1
|
Velmurugan GV, Vekaria HJ, Patel SP, Sullivan PG, Hubbard WB. Astrocytic mitochondrial transfer to brain endothelial cells and pericytes in vivo increases with aging. J Cereb Blood Flow Metab 2024:271678X241306054. [PMID: 39668588 PMCID: PMC11638933 DOI: 10.1177/0271678x241306054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/01/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Intercellular mitochondrial transfer (IMT) is an intriguing biological phenomenon where mitochondria are transferred between different cells and notably, cell types. IMT is physiological, occurring in normal conditions, but also is utilized to deliver healthy mitochondria to cells in distress. Transferred mitochondria can be integrated to improve cellular metabolism, and mitochondrial function. Research on the mitochondrial transfer axis between astrocytes and brain capillaries in vivo is limited by the cellular heterogeneity of the neurovascular unit. To this end, we developed an inducible mouse model that expresses mitochondrial Dendra2 only in astrocytes and then isolated brain capillaries to remove all intact astrocytes. This method allows the visualization of in vivo astrocyte- endothelial cell (EC) and astrocyte-pericyte IMT. We demonstrate evidence of astrocyte-EC and astrocyte-pericyte mitochondrial transfer within brain capillaries. We also show that healthy aging enhances mitochondrial transfer from astrocytes to brain capillaries, revealing a potential link between brain aging and cellular mitochondrial dynamics. Finally, we observe that astrocyte-derived extracellular vesicles transfer mitochondria to brain microvascular endothelial cells, showing the potential route of in vivo IMT. These results represent a breakthrough in our understanding of IMT in the brain and a new target in brain aging and neurovascular metabolism.
Collapse
Affiliation(s)
- Gopal V Velmurugan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Hemendra J Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY, USA
| | - Samir P Patel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY, USA
| | - W Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
Seira O, Park H(D, Liu J, Poovathukaran M, Clarke K, Boushel R, Tetzlaff W. Ketone Esters Partially and Selectively Rescue Mitochondrial Bioenergetics After Acute Cervical Spinal Cord Injury in Rats: A Time-Course. Cells 2024; 13:1746. [PMID: 39513853 PMCID: PMC11545339 DOI: 10.3390/cells13211746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Spinal cord injury (SCI) pathology and pathophysiology can be attributed to both primary physical injury and secondary injury cascades. Secondary injury cascades involve dysregulated metabolism and energetic deficits directly linked to compromised mitochondrial bioenergetics. Rescuing mitochondrial function and reducing oxidative stress are associated with neuroprotection. In this regard, ketosis after traumatic brain injury (TBI), or after SCI, improves secondary neuropathology by decreasing oxidative stress, increasing antioxidants, reducing inflammation, and improving mitochondrial bioenergetics. Here, we follow up on our previous study and have used an exogenous ketone monoester, (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KE), as an alternative to a ketogenic diet, focusing on mitochondrial function between 1 and 14 days after injury. Starting 3 h following a cervical level 5 (C5) hemi-contusion injury, animals were fed either a standard control diet (SD) or a ketone ester diet (KED) combined with KE administered orally (OKE). We found that mitochondrial function was reduced after SCI at all times post-SCI, accompanied by reduced expression of most of the components of the electron transport chain (ETC). The KE rescued some of the bioenergetic parameters 1 day after SCI when D-β-Hydroxybutyrate (BHB) concentrations were ~2 mM. Still, most of the beneficial effects were observed 14 days after injury, with BHB concentrations reaching values of 4-6 mM. To our knowledge, this is the first report to show the beneficial effects of KE in rescuing mitochondrial function after SCI and demonstrates the suitability of KE in ameliorating the metabolic dysregulation that occurs after traumatic SCI without requiring a restrictive dietary regime.
