1
|
Neoh CF, Chen SCA, Lanternier F, Tio SY, Halliday CL, Kidd SE, Kong DCM, Meyer W, Hoenigl M, Slavin MA. Scedosporiosis and lomentosporiosis: modern perspectives on these difficult-to-treat rare mold infections. Clin Microbiol Rev 2024; 37:e0000423. [PMID: 38551323 PMCID: PMC11237582 DOI: 10.1128/cmr.00004-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYAlthough Scedosporium species and Lomentospora prolificans are uncommon causes of invasive fungal diseases (IFDs), these infections are associated with high mortality and are costly to treat with a limited armamentarium of antifungal drugs. In light of recent advances, including in the area of new antifungals, the present review provides a timely and updated overview of these IFDs, with a focus on the taxonomy, clinical epidemiology, pathogenesis and host immune response, disease manifestations, diagnosis, antifungal susceptibility, and treatment. An expansion of hosts at risk for these difficult-to-treat infections has emerged over the last two decades given the increased use of, and broader population treated with, immunomodulatory and targeted molecular agents as well as wider adoption of antifungal prophylaxis. Clinical presentations differ not only between genera but also across the different Scedosporium species. L. prolificans is intrinsically resistant to most currently available antifungal agents, and the prognosis of immunocompromised patients with lomentosporiosis is poor. Development of, and improved access to, diagnostic modalities for early detection of these rare mold infections is paramount for timely targeted antifungal therapy and surgery if indicated. New antifungal agents (e.g., olorofim, fosmanogepix) with novel mechanisms of action and less cross-resistance to existing classes, availability of formulations for oral administration, and fewer drug-drug interactions are now in late-stage clinical trials, and soon, could extend options to treat scedosporiosis/lomentosporiosis. Much work remains to increase our understanding of these infections, especially in the pediatric setting. Knowledge gaps for future research are highlighted in the review.
Collapse
Affiliation(s)
- Chin Fen Neoh
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
- The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital universitaire Necker-Enfants malades, Paris, France
- National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology research group, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Shio Yen Tio
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Catriona L Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| | - Sarah E Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, Australia
| | - David C M Kong
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- The National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infections and Immunity, Melbourne, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
- School of Medicine, Deakin University, Waurn Ponds, Geelong, Australia
| | - Wieland Meyer
- The University of Sydney, Sydney, Australia
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Monica A Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Vignals C, Emmerich J, Begueret H, Garcia-Hermoso D, Martin-Blondel G, Angoulvant A, Blez D, Bruneval P, Cassaing S, Catherinot E, Cahen P, Moluçon-Chabrot C, Chevenet C, Delhaes L, Escaut L, Faruch M, Grenouillet F, Larosa F, Limousin L, Longchampt E, Mellot F, Nourrisson C, Bougnoux ME, Lortholary O, Roux A, Rozenblum L, Puges M, Lanternier F, Bronnimann D. Deciphering Unexpected Vascular Locations of Scedosporium spp. and Lomentospora prolificans Fungal Infections, France. Emerg Infect Dis 2024; 30:1077-1087. [PMID: 38781681 PMCID: PMC11138966 DOI: 10.3201/eid3006.231409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Scedosporium spp. and Lomentospora prolificans are emerging non-Aspergillus filamentous fungi. The Scedosporiosis/lomentosporiosis Observational Study we previously conducted reported frequent fungal vascular involvement, including aortitis and peripheral arteritis. For this article, we reviewed 7 cases of Scedosporium spp. and L. prolificans arteritis from the Scedosporiosis/lomentosporiosis Observational Study and 13 cases from published literature. Underlying immunosuppression was reported in 70% (14/20) of case-patients, mainly those who had solid organ transplants (10/14). Osteoarticular localization of infection was observed in 50% (10/20) of cases; infections were frequently (7/10) contiguous with vascular infection sites. Scedosporium spp./Lomentospora prolificans infections were diagnosed in 9 of 20 patients ≈3 months after completing treatment for nonvascular scedosporiosis/lomentosporiosis. Aneurysms were found in 8/11 aortitis and 6/10 peripheral arteritis cases. Invasive fungal disease--related deaths were high (12/18 [67%]). The vascular tropism of Scedosporium spp. and L. prolificans indicates vascular imaging, such as computed tomography angiography, is needed to manage infections, especially for osteoarticular locations.
