1
|
Krishnakumar S, Malavika RN, Nair SV, Menon D, Paul-Prasanth B. Nano-graphene oxide particles induce inheritable anomalies through altered gene expressions involved in oocyte maturation. Nanotoxicology 2024; 18:160-180. [PMID: 38449436 DOI: 10.1080/17435390.2024.2325615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
The inheritable impact of exposure to graphene oxide nanoparticles (GO NPs) on vertebrate germline during critical windows of gamete development remain undetermined to date. Here, we analyzed the transgenerational effects of exposure to nano-graphene oxide particles (nGO) synthesized in house with lateral dimensions 300-600 nm and surface charge of -36.8 mV on different developmental stages of germ cells (GCs): (1) during GCs undergoing early development and differentiation, and (2) during GCs undergoing gametogenesis and maturation in adulthood. Biocompatibility analyses in Japanese medaka embryos showed lethality above 1 µg/ml and also an aberrant increase in germ cell count of both males and females at doses below the lethal dose. However, no lethality or anomalies were evident in adults up to 45 µg/ml. Long term exposure of embryos and adults for 21 days resulted in reduced fecundity. This effect was transmitted to subsequent generations, F1 and F2. Importantly, the inheritable effects of nGO in adults were pronounced at a high dose of 10 µg/ml, while 1 µg/ml showed no impact on the germline indicating lower doses used in this study to be safe. Further, expressions of selected genes that adversely affected oocyte maturation were enhanced in F1 and F2 individuals. Interestingly, the inheritance patterns differed corresponding to the stage at which the fish received the exposure.
Collapse
Affiliation(s)
- Sreelakshmi Krishnakumar
- School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi Campus, Kerala, India
| | - Raghunath Nair Malavika
- School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi Campus, Kerala, India
| | - Shantikumar V Nair
- School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi Campus, Kerala, India
| | - Deepthy Menon
- School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi Campus, Kerala, India
| | - Bindhu Paul-Prasanth
- School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi Campus, Kerala, India
| |
Collapse
|
2
|
Tollefsen KE, Alonzo F, Beresford NA, Brede DA, Dufourcq-Sekatcheff E, Gilbin R, Horemans N, Hurem S, Laloi P, Maremonti E, Oughton D, Simon O, Song Y, Wood MD, Xie L, Frelon S. Adverse outcome pathways (AOPs) for radiation-induced reproductive effects in environmental species: state of science and identification of a consensus AOP network. Int J Radiat Biol 2022; 98:1816-1831. [PMID: 35976054 DOI: 10.1080/09553002.2022.2110317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Reproductive effects of ionizing radiation in organisms have been observed under laboratory and field conditions. Such assessments often rely on associations between exposure and effects, and thus lacking a detailed mechanistic understanding of causality between effects occurring at different levels of biological organization. The Adverse Outcome Pathway (AOP), a conceptual knowledge framework to capture, organize, evaluate and visualize the scientific knowledge of relevant toxicological effects, has the potential to evaluate the causal relationships between molecular, cellular, individual, and population effects. This paper presents the first development of a set of consensus AOPs for reproductive effects of ionizing radiation in wildlife. This work was performed by a group of experts formed during a workshop organized jointly by the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radioecology Alliance (ALLIANCE) associations to present the AOP approach and tools. The work presents a series of taxon-specific case studies that were used to identify relevant empirical evidence, identify common AOP components and propose a set of consensus AOPs that could be organized into an AOP network with broader taxonomic applicability. CONCLUSION Expert consultation led to the identification of key biological events and description of causal linkages between ionizing radiation, reproductive impairment and reduction in population fitness. The study characterized the knowledge domain of taxon-specific AOPs, identified knowledge gaps pertinent to reproductive-relevant AOP development and reflected on how AOPs could assist applications in radiation (radioecological) research, environmental health assessment, and radiological protection. Future advancement and consolidation of the AOPs is planned to include structured weight of evidence considerations, formalized review and critical assessment of the empirical evidence prior to formal submission and review by the OECD sponsored AOP development program.
