1
|
The transcription factor ELF5 is essential for early preimplantation development. Mol Biol Rep 2023; 50:2119-2125. [PMID: 36542237 DOI: 10.1007/s11033-022-08217-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND During early embryonic development, the cell adhesion molecule E-cadherin encoded by the Cdh1 gene plays a vital role in providing proper cell-cell adhesion, ensuring an undifferentiated state critical for maintaining the pluripotency for the development of the preimplantation embryo. The transcriptional regulation of Cdh1 gained attention recently but is not yet fully understood. In a previous study, our team established a correlation between Elf3 and Cdh1 expression and showed its importance in the regulation of MET. METHODS AND RESULTS Here, the regulation of Cdh1 by Ets transcription factors in early embryogenesis was investigated. A loss-of-function approach was used to study the effect of Elf5 loss on Cdh1 gene expression by small interfering RNAs in fertilized oocytes. Changes in gene expression were measured by qPCR analysis, and developing embryos were visualized by microscopy. Loss of Elf5 arrested the embryos at the 2-cell stage, accompanied by a significant downregulation of Cdh1 expression. CONCLUSION The findings presented here illustrate the role of ELF5 in preimplantation development and in regulating the expression of Cdh1. The maintenance of the ELF5 and Cdh1 regulatory node proved essential for the proper development of the early mouse embryos, which is in agreement with the critical role of Elf5 and Cdh1 genes in regulating the early events during embryogenesis.
Collapse
|
2
|
Hu Y, Huang K, Zeng Q, Feng Y, Ke Q, An Q, Qin LJ, Cui Y, Guo Y, Zhao D, Peng Y, Tian D, Xia K, Chen Y, Ni B, Wang J, Zhu X, Wei L, Liu Y, Xiang P, Liu JY, Xue Z, Fan G. Single-cell analysis of nonhuman primate preimplantation development in comparison to humans and mice. Dev Dyn 2021; 250:974-985. [PMID: 33449399 DOI: 10.1002/dvdy.295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Genetic programs underlying preimplantation development and early lineage segregation are highly conserved across mammals. It has been suggested that nonhuman primates would be better model organisms for human embryogenesis, but a limited number of studies have investigated the monkey preimplantation development. In this study, we collect single cells from cynomolgus monkey preimplantation embryos for transcriptome profiling and compare with single-cell RNA-seq data derived from human and mouse embryos. RESULTS By weighted gene-coexpression network analysis, we found that cynomolgus gene networks have greater conservation with human embryos including a greater number of conserved hub genes than that of mouse embryos. Consistently, we found that early ICM/TE lineage-segregating genes in monkeys exhibit greater similarity with human when compared to mouse, so are the genes in signaling pathways such as LRP1 and TCF7 involving in WNT pathway. Last, we tested the role of one conserved pre-EGA hub gene, SIN3A, using a morpholino knockdown of maternal RNA transcripts in monkey embryos followed by single-cell RNA-seq. We found that SIN3A knockdown disrupts the gene-silencing program during the embryonic genome activation transition and results in developmental delay of cynomolgus embryos. CONCLUSION Taken together, our study provided new insight into evolutionarily conserved and divergent transcriptome dynamics during mammalian preimplantation development.
