuropsychological/educational outcomes, underscoring the importance for early intervention and environmental enrichment for Pb-exposed children.
Collapse
|
7
|
Leuthner TC, Meyer JN. Mitochondrial DNA Mutagenesis: Feature of and Biomarker for Environmental Exposures and Aging. Curr Environ Health Rep 2021; 8:294-308. [PMID: 34761353 PMCID: PMC8826492 DOI: 10.1007/s40572-021-00329-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Mitochondrial dysfunction is a hallmark of aging. Mitochondrial genome (mtDNA) instability contributes to mitochondrial dysfunction, and mtDNA mutagenesis may contribute to aging. However, the origin of mtDNA mutations remains somewhat controversial. The goals of this review are to introduce and review recent literature on mtDNA mutagenesis and aging, address recent animal and epidemiological evidence for the effects of chemicals on mtDNA damage and mutagenesis, propose hypotheses regarding the contribution of environmental toxicant exposure to mtDNA mutagenesis in the context of aging, and suggest future directions and approaches for environmental health researchers. RECENT FINDINGS Stressors such as pollutants, pharmaceuticals, and ultraviolet radiation can damage the mitochondrial genome or disrupt mtDNA replication, repair, and organelle homeostatic processes, potentially influencing the rate of accumulation of mtDNA mutations. Accelerated mtDNA mutagenesis could contribute to aging, diseases of aging, and sensitize individuals with pathogenic mtDNA variants to stressors. We propose three potential mechanisms of toxicant-induced effects on mtDNA mutagenesis over lifespan: (1) increased de novo mtDNA mutations, (2) altered frequencies of mtDNA mutations, or (3) both. There are remarkably few studies that have investigated the impact of environmental chemical exposures on mtDNA instability and mutagenesis, and even fewer in the context of aging. More studies are warranted because people are exposed to tens of thousands of chemicals, and are living longer. Finally, we suggest that toxicant-induced mtDNA damage and mutational signatures may be a sensitive biomarker for some exposures.
Collapse
Affiliation(s)
- Tess C Leuthner
- Nicholas School of the Environment, 9 Circuit Dr, Box 90328, Duke University, NC, 27708, USA
| | - Joel N Meyer
- Nicholas School of the Environment, 9 Circuit Dr, Box 90328, Duke University, NC, 27708, USA.
| |
Collapse
|
8
|
Shiek SS, Mani MS, Kabekkodu SP, Dsouza HS. Health repercussions of environmental exposure to lead: Methylation perspective. Toxicology 2021; 461:152927. [PMID: 34492314 DOI: 10.1016/j.tox.2021.152927] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Lead (Pb) exposure has been a major public health concern for a long time now due to its permanent adverse effects on the human body. The process of lead toxicity has still not been fully understood, but recent advances in Omics technology have enabled researchers to evaluate lead-mediated alterations at the epigenome-wide level. DNA methylation is one of the widely studied and well-understood epigenetic modifications. Pb has demonstrated its ability to induce not just acute deleterious health consequences but also alters the epi-genome such that the disease manifestation happens much later in life as supported by Barkers Hypothesis of the developmental origin of health and diseases. Furthermore, these alterations are passed on to the next generation. Based on previous in-vivo, in-vitro, and human studies, this review provides an insight into the role of Pb in the development of several human disorders.
Collapse
Affiliation(s)
- Sadiya Sadiq Shiek
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Monica Shirley Mani
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Herman S Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
9
|
Wang T, Tu Y, Wang K, Gong S, Zhang G, Zhang Y, Meng Y, Wang T, Li A, Cui J, Liu H, Tang W, Xi J, Cao Y, Luan Y, Christiani DC, Au W, Xia ZL. Associations of blood lead levels with multiple genotoxic biomarkers among workers in China: A population-based study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 273:116181. [PMID: 33508628 DOI: 10.1016/j.envpol.2020.116181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Carcinogenic effects from low doses of lead (Pb) exposure to populations have been suspected but not concluded. Therefore, a large-scale cross-sectional study was conducted by us to investigate genotoxic effects from Pb exposure during 2016-2018 in North China. Blood lead levels (BLLs) and cumulative blood lead levels (CBLLs) were measured. Multiple relevant biomarkers were used to assess genotoxicity of Pb: mitochondrial DNA copy number (mtDNAcn, n = 871), Comet Tail Intensity (n = 872), γ-H2AX (n = 345), relative telomere length (rTL, n = 757), micronuclei (MN, n = 934) and phosphatidylinositol glycan class A mutation (PIG-A, n = 362). The BLL data show right-skewed distribution, with increase of the median (P25, P75) from 17.4 (8.9, 26.4) μg/dl in 2016 to 18.5 (10.5, 27.2) μg/dl in 2017, and to 20.8 (11.3, 31.0) μg/dl in 2018. Multivariate regression analyses show that mtDNAcn was non-linearly associated with BLLs or CBLLs, i.e. decreased at low levels but increased at the higher levels. Comet and Micronuclei data show positive dose-response relationships with BLLs as well as CBLLs. γ-H2AX data show an overall increased trend with BLLs while rTL data show a shortening trend. No associations were found for PIG-A mutation with Pb exposure. Our findings indicate that current low dose exposure to Pb can still cause health hazards to occupational populations, and the mechanism may be via the induction of DNA & chromosome damage rather than via the mutagenesis pathway.