Collapse
|
3
|
Gamaletsou MN, Rammaert B, Brause B, Bueno MA, Dadwal SS, Henry MW, Katragkou A, Kontoyiannis DP, McCarthy MW, Miller AO, Moriyama B, Pana ZD, Petraitiene R, Petraitis V, Roilides E, Sarkis JP, Simitsopoulou M, Sipsas NV, Taj-Aldeen SJ, Zeller V, Lortholary O, Walsh TJ. Osteoarticular Mycoses. Clin Microbiol Rev 2022; 35:e0008619. [PMID: 36448782 PMCID: PMC9769674 DOI: 10.1128/cmr.00086-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Osteoarticular mycoses are chronic debilitating infections that require extended courses of antifungal therapy and may warrant expert surgical intervention. As there has been no comprehensive review of these diseases, the International Consortium for Osteoarticular Mycoses prepared a definitive treatise for this important class of infections. Among the etiologies of osteoarticular mycoses are Candida spp., Aspergillus spp., Mucorales, dematiaceous fungi, non-Aspergillus hyaline molds, and endemic mycoses, including those caused by Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides species. This review analyzes the history, epidemiology, pathogenesis, clinical manifestations, diagnostic approaches, inflammatory biomarkers, diagnostic imaging modalities, treatments, and outcomes of osteomyelitis and septic arthritis caused by these organisms. Candida osteomyelitis and Candida arthritis are associated with greater events of hematogenous dissemination than those of most other osteoarticular mycoses. Traumatic inoculation is more commonly associated with osteoarticular mycoses caused by Aspergillus and non-Aspergillus molds. Synovial fluid cultures are highly sensitive in the detection of Candida and Aspergillus arthritis. Relapsed infection, particularly in Candida arthritis, may develop in relation to an inadequate duration of therapy. Overall mortality reflects survival from disseminated infection and underlying host factors.
Collapse
Affiliation(s)
- Maria N. Gamaletsou
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Blandine Rammaert
- Université de Poitiers, Faculté de médecine, CHU de Poitiers, INSERM U1070, Poitiers, France
| | - Barry Brause
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Marimelle A. Bueno
- Far Eastern University-Dr. Nicanor Reyes Medical Foundation, Manilla, Philippines
| | | | - Michael W. Henry
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Aspasia Katragkou
- Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University School of Medicine, Columbus, Ohio, USA
| | | | - Matthew W. McCarthy
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
| | - Andy O. Miller
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | | | - Zoi Dorothea Pana
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Ruta Petraitiene
- Weill Cornell Medicine of Cornell University, New York, New York, USA
| | | | - Emmanuel Roilides
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | | | - Maria Simitsopoulou
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Nikolaos V. Sipsas
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Valérie Zeller
- Groupe Hospitalier Diaconesses-Croix Saint-Simon, Paris, France
| | - Olivier Lortholary
- Université de Paris, Faculté de Médecine, APHP, Hôpital Necker-Enfants Malades, Paris, France
- Institut Pasteur, Unité de Mycologie Moléculaire, CNRS UMR 2000, Paris, France
| | - Thomas J. Walsh
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
| |
Collapse
|
4
|
Chau MM, Daveson K, Alffenaar JWC, Gwee A, Ho SA, Marriott DJE, Trubiano JA, Zhao J, Roberts JA. Consensus guidelines for optimising antifungal drug delivery and monitoring to avoid toxicity and improve outcomes in patients with haematological malignancy and haemopoietic stem cell transplant recipients, 2021. Intern Med J 2021; 51 Suppl 7:37-66. [PMID: 34937141 DOI: 10.1111/imj.15587] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Antifungal agents can have complex dosing and the potential for drug interaction, both of which can lead to subtherapeutic antifungal drug concentrations and poorer clinical outcomes for patients with haematological malignancy and haemopoietic stem cell transplant recipients. Antifungal agents can also be associated with significant toxicities when drug concentrations are too high. Suboptimal dosing can be minimised by clinical assessment, laboratory monitoring, avoidance of interacting drugs, and dose modification. Therapeutic drug monitoring (TDM) plays an increasingly important role in antifungal therapy, particularly for antifungal agents that have an established exposure-response relationship with either a narrow therapeutic window, large dose-exposure variability, cytochrome P450 gene polymorphism affecting drug metabolism, the presence of antifungal drug interactions or unexpected toxicity, and/or concerns for non-compliance or inadequate absorption of oral antifungals. These guidelines provide recommendations on antifungal drug monitoring and TDM-guided dosing adjustment for selected antifungal agents, and include suggested resources for identifying and analysing antifungal drug interactions. Recommended competencies for optimal interpretation of antifungal TDM and dose recommendations are also provided.