Collapse
Affiliation(s)
- Youjin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun-Ye-Sat University, Guangzhou, China.,Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Kevin Huang
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Qiao Zeng
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Feng
- Reproductive Medicine Center, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Qiong Ke
- Key Laboratory of Stem Cell Engineering Ministry of Education, Zhongshan College of Medicine, Sun-Ye-Sat University, Guangzhou, China
| | - Qin An
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Lian-Ju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - YuGui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ying Guo
- The Second Affiliated Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Dicheng Zhao
- State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu Peng
- State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, China
| | - Di Tian
- State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yong Chen
- Key Laboratory of Genetics and Birth Health of Hunan Province, Changsha, China
| | - Bin Ni
- Key Laboratory of Genetics and Birth Health of Hunan Province, Changsha, China
| | - Jinmei Wang
- Shanghai East Hospital, School of Life Sciences & Technology, Tongji University, Shanghai, China
| | - Xianmin Zhu
- Shanghai East Hospital, School of Life Sciences & Technology, Tongji University, Shanghai, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun-Ye-Sat University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun-Ye-Sat University, Guangzhou, China
| | - Peng Xiang
- Key Laboratory of Stem Cell Engineering Ministry of Education, Zhongshan College of Medicine, Sun-Ye-Sat University, Guangzhou, China
| | - Jia-Yin Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhigang Xue
- Reproductive Medicine Center, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
3
|
Nie ZW, Niu YJ, Zhou W, Zhou DJ, Kim JY, Cui XS. AGS3-dependent trans-Golgi network membrane trafficking is essential for compaction in mouse embryos. J Cell Sci 2020; 133:jcs.243238. [PMID: 33148610 DOI: 10.1242/jcs.243238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3, also known as GPSM1) regulates the trans-Golgi network. The AGS3 GoLoco motif binds to Gαi and thereby regulates the transport of proteins to the plasma membrane. Compaction of early embryos is based on the accumulation of E-cadherin (Cdh1) at cell-contacted membranes. However, how AGS3 regulates the transport of Cdh1 to the plasma membrane remains undetermined. To investigate this, AGS3 was knocked out using the Cas9-sgRNA system. Both trans-Golgi network protein 46 (TGN46, also known as TGOLN2) and transmembrane p24-trafficking protein 7 (TMED7) were tracked in early mouse embryos by tagging these proteins with a fluorescent protein label. We observed that the majority of the AGS3-edited embryos were developmentally arrested and were fragmented after the four-cell stage, exhibiting decreased accumulation of Cdh1 at the membrane. The trans-Golgi network and TMED7-positive vesicles were also dispersed and were not polarized near the membrane. Additionally, increased Gαi1 (encoded by GNAI1) expression could rescue AGS3-overexpressed embryos. In conclusion, AGS3 reinforces the dynamics of the trans-Golgi network and the transport of TMED7-positive cargo containing Cdh1 to the cell-contact surface during early mouse embryo development.
Collapse
Affiliation(s)
- Zheng-Wen Nie
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Ying-Jie Niu
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Wenjun Zhou
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Dong-Jie Zhou
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Ju-Yeon Kim
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| |
Collapse
|
4
|
Liu M, Yang HT. WNT4-like protein is a cortical granule component in mouse oocytes and functions in regulating preimplantation embryogenesis. Syst Biol Reprod Med 2015; 62:49-56. [PMID: 26700598 DOI: 10.3109/19396368.2015.1112445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mammalian cortical granules (CG) are membrane-bound organelles located in the cortex of the unfertilized oocytes. Upon fertilization, CG undergo exocytosis to function in blocking polyspermy. While cortical granules are important in fertilization, their exact biochemical composition and reproductive function have not been fully defined. In the present study, a 66 kDa wingless-type MMTV integration site family, member 4 (WNT4)-like protein, with mouse CG origin was identified. Oocytes that were double labeled with lectin Lens culinaris agglutinin (LCA) and WNT4 antibody showed colocalization of the WNT4 molecules and cortical granules. The disappearance of WNT4 molecules in the artificially activated oocytes that were devoid of cortical granules confirmed their granule origin. Following fertilization, WNT4 remained associated with zygotes and blastomeres of 2-cell and 8-cell embryos; however the amount of protein present was reduced more than 2-fold as embryos developed. Prior to implantation, WNT4 appeared to be detectable only in the trophoblast cells. Our functional study revealed that WNT4 molecules were involved in regulating zygotic cleavage and early embryogenesis. To our knowledge, this is the first study demonstrating mammalian cortical granules contain signaling molecules that are involved in the regulation of the first phase of embryonic development.