Collapse
Affiliation(s)
- Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Frédéric Alonzo
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Nicholas A Beresford
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, UK.,School of Science, Engineering & Environment, University of Salford, Salford, UK
| | - Dag Anders Brede
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Elizabeth Dufourcq-Sekatcheff
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Rodolphe Gilbin
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | | | - Selma Hurem
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Faculty of Veterinary medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Patrick Laloi
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Erica Maremonti
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Deborah Oughton
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Olivier Simon
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - You Song
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Michael D Wood
- School of Science, Engineering & Environment, University of Salford, Salford, UK
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sandrine Frelon
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| |
Collapse
|
3
|
Dohi E, Matsui H. The Utility of Small Fishes for the Genetic Study of Human Age-Related Disorders. Front Genet 2022; 13:928597. [PMID: 35910227 PMCID: PMC9335361 DOI: 10.3389/fgene.2022.928597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Animal models have been used to model human diseases, and among them, small fishes have been highlighted for their usefulness in various ways, such as the low cost of maintenance, ease of genetic modification, small size for easy handling, and strength in imaging studies due to their relative transparency. Recently, the use of turquoise killifish, Nothobranchius furzeri, which is known to exhibit various aging phenotypes in a short period, has attracted attention in research on aging and age-related diseases. However, when using animal models, it is important to keep their genetic background and interspecies differences in mind for translating them into human diseases. In this article, we obtained the gene symbols of protein-coding genes of turquoise killifish, medaka, zebrafish, and humans from NCBI datasets and extracted common shared genes among four species to explore the potential of interspecies translational research and to apply small fish models for human age-related disorders. Common shared protein-coding genes were analyzed with the Reactome Pathway Database to determine the coverage of these genes in each pathway in humans. We applied common shared genes to the Orphanet database to establish a list of human diseases that contain common shared genes among the four species. As examples, the senescence-related pathways and some pathways of human age-related diseases, such as Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, nonalcoholic fatty liver disease, progeria, hepatocellular carcinoma, and renal cell carcinoma, were extracted from the curated pathway and disease list to discuss the further utility of fish models for human age-related disorders.
Collapse
|
4
|
Fitzgerald T, Brettell I, Leger A, Wolf N, Kusminski N, Monahan J, Barton C, Herder C, Aadepu N, Gierten J, Becker C, Hammouda OT, Hasel E, Lischik C, Lust K, Sokolova N, Suzuki R, Tsingos E, Tavhelidse T, Thumberger T, Watson P, Welz B, Khouja N, Naruse K, Birney E, Wittbrodt J, Loosli F. The Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel. Genome Biol 2022; 23:59. [PMID: 35189950 PMCID: PMC8862526 DOI: 10.1186/s13059-022-02623-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Unraveling the relationship between genetic variation and phenotypic traits remains a fundamental challenge in biology. Mapping variants underlying complex traits while controlling for confounding environmental factors is often problematic. To address this, we establish a vertebrate genetic resource specifically to allow for robust genotype-to-phenotype investigations. The teleost medaka (Oryzias latipes) is an established genetic model system with a long history of genetic research and a high tolerance to inbreeding from the wild. RESULTS Here we present the Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel: the first near-isogenic panel of 80 inbred lines in a vertebrate model derived from a wild founder population. Inbred lines provide fixed genomes that are a prerequisite for the replication of studies, studies which vary both the genetics and environment in a controlled manner, and functional testing. The MIKK panel will therefore enable phenotype-to-genotype association studies of complex genetic traits while allowing for careful control of interacting factors, with numerous applications in genetic research, human health, drug development, and fundamental biology. CONCLUSIONS Here we present a detailed characterization of the genetic variation across the MIKK panel, which provides a rich and unique genetic resource to the community by enabling large-scale experiments for mapping complex traits.
Collapse
Affiliation(s)
- Tomas Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ian Brettell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Adrien Leger
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Nadeshda Wolf
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Natalja Kusminski
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Jack Monahan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Carl Barton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Cathrin Herder
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Narendar Aadepu