Collapse
Affiliation(s)
- Maggie M Chau
- Pharmacy Department, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Kathryn Daveson
- Department of Infectious Diseases and Microbiology, The Canberra Hospital, Garran, Australian Capital Territory, Australia
| | - Jan-Willem C Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Camperdown, New South Wales, Australia.,Pharmacy Department, Westmead Hospital, Westmead, New South Wales, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Camperdown, New South Wales, Australia
| | - Amanda Gwee
- Infectious Diseases Unit, The Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.,Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Su Ann Ho
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Deborah J E Marriott
- Department of Clinical Microbiology and Infectious Diseases, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,Faculty of Science, University of Technology, Ultimo, New South Wales, Australia.,Faculty of Medicine, The University of New South Wales, Kensington, New South Wales, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Jessie Zhao
- Department of Haematology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Jason A Roberts
- The University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Department of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | | |
Collapse
|
5
|
Thornton CR. Detection of the 'Big Five' mold killers of humans: Aspergillus, Fusarium, Lomentospora, Scedosporium and Mucormycetes. ADVANCES IN APPLIED MICROBIOLOGY 2019; 110:1-61. [PMID: 32386603 DOI: 10.1016/bs.aambs.2019.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fungi are an important but frequently overlooked cause of morbidity and mortality in humans. Life-threatening fungal infections mainly occur in immunocompromised patients, and are typically caused by environmental opportunists that take advantage of a weakened immune system. The filamentous fungus Aspergillus fumigatus is the most important and well-documented mold pathogen of humans, causing a number of complex respiratory diseases, including invasive pulmonary aspergillosis, an often fatal disease in patients with acute leukemia or in immunosuppressed bone marrow or solid organ transplant recipients. However, non-Aspergillus molds are increasingly reported as agents of disseminated diseases, with Fusarium, Scedosporium, Lomentospora and mucormycete species now firmly established as pathogens of immunosuppressed and immunocompetent individuals. Despite well-documented risk factors for invasive fungal diseases, and increased awareness of the risk factors for life-threatening infections, the number of deaths attributable to molds is likely to be severely underestimated driven, to a large extent, by the lack of readily accessible, cheap, and accurate tests that allow detection and differentiation of infecting species. Early diagnosis is critical to patient survival but, unlike Aspergillus diseases, where a number of CE-marked or FDA-approved biomarker tests are now available for clinical diagnosis, similar tests for fusariosis, scedosporiosis and mucormycosis remain experimental, with detection reliant on insensitive and slow culture of pathogens from invasive bronchoalveolar lavage fluid, tissue biopsy, or from blood. This review examines the ecology, epidemiology, and contemporary methods of detection of these mold pathogens, and the obstacles to diagnostic test development and translation of novel biomarkers to the clinical setting.
Collapse
|
6
|
Seidel D, Meißner A, Lackner M, Piepenbrock E, Salmanton-García J, Stecher M, Mellinghoff S, Hamprecht A, Durán Graeff L, Köhler P, Cheng MP, Denis J, Chedotal I, Chander J, Pakstis DL, Los-Arcos I, Slavin M, Montagna MT, Caggiano G, Mares M, Trauth J, Aurbach U, Vehreschild MJGT, Vehreschild JJ, Duarte RF, Herbrecht R, Wisplinghoff H, Cornely OA. Prognostic factors in 264 adults with invasive Scedosporium spp. and Lomentospora prolificans infection reported in the literature and FungiScope®. Crit Rev Microbiol 2019; 45:1-21. [DOI: 10.1080/1040841x.2018.1514366] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Danila Seidel
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Arne Meißner
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Department of Hospital Hygiene and Infection Control, University Hospital Cologne, Cologne, Germany
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Ellen Piepenbrock
- Department of Immunology and Hygiene, Institute for Medical Microbiology, University of Cologne, Cologne, Germany
| | - Jon Salmanton-García
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Melanie Stecher
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Partner site Bonn - Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
| | - Sibylle Mellinghoff
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Axel Hamprecht
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Luisa Durán Graeff
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Philipp Köhler
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Partner site Bonn - Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
| | - Matthew P. Cheng
- Division of Infectious Diseases and Department of Medical Microbiology, McGill University Health Centre, Montreal, Canada
| | - Julie Denis