Collapse
Affiliation(s)
- Oscar Seira
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (J.L.)
| | - HyoJoon (David) Park
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (J.L.)
| | - Michelle Poovathukaran
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (J.L.)
| | - Kieran Clarke
- Department of Physiology, University of Oxford, Oxford OX1 2JD, UK;
| | - Robert Boushel
- School of Kinesiology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (J.L.)
| |
Collapse
|
3
|
Guo H, Chen LQ, Zou ZR, Cheng S, Hu Y, Mao L, Tian H, Mei XF. Zinc remodels mitochondrial network through SIRT3/Mfn2-dependent mitochondrial transfer in ameliorating spinal cord injury. Eur J Pharmacol 2024; 968:176368. [PMID: 38316246 DOI: 10.1016/j.ejphar.2024.176368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Spinal cord injury (SCI) is a traumatic neuropathic condition that results in motor, sensory and autonomic dysfunction. Mitochondrial dysfunction caused by primary trauma is one of the critical pathogenic mechanisms. Moderate levels of zinc have antioxidant effects, promote neurogenesis and immune responses. Zinc normalises mitochondrial morphology in neurons after SCI. However, how zinc protects mitochondria within neurons is unknown. In the study, we used transwell culture, Western blot, Quantitative Real-time Polymerase Chain Reaction (QRT-PCR), ATP content detection, reactive oxygen species (ROS) activity assay, flow cytometry and immunostaining to investigate the relationship between zinc-treated microglia and injured neurons through animal and cell experiments. We found that zinc promotes mitochondrial transfer from microglia to neurons after SCI through Sirtuin 3 (SIRT3) regulation of Mitofusin 2 protein (Mfn2). It can rescue mitochondria in damaged neurons and inhibit oxidative stress, increase ATP levels and promote neuronal survival. Therefore, it can improve the recovery of motor function in SCI mice. In conclusion, our work reveals a potential mechanism to describe the communication between microglia and neurons after SCI, which may provide a new idea for future therapeutic approaches to SCI.
Collapse
Affiliation(s)
- Hui Guo
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Li-Qing Chen
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Zhi-Ru Zou
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Shuai Cheng
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Yu Hu
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Liang Mao
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - He Tian
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Xi-Fan Mei
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
4
|
Wu X, Zhang T, Jia J, Chen Y, Zhang Y, Fang Z, Zhang C, Bai Y, Li Z, Li Y. Perspective insights into versatile hydrogels for stroke: From molecular mechanisms to functional applications. Biomed Pharmacother 2024; 173:116309. [PMID: 38479180 DOI: 10.1016/j.biopha.2024.116309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/27/2024] Open
Abstract
As the leading killer of life and health, stroke leads to limb paralysis, speech disorder, dysphagia, cognitive impairment, mental depression and other symptoms, which entail a significant financial burden to society and families. At present, physiology, clinical medicine, engineering, and materials science, advanced biomaterials standing on the foothold of these interdisciplinary disciplines provide new opportunities and possibilities for the cure of stroke. Among them, hydrogels have been endowed with more possibilities. It is well-known that hydrogels can be employed as potential biosensors, medication delivery vectors, and cell transporters or matrices in tissue engineering in tissue engineering, and outperform many traditional therapeutic drugs, surgery, and materials. Therefore, hydrogels become a popular scaffolding treatment option for stroke. Diverse synthetic hydrogels were designed according to different pathophysiological mechanisms from the recently reported literature will be thoroughly explored. The biological uses of several types of hydrogels will be highlighted, including pro-angiogenesis, pro-neurogenesis, anti-oxidation, anti-inflammation and anti-apoptosis. Finally, considerations and challenges of using hydrogels in the treatment of stroke are summarized.
Collapse
Affiliation(s)
- Xinghan Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Jia
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yining Chen
- Key laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenwei Fang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Bai
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhengjun Li
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Caicedo A, Morales E, Moyano A, Peñaherrera S, Peña-Cisneros J, Benavides-Almeida A, Pérez-Meza ÁA, Haro-Vinueza A, Ruiz C, Robayo P, Tenesaca D, Barba D, Zambrano K, Castañeda V, Singh KK. Powering prescription: Mitochondria as "Living Drugs" - Definition, clinical applications, and industry advancements. Pharmacol Res 2024; 199:107018. [PMID: 38013162 DOI: 10.1016/j.phrs.2023.107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Mitochondria's role as engines and beacons of metabolism and determinants of cellular health is being redefined through their therapeutic application as "Living Drugs" (LDs). Artificial mitochondrial transfer/transplant (AMT/T), encompassing various techniques to modify, enrich, or restore mitochondria in cells and tissues, is revolutionizing acellular therapies and the future of medicine. This article proposes a necessary definition for LDs within the Advanced Therapeutic Medicinal Products (ATMPs) framework. While recognizing different types of LDs as ATMPs, such as mesenchymal stem cells (MSCs) and chimeric antigen receptor T (CAR T) cells, we focus on mitochondria due to their unique attributes that distinguish them from traditional cell therapies. These attributes include their inherent living nature, diverse sources, industry applicability, validation, customizability for therapeutic needs, and their capability to adapt and respond within recipient cells. We trace the journey from initial breakthroughs in AMT/T to the current state-of-the-art applications by emerging innovative companies, highlighting the need for manufacturing standards to navigate the transition of mitochondrial therapies from concept to clinical practice. By providing a comprehensive overview of the scientific, clinical, and commercial landscape of mitochondria as LDs, this article contributes to the essential dialogue among regulatory agencies, academia, and industry to shape their future in medicine.