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Jakob Gierten
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Clara Becker
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Omar T Hammouda
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Eva Hasel
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Colin Lischik
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Katharina Lust
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Natalia Sokolova
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Risa Suzuki
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Erika Tsingos
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Tinatini Tavhelidse
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Philip Watson
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Bettina Welz
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Nadia Khouja
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Kiyoshi Naruse
- National Institute for Basic Biology, Laboratory of Bioresources, Okazaki, Japan
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Campus Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
| |
Collapse
|
5
|
Bertho S, Herpin A, Jouanno E, Yano A, Bobe J, Parrinello H, Journot L, Guyomard R, Muller T, Swanson P, McKinney G, Williamson K, Meek M, Schartl M, Guiguen Y. A nonfunctional copy of the salmonid sex-determining gene ( sdY) is responsible for the “apparent” XY females in Chinook salmon, Oncorhynchus tshawytscha. G3 GENES|GENOMES|GENETICS 2022; 12:6493265. [PMID: 35100376 PMCID: PMC8824802 DOI: 10.1093/g3journal/jkab451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/03/2021] [Indexed: 11/14/2022]
Abstract
Abstract
Many salmonids have a male heterogametic (XX/XY) sex determination system, and they are supposed to have a conserved master sex-determining gene (sdY) that interacts at the protein level with Foxl2 leading to the blockage of the synergistic induction of Foxl2 and Nr5a1 of the cyp19a1a promoter. However, this hypothesis of a conserved master sex-determining role of sdY in salmonids is challenged by a few exceptions, one of them being the presence of naturally occurring “apparent” XY Chinook salmon, Oncorhynchus tshawytscha, females. Here, we show that some XY Chinook salmon females have a sdY gene (sdY-N183), with 1 missense mutation leading to a substitution of a conserved isoleucine to an asparagine (I183N). In contrast, Chinook salmon males have both a nonmutated sdY-I183 gene and the missense mutation sdY-N183 gene. The 3-dimensional model of SdY-I183N predicts that the I183N hydrophobic to hydrophilic amino acid change leads to a modification in the SdY β-sandwich structure. Using in vitro cell transfection assays, we found that SdY-I183N, like the wild-type SdY, is preferentially localized in the cytoplasm. However, compared to wild-type SdY, SdY-I183N is more prone to degradation, its nuclear translocation by Foxl2 is reduced, and SdY-I183N is unable to significantly repress the synergistic Foxl2/Nr5a1 induction of the cyp19a1a promoter. Altogether, our results suggest that the sdY-N183 gene of XY Chinook females is nonfunctional and that SdY-I183N is no longer able to promote testicular differentiation by impairing the synthesis of estrogens in the early differentiating gonads of wild Chinook salmon XY females.
Collapse
Affiliation(s)
- Sylvain Bertho
- INRAE, LPGP, Rennes 35000, France
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg 97074, Germany
| | | | | | | | | | - Hugues Parrinello
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier 34094, France
| | - Laurent Journot
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier 34094, France
| | - René Guyomard
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, Paris 75005, France
| | - Thomas Muller
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Penny Swanson
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Garrett McKinney
- Molecular Genetics Laboratory, Washington Department of Fish & Wildlife, Olympia, WA 98501, USA
| | | | - Mariah Meek
- Dept. of Integrative Biology, AgBio Research, and Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
- Department of Developmental Biochemistry, Biocenter, University of Wüerzburg, Wuerzburg 97074, Germany
| | | |
Collapse
|
6
|
Zebrafish, Medaka and Turquoise Killifish for Understanding Human Neurodegenerative/Neurodevelopmental Disorders. Int J Mol Sci 2022; 23:ijms23031399. [PMID: 35163337 PMCID: PMC8836067 DOI: 10.3390/ijms23031399] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
In recent years, small fishes such as zebrafish and medaka have been widely recognized as model animals. They have high homology in genetics and tissue structure with humans and unique features that mammalian model animals do not have, such as transparency of embryos and larvae, a small body size and ease of experiments, including genetic manipulation. Zebrafish and medaka have been used extensively in the field of neurology, especially to unveil the mechanisms of neurodegenerative diseases such as Parkinson's and Alzheimer's disease, and recently, these fishes have also been utilized to understand neurodevelopmental disorders such as autism spectrum disorder. The turquoise killifish has emerged as a new and unique model animal, especially for ageing research due to its unique life cycle, and this fish also seems to be useful for age-related neurological diseases. These small fishes are excellent animal models for the analysis of human neurological disorders and are expected to play increasing roles in this field. Here, we introduce various applications of these model fishes to improve our understanding of human neurological disorders.