- Hôpitaux Universitaires, Department of Parasitology and Mycology, Plateau Technique de Microbiologie, FMTS, Université de Strasbourg, Strasbourg, France
| | - Isabelle Chedotal
- Oncology and Hematology Department, University Hospital of Strasbourg and INSERM U1113, Strasbourg, France
| | - Jagdish Chander
- Department of Microbiology, Government Medical College Hospital, Chandigarh, India
| | | | - Ibai Los-Arcos
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Monica Slavin
- University of Melbourne, Melbourne, Australia, The National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Maria Teresa Montagna
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppina Caggiano
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Mihai Mares
- Laboratory of Antimicrobial Chemotherapy, Ion Ionescu de la Brad University, Iași, Romania
| | - Janina Trauth
- Medical Clinic II – Infectious Diseases, University Hospital Giessen/Marburg, Giessen, Germany
| | - Ute Aurbach
- Laboratory Dr. Wisplinghoff, Cologne, Germany
| | - Maria J. G. T. Vehreschild
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Partner site Bonn - Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
- Center for Integrated Oncology CIO Köln/Bonn, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jörg Janne Vehreschild
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Partner site Bonn - Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
- Center for Integrated Oncology CIO Köln/Bonn, Medical Faculty, University of Cologne, Cologne, Germany
| | - Rafael F. Duarte
- Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Raoul Herbrecht
- Oncology and Hematology Department, University Hospital of Strasbourg and INSERM U1113, Strasbourg, France
| | - Hilmar Wisplinghoff
- Department of Immunology and Hygiene, Institute for Medical Microbiology, University of Cologne, Cologne, Germany
- Laboratory Dr. Wisplinghoff, Cologne, Germany
- Institute for Virology and Clinical Microbiology, Witten/Herdecke University, Witten, Germany
| | - Oliver A. Cornely
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Partner site Bonn - Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
- Center for Integrated Oncology CIO Köln/Bonn, Medical Faculty, University of Cologne, Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Recent Advances in the Treatment of Scedosporiosis and Fusariosis. J Fungi (Basel) 2018; 4:jof4020073. [PMID: 29912161 PMCID: PMC6023441 DOI: 10.3390/jof4020073] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 12/18/2022] Open
Abstract
Species of Scedosporium and Fusarium are considered emerging opportunistic pathogens, causing invasive fungal diseases in humans that are known as scedosporiosis and fusariosis, respectively. These mold infections typically affect patients with immune impairment; however, cases have been reported in otherwise healthy individuals. Clinical manifestations vary considerably, ranging from isolated superficial infection to deep-seated invasive infection—affecting multiple organs—which is often lethal. While there have been a number of advances in the detection of these infections, including the use of polymerase chain reaction (PCR) and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS), diagnosis is often delayed, leading to substantial morbidity and mortality. Although the optimal therapy is controversial, there have also been notable advances in the treatment of these diseases, which often depend on a combination of antifungal therapy, reversal of immunosuppression, and in some cases, surgical resection. In this paper, we review these advances and examine how the management of scedosporiosis and fusariosis may change in the near future.
Collapse
|
8
|
Farrokh S, Avdic E. Voriconazole Autoinduction and Saturable Metabolism After Cessation of Rifampin in a Patient With Invasive Central Nervous System Aspergillus: Importance of Therapeutic Drug Monitoring. J Pharm Pract 2018; 32:589-594. [PMID: 29495916 DOI: 10.1177/0897190018760621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Optimization of antifungal therapy with voriconazole can be challenging due to inter- and intrapatient variability in voriconazole pharmacokinetics (PK). In this case, we introduce challenges in voriconazole therapy due to drug-drug interactions, autoinduction, and saturable metabolism. SUMMARY A 32-year-old male on chronic prednisone developed central nervous system (CNS) aspergillosis. He was started on high-dose intravenous (IV) voriconazole 8.5 mg/kg every 12 hours due to concerns for lasting induction effects of recent rifampin therapy. The initial voriconazole trough was 2 μg/mL. Frequent dose adjustments were made to maintain the therapeutic trough goal. On day 24 of voriconazole therapy, his trough was undetectable on IV voriconazole 5.5 mg/kg every 12 hours. His dose was escalated to 8.5 mg/kg every 12 hours to avoid subtherapeutic levels and therapeutic failure. On day 48, his trough level was 1.1 μg/mL on the same dose. His regimen was changed to 6.5 mg/kg every 8 hours at this point. Sixteen days after this regimen on day 74 of voriconazole therapy, his trough was 27.2 μg/mL indicating saturable PK of voriconazole in the absence of interacting drugs. CONCLUSION Our findings highlight the unpredictable PK of voriconazole and reinforce the importance of continuous therapeutic drug monitoring in critically ill patients.