Collapse
Affiliation(s)
- Min Liu
- a Department of Life Science and.,b Graduate Institute of Biotechnology, Chinese Culture University , Taipei , Republic of China
| | - Huei-Ting Yang
- b Graduate Institute of Biotechnology, Chinese Culture University , Taipei , Republic of China
| |
Collapse
|
5
|
Kwon J, Namgoong S, Kim NH. CRISPR/Cas9 as tool for functional study of genes involved in preimplantation embryo development. PLoS One 2015; 10:e0120501. [PMID: 25775469 PMCID: PMC4361403 DOI: 10.1371/journal.pone.0120501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/23/2015] [Indexed: 01/08/2023] Open
Abstract
The CRISPR/Cas9 system has proven to be an efficient gene-editing tool for genome modification of cells and organisms. However, the applicability and efficiency of this system in pig embryos have not been studied in depth. Here, we aimed to remove porcine OCT4 function as a model case using the CRISPR/Cas9 system. Injection of Cas9 and single-guide RNA (sgRNA) against OCT4 decreased the percentages of OCT4-positive embryos to 37–50% of total embryos, while ~100% of control embryos exhibited clear OCT4 immunostaining. We assessed the mutation status near the guide sequence using polymerase chain reaction (PCR) and DNA sequencing, and a portion of blastocysts (20% in exon 2 and 50% in exon 5) had insertions/deletions near protospacer-adjacent motifs (PAMs). Different target sites had frequent deletions, but different concentrations of sgRNA made no impact. OCT4 mRNA levels dramatically decreased at the 8-cell stage, and they were barely detectable in blastocysts, while mRNA levels of other genes, including NANOG, and CDX2 were not affected. In addition, the combination of two sgRNAs led to large-scale deletion (about 1.8 kb) in the same chromosome. Next, we injected an enhanced green fluorescent protein (eGFP) vector targeting the OCT4 exon with Cas9 and sgRNA to create a knockin. We confirmed eGFP fluorescence in blastocysts in the inner cell mass, and also checked the mutation status using PCR and DNA sequencing. A significant portion of blastocysts had eGFP sequence insertions near PAM sites. The CRISPR/CAS9 system provides a good tool for gene functional studies by deleting target genes in the pig.
Collapse
Affiliation(s)
- Jeongwoo Kwon
- Department of Animal Sciences, Chungbuk National University, Naesudong-ro, Seowon-gu, Cheongju-si 362-763, Chungcheongbuk-do, Korea
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Naesudong-ro, Seowon-gu, Cheongju-si 362-763, Chungcheongbuk-do, Korea
- * E-mail: (SN); (NHK)
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Naesudong-ro, Seowon-gu, Cheongju-si 362-763, Chungcheongbuk-do, Korea
- * E-mail: (SN); (NHK)
| |
Collapse
|
6
|
Tallafuss A, Gibson D, Morcos P, Li Y, Seredick S, Eisen J, Washbourne P. Turning gene function ON and OFF using sense and antisense photo-morpholinos in zebrafish. Development 2012; 139:1691-9. [PMID: 22492359 PMCID: PMC3317972 DOI: 10.1242/dev.072702] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To understand the molecular mechanisms of development it is essential to be able to turn genes on and off at will and in a spatially restricted fashion. Morpholino oligonucleotides (MOs) are very common tools used in several model organisms with which it is possible to block gene expression. Recently developed photo-activated MOs allow control over the onset of MO activity. However, deactivation of photo-cleavable MO activity has remained elusive. Here, we describe photo-cleavable MOs with which it is possible to activate or de-activate MO function by UV exposure in a temporal and spatial manner. We show, using several different genes as examples, that it is possible to turn gene expression on or off both in the entire zebrafish embryo and in single cells. We use these tools to demonstrate the sufficiency of no tail expression as late as tailbud stage to drive medial precursor cells towards the notochord cell fate. As a broader approach for the use of photo-cleavable MOs, we show temporal control over gal4 function, which has many potential applications in multiple transgenic lines. We demonstrate temporal manipulation of Gal4 transgene expression in only primary motoneurons and not secondary motoneurons, heretofore impossible with conventional transgenic approaches. In another example, we follow and analyze neural crest cells that regained sox10 function after deactivation of a photo-cleavable sox10-MO at different time points. Our results suggest that sox10 function might not be critical during neural crest formation.
Collapse
|
7
|
Analysis of fiber-type differences in reporter gene expression of β-gal transgenic muscle. Methods Mol Biol 2012; 798:445-59. [PMID: 22130853 DOI: 10.1007/978-1-61779-343-1_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
β-galactosidase (β-gal) is among the most frequently used markers for studying a wide variety of biological mechanisms, e.g., gene expression, cell migration, stem cell conversion to different cell types, and gene silencing. Many of these studies require the histochemical detection of relative β-gal levels in tissue cross-sections mounted onto glass slides and visualized by microscopy. This is particularly useful for the analysis of promoter activity in skeletal muscle tissue since the β-gal levels can vary dramatically between different anatomical muscles and myofiber types. The differences in promoter activity can be due to a myofiber's developmental history, innervation, response to normal or experimental physiological signals, and its disease state. It is thus important to identify the individual fiber types within muscle cross-sections and to correlate these with transgene expression signals. Here, we provide a detailed description of how to process and analyze muscle tissues to determine the fiber-type composition and β-gal transgene expression within cryosections.
