1
|
Zhao Y, Zhao X, Ji K, Wang J, Zhao Y, Lin J, Gang Q, Yu M, Yuan Y, Jiang H, Sun C, Fang F, Yan C, Wang Z. The clinical and genetic spectrum of mitochondrial diseases in China: A multicenter retrospective cross-sectional study. Clin Genet 2024; 106:733-744. [PMID: 39118480 DOI: 10.1111/cge.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Mitochondrial diseases (MtDs) present diverse clinical phenotypes, yet large-scale studies are hindered by their rarity. This retrospective, multicenter study, conducted across five Chinese hospitals' neurology departments from 2009 to 2019, aimed to address this gap. Nationwide, 1351 patients were enrolled, with a median onset age of 14.0 (18.5) years. The predominant phenotype was mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) (45.0%). Mitochondrial DNA (mtDNA) mutations were prevalent (87.4%), with m.3243A>G being the most common locus (48.7%). Meanwhile, POLG mutations in nuclear DNA (nDNA) accounted for 16.5%. Comparative analysis based on age groups (with a cut-off at 14 years) revealed the highest prevalence of MELAS, with Leigh syndrome (LS) and chronic progressive external ophthalmoplegia (CPEO) being the second most common phenotypes in junior and senior groups, respectively. Notably, the most commonly mutated nuclear genes varied across age groups. In conclusion, MELAS predominated in this Chinese MtD cohort, underscored by m.3243A>G and POLG as principal mtDNA mutations and pathogenic nuclear genes. The phenotypic and genotypic disparities observed among different age cohorts highlight the complex nature of MtDs.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xutong Zhao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Kunqian Ji
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Junling Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuying Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Qiang Gang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Haishan Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chong Sun
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Peking University First Hospital, Beijing, China
| |
Collapse
|
2
|
Na JH, Lee YM. Diagnosis and Management of Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like Episodes Syndrome. Biomolecules 2024; 14:1524. [PMCID: PMC11672891 DOI: 10.3390/biom14121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 01/05/2025] Open
Abstract
Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a complex mitochondrial disorder characterized by a wide range of systemic manifestations. Key clinical features include recurrent stroke-like episodes, seizures, lactic acidosis, muscle weakness, exercise intolerance, sensorineural hearing loss, diabetes, and progressive neurological decline. MELAS is most commonly associated with mutations in mitochondrial DNA, particularly the m.3243A>G mutation in the MT-TL1 gene, which encodes tRNALeu (CUR). These mutations impair mitochondrial protein synthesis, leading to defective oxidative phosphorylation and energy failure at the cellular level. The clinical presentation and severity vary widely among patients, but the syndrome often results in significant morbidity and reduced life expectancy because of progressive neurological deterioration. Current management is largely focused on conservative care, including anti-seizure medications, arginine or citrulline supplementation, high-dose taurine, and dietary therapies. However, these therapies do not address the underlying genetic mutations, leaving many patients with substantial disease burden. Emerging experimental treatments, such as gene therapy and mitochondrial replacement techniques, aim to correct the underlying genetic defects and offer potential curative strategies. Further research is essential to understand the pathophysiology of MELAS, optimize current therapies, and develop novel treatments that may significantly improve patient outcomes and extend survival.
Collapse
Affiliation(s)
| | - Young-Mock Lee
- Departments of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea;
| |
Collapse
|
3
|
Finsterer J. Mitochondrial disorders are not spinocerebellar ataxias but may resemble them in some aspects. J Formos Med Assoc 2023; 122:965-966. [PMID: 37400293 DOI: 10.1016/j.jfma.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
|
4
|
Finsterer J. Assessing the anesthetic effectiveness of remimazolam in MELAS patients requires careful investigations. JA Clin Rep 2022; 8:44. [PMID: 35725980 PMCID: PMC9208970 DOI: 10.1186/s40981-022-00536-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022] Open
|
5
|
Li D, Liang C, Zhang T, Marley JL, Zou W, Lian M, Ji D. Pathogenic mitochondrial DNA 3243A>G mutation: From genetics to phenotype. Front Genet 2022; 13:951185. [PMID: 36276941 PMCID: PMC9582660 DOI: 10.3389/fgene.2022.951185] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial DNA (mtDNA) m.3243A>G mutation is one of the most common pathogenic mtDNA variants, showing complex genetics, pathogenic molecular mechanisms, and phenotypes. In recent years, the prevention of mtDNA-related diseases has trended toward precision medicine strategies, such as preimplantation genetic diagnosis (PGD) and mitochondrial replacement therapy (MRT). These techniques are set to allow the birth of healthy children, but clinical implementation relies on thorough insights into mtDNA genetics. The genotype and phenotype of m.3243A>G vary greatly from mother to offspring, which compromises genetic counseling for the disease. This review is the first to systematically elaborate on the characteristics of the m.3243A>G mutation, from genetics to phenotype and the relationship between them, as well as the related influencing factors and potential strategies for preventing disease. These perceptions will provide clarity for clinicians providing genetic counseling to m.3243A>G patients.