Collapse
Affiliation(s)
- Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Emilia Morales
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Aldana Moyano
- Mito-Act Research Consortium, Quito, Ecuador; Instituto de investigaciones biotecnológicas IIB, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Sebastian Peñaherrera
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - José Peña-Cisneros
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Abigail Benavides-Almeida
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Álvaro A Pérez-Meza
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Alissen Haro-Vinueza
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Cristina Ruiz
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | | | - Doménica Tenesaca
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Verónica Castañeda
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador; PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Keshav K Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
6
|
Hubbard WB, Vekaria HJ, Velmurugan GV, Kalimon OJ, Prajapati P, Brown E, Geisler JG, Sullivan PG. Mitochondrial Dysfunction After Repeated Mild Blast Traumatic Brain Injury Is Attenuated by a Mild Mitochondrial Uncoupling Prodrug. J Neurotrauma 2023; 40:2396-2409. [PMID: 37476976 PMCID: PMC10653072 DOI: 10.1089/neu.2023.0102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Mild traumatic brain injury (mTBI) results in impairment of brain metabolism, which is propagated by mitochondrial dysfunction in the brain. Mitochondrial dysfunction has been identified as a pathobiological therapeutic target to quell cellular dyshomeostasis. Further, therapeutic approaches targeting mitochondrial impairments, such as mild mitochondrial uncoupling, have been shown to alleviate behavioral alterations after TBI. To examine how mild mitochondrial uncoupling modulates acute mitochondrial outcomes in a military-relevant model of mTBI, we utilized repeated blast overpressure of 11 psi peak overpressure to model repeated mild blast traumatic brain injury (rmbTBI) in rats followed by assessment of mitochondrial respiration and mitochondrial-related oxidative damage at 2 days post-rmbTBI. Treatment groups were administered 8 or 80 mg/kg MP201, a prodrug of 2,4 dinitrophenol (DNP) that displays improved pharmacokinetics compared with its metabolized form. Synaptic and glia-enriched mitochondria were isolated using fractionated a mitochondrial magnetic separation technique. There was a consistent physiological response, decreased heart rate, following mbTBI among experimental groups. Although there was a lack of injury effect in mitochondrial respiration of glia-enriched mitochondria, there were impairments in mitochondrial respiration in synaptic mitochondria isolated from the prefrontal cortex (PFC) and the amygdala/entorhinal/piriform cortex (AEP) region. Impairments in synaptic mitochondrial respiration were rescued by oral 80 mg/kg MP201 treatment after rmbTBI, which may be facilitated by increases in complex II and complex IV activity. Mitochondrial oxidative damage in glia-enriched mitochondria was increased in the PFC and hippocampus after rmbTBI. MP201 treatment alleviated elevated glia-enriched mitochondrial oxidative damage following rmbTBI. However, there was a lack of injury-associated differences in oxidative damage in synaptic mitochondria. Overall, our report demonstrates that rmbTBI results in mitochondrial impairment diffusely throughout the brain and mild mitochondrial uncoupling can restore mitochondrial bioenergetics and oxidative balance.