Collapse
|
8
|
|
9
|
Abstract
Proper embryonic development is guaranteed under conditions of regulated cell-cell and cell-matrix adhesion. The cells of an embryo have to be able to distinguish their neighbours as being alike or different. Cadherins, single-pass transmembrane, Ca(2+)-dependent adhesion molecules that mainly interact in a homophilic manner, are major contributors to cell-cell adhesion. Cadherins play pivotal roles in important morphogenetic and differentiation processes during development, and in maintaining tissue integrity and homeostasis. Changes in cadherin expression throughout development enable differentiation and the formation of various organs. In addition to these functions, cadherins have strong implications in tumourigenesis, since frequently tumour cells show deregulated cadherin expression and inappropriate switching among family members. In this review, I focus on E- and N-cadherin, giving an overview of their structure, cellular function, importance during development, role in cancer, and of the complexity of Ecadherin gene regulation.
Collapse
Affiliation(s)
- Marc P Stemmler
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany.
| |
Collapse
|
10
|
Kan NG, Stemmler MP, Junghans D, Kanzler B, de Vries WN, Dominis M, Kemler R. Gene replacement reveals a specific role for E-cadherin in the formation of a functional trophectoderm. Development 2007; 134:31-41. [PMID: 17138661 DOI: 10.1242/dev.02722] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During mammalian embryogenesis the trophectoderm represents the first epithelial structure formed. The cell adhesion molecule E-cadherin is ultimately necessary for the transition from compacted morula to the formation of the blastocyst to ensure correct establishment of adhesion junctions in the trophectoderm. Here, we analyzed to what extent E-cadherin confers unique adhesion and signaling properties in trophectoderm formation in vivo. Using a gene replacement approach, we introduced N-cadherin cDNA into the E-cadherin genomic locus. We show that the expression of N-cadherin driven from the E-cadherin locus reflects the expression pattern of endogenous E-cadherin. Heterozygous mice co-expressing E- and N-cadherin are vital and show normal embryonic development. Interestingly, N-cadherin homozygous mutant embryos phenocopy E-cadherin-null mutant embryos. Upon removal of the maternal E-cadherin, we demonstrate that N-cadherin is able to provide sufficient cellular adhesion to mediate morula compaction, but is insufficient for the subsequent formation of a fully polarized functional trophectoderm. When ES cells were isolated from N-cadherin homozygous mutant embryos and teratomas were produced, these ES cells differentiated into a large variety of tissue-like structures. Importantly, different epithelial-like structures expressing N-cadherin were formed, including respiratory epithelia, squamous epithelia with signs of keratinization and secretory epithelia with goblet cells. Thus, N-cadherin can maintain epithelia in differentiating ES cells,but not during the formation of the trophectoderm. Our results point to a specific and unique function for E-cadherin during mouse preimplantation development.
Collapse
Affiliation(s)
- Natalia G Kan
- Max-Planck-Institut für Immunbiologie, Abteilung für Molekulare Embryologie, Stübeweg 51, D-79108 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Wu S, Page L, Sherwood NM. A role for GnRH in early brain regionalization and eye development in zebrafish. Mol Cell Endocrinol 2006; 257-258:47-64. [PMID: 16934393 DOI: 10.1016/j.mce.2006.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 06/12/2006] [Accepted: 06/23/2006] [Indexed: 11/22/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a highly conserved peptide that is expressed early in brain development in vertebrates. In zebrafish, we detected GnRH mRNA within 2h post fertilization by RT-PCR. To determine if GnRH is involved in development, we used gene knockdown techniques to block translation of gnrh2 or gnrh3 mRNA after which the expression patterns for gene markers were examined at 24h post fertilization with in situ hybridization. First, loss of either GnRH2 or GnRH3 affected regionalization of the brain as shown by a change in expression of fgf8 or pax2.1 genes in the midbrain-hindbrain boundary or diencephalon-midbrain boundary. Second, lack of GnRH2 and/or GnRH3 altered gene markers expressed in the formation of the eye cup (pax2.1, pax6.1, mab21l2 and meis1.1) or eye stalk (fgf8 and pax2.1). Third, knockdown of GnRH2 affected the size and shape of the midbrain and expression of gene markers therein. Results from assays with the TUNEL method and caspase-3 and -9 activity showed the brain and eye changes were unlikely to result from secondary apoptotic cell death before 24h post fertilization. These experiments suggest that GnRH loss-of-function affects early brain and eye formation during development.