Collapse
Affiliation(s)
- Salia Farrokh
- Neuro Intensive Care, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Edina Avdic
- Antimicrobial Stewardship Program, The Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
9
|
McCarthy MW, Petraitis V, Walsh TJ. Combination therapy for the treatment of pulmonary mold infections. Expert Rev Respir Med 2017; 11:481-489. [PMID: 28467730 DOI: 10.1080/17476348.2017.1325322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Pulmonary mold infections are caused by ubiquitous organisms found in soil, water, and decaying vegetation, including Aspergillus spp., the Mucormycetes, hyaline molds, and dematiaceous (black) molds. Areas covered: These infections are often a challenge to diagnose and even more difficult to treat. Recently, antifungal combination therapy has emerged as a promising strategy to treat some forms of invasive mycoses, including pulmonary mold infections. Historically, this approach has been limited due to non-uniform interpretation criteria, variations in pharmacodynamic/pharmacokinetic properties of antifungals used in combination, and an inability to predict clinical success based on in vitro data and animal models. However, recent advances have helped mitigate some of these challenges. Expert commentary: In this paper, we explore what is known about the antifungal combination therapy in the treatment of pulmonary mold infections and explore how it may impact clinical practice. We pay particular attention to novel combinations and the challenges associated with the development of new antifungal agents.
Collapse
Affiliation(s)
- Matthew William McCarthy
- a Hospital Medicine , Joan and Sanford I Weill Medical College of Cornell University , New York , NY , USA
| | - Vidmantas Petraitis
- b Transplantation-Oncology, Infectious Diseases Program , Weill Cornell Medical Center of Cornell University , New York , NY , USA
| | - Thomas J Walsh
- c Transplantation-Oncology Infectious Diseases Program , Weill Cornell Medical Center , New York , NY , USA
| |
Collapse
|
10
|
Jover-Saénz A, Altermir-Martínez V, Barcenilla-Gaite F, Garrido-Calvo S. Artritis infecciosa con osteomielitis debida a Scedosporium prolificans en un paciente inmunocompetente. Med Clin (Barc) 2016; 146:e15-6. [DOI: 10.1016/j.medcli.2015.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/03/2015] [Accepted: 09/03/2015] [Indexed: 11/29/2022]
|
11
|
Hsu AJ, Dabb A, Arav-Boger R. Autoinduction of voriconazole metabolism in a child with invasive pulmonary aspergillosis. Pharmacotherapy 2015; 35:e20-6. [PMID: 25884532 DOI: 10.1002/phar.1566] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inter- and intra-patient variability in voriconazole pharmacokinetics has been described in children as the result of age-specific differences in hepatic metabolism, saturable nonlinear pharmacokinetics, CYP450 2C19 polymorphisms, decreased bioavailability compared with adults, and drug-drug interactions. We introduce dose-dependent autoinduction of metabolism as another cause for altered voriconazole pharmacokinetics in children and summarize previously published literature on this phenomenon. A 10-year-old girl with severe aplastic anemia developed invasive pulmonary aspergillosis after high-dose cyclophosphamide therapy and required high doses of voriconazole for longer than 2 months. She initially achieved a therapeutic trough of 1.4 μg/ml on voriconazole 11 mg/kg/dose orally every 12 hours but required dose escalations to 9.3 mg/kg/dose orally every 8 hours to maintain a trough above 1 μg/ml. Because there were no changes in concomitant medications, route of administration, adherence, or oral intake, we conclude that the only plausible explanation for the precipitous drop in voriconazole troughs was autoinduction of metabolism, a phenomenon previously reported in adults receiving higher than usual doses or prolonged courses (longer than 2 months). These data highlight the need for continued therapeutic drug monitoring of voriconazole after initial therapeutic troughs are achieved because autoinduction of metabolism can lead to significant declines in subsequent voriconazole troughs, potentially leading to treatment failure.