Collapse
|
7
|
Tao W, Cao J, Xiao H, Zhu X, Dong J, Kocher TD, Lu M, Wang D. A Chromosome-Level Genome Assembly of Mozambique Tilapia ( Oreochromis mossambicus) Reveals the Structure of Sex Determining Regions. Front Genet 2021; 12:796211. [PMID: 34956335 PMCID: PMC8692795 DOI: 10.3389/fgene.2021.796211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The Mozambique tilapia (Oreochromis mossambicus) is a fascinating taxon for evolutionary and ecological research. It is an important food fish and one of the most widely distributed tilapias. Because males grow faster than females, genetically male tilapia are preferred in aquaculture. However, studies of sex determination and sex control in O. mossambicus have been hindered by the limited characterization of the genome. To address this gap, we assembled a high-quality genome of O. mossambicus, using a combination of high coverage of Illumina and Nanopore reads, coupled with Hi-C and RNA-Seq data. Our genome assembly spans 1,007 Mb with a scaffold N50 of 11.38 Mb. We successfully anchored and oriented 98.6% of the genome on 22 linkage groups (LGs). Based on re-sequencing data for male and female fishes from three families, O. mossambicus segregates both an XY system on LG14 and a ZW system on LG3. The sex-patterned SNPs shared by two XY families narrowed the sex determining regions to ∼3 Mb on LG14. The shared sex-patterned SNPs included two deleterious missense mutations in ahnak and rhbdd1, indicating the possible roles of these two genes in sex determination. This annotated chromosome-level genome assembly and identification of sex determining regions represents a valuable resource to help understand the evolution of genetic sex determination in tilapias.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianmeng Cao
- Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Science, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Guangzhou, China
| | - Hesheng Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xi Zhu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Junjian Dong
- Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Science, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Guangzhou, China
| | - Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, Rockville, MD, United States
| | - Maixin Lu
- Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Science, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Guangzhou, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Lin CJ, Jeng SR, Lei ZY, Yueh WS, Dufour S, Wu GC, Chang CF. Involvement of Transforming Growth Factor Beta Family Genes in Gonadal Differentiation in Japanese Eel, Anguilla japonica, According to Sex-Related Gene Expressions. Cells 2021; 10:cells10113007. [PMID: 34831230 PMCID: PMC8616510 DOI: 10.3390/cells10113007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
The gonochoristic feature with environmental sex determination that occurs during the yellow stage in the eel provides an interesting model to investigate the mechanisms of gonadal development. We previously studied various sex-related genes during gonadal sex differentiation in Japanese eels. In the present study, the members of transforming growth factor beta (TGF-β) superfamily were investigated. Transcript levels of anti-Müllerian hormone, its receptor, gonadal soma-derived factor (amh, amhr2, and gsdf, respectively) measured by real-time polymerase chain reaction (qPCR) showed a strong sexual dimorphism. Transcripts were dominantly expressed in the testis, and their levels significantly increased with testicular differentiation. In contrast, the expressions of amh, amhr2, and gsdf transcripts were low in the ovary of E2-feminized female eels. In situ hybridization detected gsdf (but not amh) transcript signals in undifferentiated gonads. amh and gsdf signals were localized to Sertoli cells and had increased significantly with testicular differentiation. Weak gsdf and no amh signals were detected in early ovaries of E2-feminized female eels. Transcript levels of amh and gsdf (not amhr2) decreased during human chorionic gonadotropin (HCG)-induced spermatogenesis in males. This study suggests that amh, amhr2, and especially gsdf might be involved in the gene pathway regulating testicular differentiation of Japanese eels.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| | - Zhen-Yuan Lei
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d’Histoire Naturelle, CNRS, IRD, Sorbonne Université, CEDEX 05, 75231 Paris, France;
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Guan-Chung Wu
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| |
Collapse
|
9
|
Wang F, Qin Z, Li Z, Yang S, Gao T, Sun L, Wang D. Dnmt3aa but Not Dnmt3ab Is Required for Maintenance of Gametogenesis in Nile Tilapia ( Oreochromis niloticus). Int J Mol Sci 2021; 22:ijms221810170. [PMID: 34576333 PMCID: PMC8469005 DOI: 10.3390/ijms221810170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
Dnmt3a, a de novo methyltransferase, is essential for mammalian germ line DNA methylation. Only one Dnmt3a is identified in mammals, and homozygous mutants of Dnmt3a are lethal, while two Dnmt3a paralogs, dnmt3aa and dnmt3ab, are identified in teleosts due to the third round of genome duplication, and homozygous mutants of dnmt3aa and dnmt3ab are viable in zebrafish. The expression patterns and roles of dnmt3aa and dnmt3ab in gonadal development remain poorly understood in teleosts. In this study, we elucidated the precise expression patterns of dnmt3aa and dnmt3ab in tilapia gonads. Dnmt3aa was highly expressed in oogonia, phase I and II oocytes and granulosa cells in ovaries and spermatogonia and spermatocytes in testes, while dnmt3ab was mainly expressed in ovarian granulosa cells and testicular spermatocytes. The mutation of dnmt3aa and dnmt3ab was achieved by CRISPR/Cas9 in tilapia. Lower gonadosomatic index (GSI), increased apoptosis of oocytes and spermatocytes and significantly reduced sperm quality were observed in dnmt3aa−/− mutants, while normal gonadal development was observed in dnmt3ab−/− mutants. Consistently, the expression of apoptotic genes was significantly increased in dnmt3aa−/− mutants. In addition, the 5-methylcytosine (5-mC) level in dnmt3aa−/− gonads was decreased significantly, compared with that of dnmt3ab−/− and wild type (WT) gonads. Taken together, our results suggest that dnmt3aa, not dnmt3ab, plays important roles in maintaining gametogenesis in teleosts.