Collapse
Affiliation(s)
- Sheng Wu
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | | |
Collapse
|
12
|
Hyenne V, Louvet-Vallée S, El-Amraoui A, Petit C, Maro B, Simmler MC. Vezatin, a protein associated to adherens junctions, is required for mouse blastocyst morphogenesis. Dev Biol 2005; 287:180-91. [PMID: 16199027 DOI: 10.1016/j.ydbio.2005.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 08/24/2005] [Accepted: 09/01/2005] [Indexed: 11/16/2022]
Abstract
Cell-cell interactions play a major role during preimplantation development of the mouse embryo. The formation of adherens junctions is a major feature of compaction, the first morphogenetic event that takes place at the 8-cell stage. Then, during the following two cell cycles, tight junctions form, and the outer layer of cells differentiate into a functional epithelium, leading to the formation of the blastocoel cavity. Until now, E-cadherin was the only transmembrane molecule localized in adherens junctions and required for early development. Vezatin is a transmembrane protein of adherens junctions, interacting with the E-cadherin-catenins complex. Here, we show that vezatin is expressed very early during mouse preimplantation development. It co-localizes with E-cadherin throughout development, being found all around the cell cortex before compaction and basolaterally in adherens junctions thereafter. In addition, vezatin is also detected in nuclei during most of the cell cycle. Finally, using a morpholino-oligonucleotide approach to inhibit vezatin function during preimplantation development, we observed that inhibition of vezatin synthesis leads to a cell cycle arrest with limited cell-cell interactions. This phenotype can be rescued when mRNAs coding for vezatin missing the 5'UTR are co-injected with the anti-vezatin morpholino-oligonucleotide. Cells derived from blastomeres injected with morpholino-oligonucleotide had a reduced amount of vezatin concomitantly with a decrease in the quantity of E-cadherin and beta-catenin localized in the areas of intercellular contact. Shift in E-cadherin cortical distribution was correlated with a strong decrease in E-cadherin mRNA and protein contents. Altogether, these observations demonstrate that vezatin is required for morphogenesis of the preimplantation mouse embryo.
Collapse
Affiliation(s)
- Vincent Hyenne
- Laboratoire de Biologie Cellulaire du Développement, UMR 7622, CNRS, Université Pierre et Marie Curie, 75252 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
13
|
De Vries WN, Evsikov AV, Haac BE, Fancher KS, Holbrook AE, Kemler R, Solter D, Knowles BB. Maternal beta-catenin and E-cadherin in mouse development. Development 2004; 131:4435-45. [PMID: 15306566 DOI: 10.1242/dev.01316] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The oocyte to embryo transition in metazoans depends on maternal proteins and transcripts to ensure the successful initiation of development, and the correct and timely activation of the embryonic genome. We conditionally eliminated the maternal gene encoding the cell adhesion molecule E-cadherin and partially eliminated the beta-catenin gene from the mouse oocyte. Oocytes lacking E-cadherin, or expressing a truncated allele of beta-catenin without the N-terminal part of the protein, give rise to embryos whose blastomeres do not adhere. Blastomere adhesion is restored after translation of protein from the wild-type paternal alleles: at the morula stage in embryos lacking maternal E-cadherin, and at the late four-cell stage in embryos expressing truncated beta-catenin. This suggests that adhesion per se is not essential in the early cleavage stage embryos, that embryos develop normally if compaction does not occur until the morula stage, and that the zona pellucida suffices to maintain blastomere proximity. Although maternal E-cadherin is not essential for the completion of the oocyte-to-embryo transition, absence of wild-type beta-catenin in oocytes does statistically compromise developmental success rates. This developmental deficit is alleviated by the simultaneous absence of maternal E-cadherin, suggesting that E-cadherin regulates nuclear beta-catenin availability during embryonic genome activation.
Collapse
|