Collapse
Affiliation(s)
- Danyang Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Chunmei Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Tao Zhang
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jordan Lee Marley
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Muqing Lian
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- *Correspondence: Dongmei Ji,
| |
Collapse
|
6
|
Kitaura A, Nakao S. An anesthetic experience with remimazolam for MELAS patients. JA Clin Rep 2022; 8:60. [PMID: 35931870 PMCID: PMC9356118 DOI: 10.1186/s40981-022-00550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
|
7
|
Phenotype-Genotype Analysis Based on Molecular Classification in 135 Children With Mitochondrial Disease. Pediatr Neurol 2022; 132:11-18. [PMID: 35598585 DOI: 10.1016/j.pediatrneurol.2022.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Over the past decades, mitochondrial disease classification has been mainly based on molecular defects. We aim to analyze phenotype-genotype correlation of mitochondrial disorders according to molecular classification. METHODS In this cohort study, we identified 135 individuals diagnosed with mitochondrial disorders, and all patients were divided into four subgroups based on molecular functions: the Respiratory Chain group (including subunits and assembly proteins in the respiratory chain), the Protein Synthesis group (including mitochondrial RNA metabolism, mitochondrial translation), the mitcohindrial DNA (mtDNA) Replication group, and the Others group (including cofactors, homeostasis, substrates, and inhibitors). RESULTS We found that in China, patients with the mtDNA variant constituted a large percentage of mitochondrial disease and were associated with a male preponderance in the Respiratory Chain group, whereas those in the Protein Synthesis group showed a relatively later onset and higher serum lactate level. In contrast, patients with nuclear DNA variants were younger at onset, with no specific lactate or cranial imaging features, especially in the Others group, which contained several mitochondrial diseases with corresponding treatment. CONCLUSION The mtDNA was recommended to detect first in patients with typical lactate and cranial imaging features. A broader consideration and detection are necessary for a better prognosis in an atypical patient.
Collapse
|
8
|
Abstract
Abstract
Mitochondria, the cell powerhouse, are membrane-bound organelles present in the cytoplasm of almost all the eukaryotic cells. Their main function is to generate energy in the form of adenosine triphosphate (ATP). In addition, mitochondria store calcium for the cell signaling activities, generate heat, harbor pathways of intermediate metabolism and mediate cell growth and death. Primary mitochondrial diseases (MDs) form a clinically as well as genetically heterogeneous group of inherited disorders that result from the mitochondrial energetic metabolism malfunctions. The lifetime risk of the MDs development is estimated at 1:1470 of newborns, which makes them one of the most recurrent groups of inherited disorders with an important burden for society.
MDs are progressive with wide range of symptoms of variable severity that can emerge congenitally or anytime during the life. MD can be caused by mutations in the mitochondrial DNA (mtDNA) or nuclear DNA genes. Mutations inducing impairment of mitochondrial function have been found in more than 400 genes. Furthermore, more than 1200 nuclear genes, which could play a role in the MDs’ genetic etiology, are involved in the mitochondrial activities. However, the knowledge regarding the mechanism of the mitochondrial pathogenicity appears to be most essential for the development of effective patient’s treatment suffering from the mitochondrial disease. This is an overview update focused on the mitochondrial biology and the mitochondrial diseases associated genes.
Collapse
|