1
|
Yasir M, Peinetti F, Savi P. Correlation of Transmission Properties with Glucose Concentration in a Graphene-Based Microwave Resonator. MICROMACHINES 2023; 14:2163. [PMID: 38138332 PMCID: PMC10745533 DOI: 10.3390/mi14122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023]
Abstract
Carbon-based materials, such as graphene, exhibit interesting physical properties and have been recently investigated in sensing applications. In this paper, a novel technique for glucose concentration correlation with the resonant frequency of a microwave resonator is performed. The resonator exploits the variation of the electrical properties of graphene at radio frequency (RF). The described approach is based on the variation in transmission coefficient resonating frequency of a microstrip ring resonator modified with a graphene film. The graphene film is doctor-bladed on the ring resonator and functionalised in order to detect glucose. When a drop with a given concentration is deposited on the graphene film, the resonance peak is shifted. The graphene film is modelled with a lumped element analysis. Several prototypes are realised on Rogers Kappa substrate and their transmission coefficient measured for different concentrations of glucose. Results show a good correlation between the frequency shift and the concentration applied on the film.
Collapse
Affiliation(s)
- Muhammad Yasir
- Division of Microrobotics and Control Engineering, Department of Computing Science, University of Oldenburg, 26129 Oldenburg, Germany
| | - Fabio Peinetti
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy; (F.P.); (P.S.)
| | - Patrizia Savi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy; (F.P.); (P.S.)
| |
Collapse
|
2
|
Morikawa K, Kazumi H, Tsuyama Y, Ohta R, Kitamori T. Surface Patterning of Closed Nanochannel Using VUV Light and Surface Evaluation by Streaming Current. MICROMACHINES 2021; 12:mi12111367. [PMID: 34832779 PMCID: PMC8623798 DOI: 10.3390/mi12111367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
In nanofluidics, surface control is a critical technology because nanospaces are surface-governed spaces as a consequence of their extremely high surface-to-volume ratio. Various surface patterning methods have been developed, including patterning on an open substrate and patterning using a liquid modifier in microchannels. However, the surface patterning of a closed nanochannel is difficult. In addition, the surface evaluation of closed nanochannels is difficult because of a lack of appropriate experimental tools. In this study, we verified the surface patterning of a closed nanochannel by vacuum ultraviolet (VUV) light and evaluated the surface using streaming-current measurements. First, the C18 modification of closed nanochannels was confirmed by Laplace pressure measurements. In addition, no streaming-current signal was detected for the C18-modified surface, confirming the successful modification of the nanochannel surface with C18 groups. The C18 groups were subsequently decomposed by VUV light, and the nanochannel surface became hydrophilic because of the presence of silanol groups. In streaming-current measurements, the current signals increased in amplitude with increasing VUV light irradiation time, indicating the decomposition of the C18 groups on the closed nanochannel surfaces. Finally, hydrophilic/hydrophobic patterning by VUV light was performed in a nanochannel. Capillary filling experiments confirmed the presence of a hydrophilic/hydrophobic interface. Therefore, VUV patterning in a closed nanochannel was demonstrated, and the surface of a closed nanochannel was successfully evaluated using streaming-current measurements.
Collapse
Affiliation(s)
- Kyojiro Morikawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan; (H.K.); (R.O.)
- Correspondence: (K.M.); (T.K.)
| | - Haruki Kazumi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan; (H.K.); (R.O.)
| | - Yoshiyuki Tsuyama
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan;
| | - Ryoichi Ohta
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan; (H.K.); (R.O.)
| | - Takehiko Kitamori
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan; (H.K.); (R.O.)
- Collaborative Research Organization for Micro and Nano Multifunctional Devices (NMfD), The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Institute of Nanoengineering and Microsystems (iNEMS), Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Correspondence: (K.M.); (T.K.)
| |
Collapse
|
3
|
Nanofluidic Immobilization and Growth Detection of Escherichia coli in a Chip for Antibiotic Susceptibility Testing. BIOSENSORS-BASEL 2020; 10:bios10100135. [PMID: 32992799 PMCID: PMC7650788 DOI: 10.3390/bios10100135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022]
Abstract
Infections with antimicrobial resistant bacteria are a rising threat for global healthcare as more and more antibiotics lose their effectiveness against bacterial pathogens. To guarantee the long-term effectiveness of broad-spectrum antibiotics, they may only be prescribed when inevitably required. In order to make a reliable assessment of which antibiotics are effective, rapid point-of-care tests are needed. This can be achieved with fast phenotypic microfluidic tests, which can cope with low bacterial concentrations and work label-free. Here, we present a novel optofluidic chip with a cross-flow immobilization principle using a regular array of nanogaps to concentrate bacteria and detect their growth label-free under the influence of antibiotics. The interferometric measuring principle enabled the detection of the growth of Escherichia coli in under 4 h with a sample volume of 187.2 µL and a doubling time of 79 min. In proof-of-concept experiments, we could show that the method can distinguish between bacterial growth and its inhibition by antibiotics. The results indicate that the nanofluidic chip approach provides a very promising concept for future rapid and label-free antimicrobial susceptibility tests.
Collapse
|
4
|
Klein AK, Dietzel A. A Primer on Microfluidics: From Basic Principles to Microfabrication. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:17-35. [PMID: 33404675 DOI: 10.1007/10_2020_156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microfluidic systems enable manipulating fluids in different functional units which are integrated on a microchip. This chapter describes the basics of microfluidics, where physical effects have a different impact compared to macroscopic systems. Furthermore, an overwiew is given on the microfabrication of these systems. The focus lies on clean-room fabrication methods based on photolithography and soft lithography. Finally, an outlook on advanced maskless micro- and nanofabrication methods is given. Special attention is paid to laser structuring processes.
Collapse
Affiliation(s)
- Ann-Kathrin Klein
- Institute of Microtechnology Technische Universität Braunschweig, Braunschweig, Germany
| | - Andreas Dietzel
- Institute of Microtechnology Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|