Collapse
Affiliation(s)
- Alice Jenh Hsu
- Division of Pediatric Pharmacy, Department of Pharmacy, The Johns Hopkins Hospital, Baltimore, Maryland
| | | | | |
Collapse
|
12
|
Taj-Aldeen SJ, Rammaert B, Gamaletsou M, Sipsas NV, Zeller V, Roilides E, Kontoyiannis DP, Miller AO, Petraitis V, Walsh TJ, Lortholary O. Osteoarticular Infections Caused by Non-Aspergillus Filamentous Fungi in Adult and Pediatric Patients: A Systematic Review. Medicine (Baltimore) 2015; 94:e2078. [PMID: 26683917 PMCID: PMC5058889 DOI: 10.1097/md.0000000000002078] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Osteoarticular mycoses due to non-Aspergillus moulds are uncommon and challenging infections. A systematic literature review of non-Aspergillus osteoarticular mycoses was performed using PUBMED and EMBASE databases from 1970 to 2013. Among 145 patients were 111 adults (median age 48.5 [16-92 y]) and 34 pediatric patients (median age 7.5 [3-15 y]); 114 (79.7%) were male and 88 (61.9%) were immunocompromised. Osteomyelitis was due to direct inoculation in 54.5%. Trauma and puncture wounds were more frequent in children (73.5% vs 43.5%; P = 0.001). Prior surgery was more frequent in adults (27.7% vs 5.9%; P = 0.025). Vertebral (23.2%) and craniofacial osteomyelitis (13.1%) with neurological deficits predominated in adults. Lower limb osteomyelitis (47.7%) and knee arthritis (67.8%) were predominantly seen in children. Hyalohyphomycosis represented 64.8% of documented infections with Scedosporium apiospermum (33.1%) and Lomentospora prolificans (15.8%) as the most common causes. Combined antifungal therapy and surgery was used in 69% of cases with overall response in 85.8%. Median duration of therapy was 115 days (range 5-730). When voriconazole was used as single agent for treatment of hyalohyphomycosis and phaeohyphomycosis, an overall response rate was achieved in 94.1% of cases. Non-Aspergillus osteoarticular mycoses occur most frequently in children after injury and in adults after surgery. Accurate early diagnosis and long-course therapy (median 6 mo) with a combined medical-surgical approach may result in favorable outcome.
Collapse
Affiliation(s)
- Saad J Taj-Aldeen
- From the Mycology Unit, Microbiology Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar (SJT-A); Center for Osteoarticular Mycoses, Hospital for Special Surgery (SJT-A, BR, MG, NVS, ER, AOM, VP, TJW, OL); International Osteoarticular Mycoses Study Consortium, NY (SJT-A, BR, MG, NVS, ER, AOM, VP, TJW, OL); Weill Cornell Medical College, Doha, Qatar (SJT-A); Université Paris-Descartes, Sorbonne Paris Cité, APHP, Service des Maladies Infectieuses et Tropicales, Hôpital Necker-Enfants Malades, Centre d'Infectiologie Necker-Pasteur, Institut Imagine (BR, OL); Institut Pasteur, Mycology Molecular Unit, Paris, France (BR, OL); Transplantation-Oncology Infectious Diseases Program, Department of Medicine, Weill Cornell Medical Center of Cornell University (MG, AOM, VP, TJW); Pediatrics, and Microbiology & Immunology, Weill Cornell Medical Center of Cornell University, New York, NY (MG, NVS, TJW); National and Kapodistrian University of Athens, Athens, Greece (MG, NVS); Osteoarticular Reference Center, Groupe Hospitalier Diaconesses-Croix Saint-Simon, Paris, France (VZ); Infectious Diseases Unit, Department of Pediatrics, Faculty of Medicine, Aristotle University, School of Health Sciences, and Hippokration Hospital, Thessaloniki, Greece (ER); and MD Anderson Cancer Center, Houston, TX (DPK)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nishimori M, Takahashi T, Suzuki E, Kodaka T, Hiramoto N, Itoh K, Tsunemine H, Yarita K, Kamei K, Takegawa H, Takahashi T. Fatal Fungemia with Scedosporium prolificans in a Patient with Acute Myeloid Leukemia. Med Mycol J 2014; 55:E63-70. [DOI: 10.3314/mmj.55.e63] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Kyoko Yarita
- Medical Mycology Research Center, Chiba University, Chiba
| | | | - Hiroshi Takegawa
- Laboratory Medicine, Kobe City Medical Center General Hospital, Kobe
| | | |
Collapse
|