Collapse
Affiliation(s)
- W. Brad Hubbard
- Lexington Veterans' Affairs Healthcare System, Lexington, Kentucky, USA
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Hemendra J. Vekaria
- Lexington Veterans' Affairs Healthcare System, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
| | - Gopal V. Velmurugan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Olivia J. Kalimon
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
| | - Paresh Prajapati
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Emily Brown
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - John G. Geisler
- Mitochon Pharmaceuticals, Inc., Blue Bell, Pennsylvania, USA
| | - Patrick G. Sullivan
- Lexington Veterans' Affairs Healthcare System, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Kidwell CU, Casalini JR, Pradeep S, Scherer SD, Greiner D, Bayik D, Watson DC, Olson GS, Lathia JD, Johnson JS, Rutter J, Welm AL, Zangle TA, Roh-Johnson M. Transferred mitochondria accumulate reactive oxygen species, promoting proliferation. eLife 2023; 12:e85494. [PMID: 36876914 PMCID: PMC10042539 DOI: 10.7554/elife.85494] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Recent studies reveal that lateral mitochondrial transfer, the movement of mitochondria from one cell to another, can affect cellular and tissue homeostasis. Most of what we know about mitochondrial transfer stems from bulk cell studies and have led to the paradigm that functional transferred mitochondria restore bioenergetics and revitalize cellular functions to recipient cells with damaged or non-functional mitochondrial networks. However, we show that mitochondrial transfer also occurs between cells with functioning endogenous mitochondrial networks, but the mechanisms underlying how transferred mitochondria can promote such sustained behavioral reprogramming remain unclear. We report that unexpectedly, transferred macrophage mitochondria are dysfunctional and accumulate reactive oxygen species in recipient cancer cells. We further discovered that reactive oxygen species accumulation activates ERK signaling, promoting cancer cell proliferation. Pro-tumorigenic macrophages exhibit fragmented mitochondrial networks, leading to higher rates of mitochondrial transfer to cancer cells. Finally, we observe that macrophage mitochondrial transfer promotes tumor cell proliferation in vivo. Collectively these results indicate that transferred macrophage mitochondria activate downstream signaling pathways in a ROS-dependent manner in cancer cells, and provide a model of how sustained behavioral reprogramming can be mediated by a relatively small amount of transferred mitochondria in vitro and in vivo.
Collapse
Affiliation(s)
- Chelsea U Kidwell
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Joseph R Casalini
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Soorya Pradeep
- Department of Chemical Engineering, University of UtahSalt Lake CityUnited States
| | - Sandra D Scherer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Daniel Greiner
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Defne Bayik
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Case Western Reserve UniversityClevelandUnited States
| | - Dionysios C Watson
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Case Western Reserve UniversityClevelandUnited States
- University Hospitals Cleveland Medical CenterClevelandUnited States
- School of Medicine, Case Western Reserve UniversityClevelandUnited States
| | - Gregory S Olson
- Medical Scientist Training Program, University of WashingtonSeattleUnited States
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Case Western Reserve UniversityClevelandUnited States
| | - Jarrod S Johnson
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of MedicineSalt Lake CityUnited States
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
- Howard Hughes Medical Institute, University of Utah School of MedicineSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Thomas A Zangle
- Department of Chemical Engineering, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| |
Collapse
|
8
|
Hamblin MR. Mitochondrial Transplantation: Could Photobiomodulation Play a Role? Photobiomodul Photomed Laser Surg 2023; 41:91-92. [PMID: 36827344 DOI: 10.1089/photob.2023.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Affiliation(s)
- Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg-Doornfontein Campus, Doornfontein, South Africa
| |
Collapse
|
9
|
Caicedo A, Singh KK. Advancing mitochondria as a therapeutic agent. Mitochondrion 2023; 69:33-35. [PMID: 36657505 DOI: 10.1016/j.mito.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
This article intends to provide an update of the needs in the field working in the artificial mitochondrial transfer/transplant (AMT/T), and an overview of the highlights from the articles in the special issue "Advances of Mitochondria as a therapeutic agent". In the last 4 decades, scientists have developed innovative therapeutic applications based on the AMT/T, inspired by the natural transfer of mitochondria between cells to repair cellular damage or treat diseases. The clinical application of AMT has become the priority for the field involving the replacement or augmentation of healthy mitochondria in the harmed tissue, especially in the treatment of organ ischemia-reperfusion injury. However, we remark in our article that key questions remain to be answered such as which one is the best isolation protocol, tissue or cell source for isolation, and others of great importance to move the field forward.
Collapse
Affiliation(s)
- Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Keshav K Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|