Collapse
Affiliation(s)
- Tuanwei Wang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Yuting Tu
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Kan Wang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Shiyang Gong
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Guanghui Zhang
- Department of Occupational & Environmental Health, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, Henan Province, China
| | - Yunxia Zhang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Yu Meng
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Tongshuai Wang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Anqi Li
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Junpeng Cui
- Department of Occupational & Environmental Health, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, Henan Province, China
| | - Huan Liu
- Department of Occupational & Environmental Health, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, Henan Province, China
| | - Weifeng Tang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yiyi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - David C Christiani
- Environmental Medicine and Epidemiology Program, Department of Environmental Health, Harvard University TH Chan School of Public Health, Boston, MA, USA
| | - William Au
- George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania, And University of Texas Medical Branch, Galveston, TX, USA
| | - Zhao-Lin Xia
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China.
| |
Collapse
|
10
|
Mani MS, Joshi MB, Shetty RR, DSouza VL, Swathi M, Kabekkodu SP, Dsouza HS. Lead exposure induces metabolic reprogramming in rat models. Toxicol Lett 2020; 335:11-27. [PMID: 32949623 DOI: 10.1016/j.toxlet.2020.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/14/2020] [Accepted: 09/12/2020] [Indexed: 11/17/2022]
Abstract
Lead is a toxin of great public health concern affecting the young and aging population. Several factors such as age, gender, lifestyle, dose, and genetic makeup result in interindividual variations to lead toxicity mainly due to variations in metabolic consequences. Hence, the present study aimed to examine dose-dependent lead-induced systemic changes in metabolism using rat model by administering specific doses of lead such as 10 (low lead; L-Pb), 50 (moderate lead; M-Pb), and 100 mg/kg (high lead; H-Pb) body weight for a period of one month. Biochemical and haematological analysis revealed that H-Pb was associated with low body weight and feed efficiency, low total protein levels (p ≤ 0.05), high blood lead (Pb-B) levels (p ≤ 0.001), low ALAD (δ-aminolevulinate dehydratase) activity (p ≤ 0.0001), high creatinine (p ≤ 0.0001) and blood urea nitrogen (BUN) (p ≤ 0.01) levels, elevated RBC and WBC counts, reduced haemoglobin and blood cell indices compared to control. Spatial learning and memory test revealed that H-Pb exposed animals presented high latency to the target quadrant and escape platform compared to other groups indicating H-Pb alters cognition function in rats. Histopathological changes were observed in liver and kidney as they are the main target organs of lead toxicity. LC-MS analysis further revealed that Butyryl-L-carnitine (p ≤ 0.01) and Ganglioside GD2 (d18:0/20:0) (p ≤ 0.05) levels were significantly reduced in H-Pb group compared to all groups. Further, pathway enrichment analysis revealed abundance and significantly modulated metabolites associated with oxidative stress pathways. The present study is the first in vivo model of dose-dependent lead exposure for serum metabolite profiling.
Collapse
Affiliation(s)
- Monica Shirley Mani
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Manjunath B Joshi
- Department of Ageing, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Rashmi R Shetty
- Department of Pathology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Venzil Lavie DSouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - M Swathi
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Shama Prasada Kabekkodu
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
11
|
Placental mitochondrial DNA mutations and copy numbers in intrauterine growth restricted (IUGR) pregnancy. Mitochondrion 2020; 55:85-94. [PMID: 32861875 DOI: 10.1016/j.mito.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Abstract
Intrauterine Growth Restriction (IUGR) is a common and significant complication that arises during pregnancy wherein the fetus fails to attain its full growth potential. Mitochondria being one of the primary sources of energy, plays an important role in placentation and fetal development. In IUGR pregnancy, increased oxidative stress due to inadequate oxygen and nutrient supply could possibly alter mitochondrial functions and homeostasis. In this study, we evaluated the biochemical and molecular changes in mitochondria as biosignature for early and better characterization of IUGR pregnancies. We identified significant increase in mtDNA copy number in both IUGR (p = 0.0001) and Small for Gestational Age (SGA) but healthy (p = 0.0005) placental samples when compared to control. Whole mitochondrial genome sequencing identified novel mutations in both coding and non-coding regions of mtDNA in multiple IUGR placental samples. Sirtuin-3 (Sirt3) protein expression was significantly downregulated (p = 0.027) in IUGR placenta but there was no significant difference in Nrf1 expression in IUGR when compared to control group. Our study provides an evidence for altered mitochondrial homeostasis and paves a way towards interrogating mitochondrial abnormalities in IUGR pregnancies.
Collapse
|