Collapse
Affiliation(s)
| | | | | | | | | | - Lina Sun
- Correspondence: (L.S.); (D.W.); Tel.: +86-23-6825-3702 (D.W.)
| | - Deshou Wang
- Correspondence: (L.S.); (D.W.); Tel.: +86-23-6825-3702 (D.W.)
| |
Collapse
|
10
|
Multi-Tissue Transcriptome Analysis Identifies Key Sexual Development-Related Genes of the Ornate Spiny Lobster ( Panulirus ornatus). Genes (Basel) 2020; 11:genes11101150. [PMID: 33003631 PMCID: PMC7600227 DOI: 10.3390/genes11101150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Sexual development involves the successive and overlapping processes of sex determination, sexual differentiation, and ultimately sexual maturation, enabling animals to reproduce. This provides a mechanism for enriched genetic variation which enables populations to withstand ever-changing environments, selecting for adapted individuals and driving speciation. The molecular mechanisms of sexual development display a bewildering diversity, even in closely related taxa. Many sex determination mechanisms across animals include the key family of "doublesex- and male abnormal3-related transcription factors" (Dmrts). In a few exceptional species, a single Dmrt residing on a sex chromosome acts as the master sex regulator. In this study, we provide compelling evidence for this model of sex determination in the ornate spiny lobster Panulius ornatus, concurrent with recent reports in the eastern spiny lobster Sagmariasus verreauxi. Using a multi-tissue transcriptomic database established for P. ornatus, we screened for the key factors associated with sexual development (by homology search and using previous knowledge of these factors from related species), providing an in-depth understanding of sexual development in decapods. Further research has the potential to close significant gaps in our understanding of reproductive development in this ecologically and commercially significant order.
Collapse
|
11
|
Wang X, Bhandari RK. The dynamics of DNA methylation during epigenetic reprogramming of primordial germ cells in medaka ( Oryzias latipes). Epigenetics 2020; 15:483-498. [PMID: 31851575 PMCID: PMC7188396 DOI: 10.1080/15592294.2019.1695341] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 11/22/2022] Open
Abstract
Primordial germ cells (PGCs) are precursors of eggs and sperm. How the PGCs epigenetically reprogram during early embryonic development in fish is currently unknown. Here we generated a series of PGC methylomes using whole genome bisulfite sequencing across key stages from 8 days post fertilization (dpf) to 25 dpf coinciding with germ cell sex determination and gonadal sex differentiation in medaka (Oryzias latipes) to elucidate the dynamics of DNA methylation during epigenetic reprogramming in germ cells. Our high-resolution DNA methylome maps show a global demethylation taking place in medaka PGCs in a two-step strategy. The first step occurs between the blastula and 8-dpf stages, and the second step occurs between the 10-dpf and 12-dpf stages. Both demethylation processes are global, except for CGI promoters which remain hypomethylated throughout the stage of PGC specification. De novo methylation proceeded at 25-dpf stage with the process in male germ cells superseding female germ cells. Gene expression analysis showed that tet2 maintains high levels of expression during the demethylation stage, while dnmt3ba expression increases during the de novo methylation stage during sexual fate determination in germ cells. The present results suggest that medaka PGCs undergo a bi-phasic epigenetic reprogramming process. Global erasure of DNA methylation marks peaks at 15-dpf and de novo methylation in male germ cells takes precedence over female germ cells at 25 dpf. Results also provide important insights into the developmental window of susceptibility to environmental stressors for multi- and trans-generational health outcomes in fish.
Collapse
Affiliation(s)
- Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Ramji Kumar Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| |
Collapse
|
12
|
Construction of High-Resolution RAD-Seq Based Linkage Map, Anchoring Reference Genome, and QTL Mapping of the Sex Chromosome in the Marine Medaka Oryzias melastigma. G3-GENES GENOMES GENETICS 2019; 9:3537-3545. [PMID: 31530635 PMCID: PMC6829124 DOI: 10.1534/g3.119.400708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Medaka (Oryzias sp.) is an important fish species in ecotoxicology and considered as a model species due to its biological features including small body size and short generation time. Since Japanese medaka Oryzias latipes is a freshwater species with access to an excellent genome resource, the marine medaka Oryzias melastigma is also applicable for the marine ecotoxicology. In genome era, a high-density genetic linkage map is a very useful resource in genomic research, providing a means for comparative genomic analysis and verification of de novo genome assembly. In this study, we developed a high-density genetic linkage map for O. melastigma using restriction-site associated DNA sequencing (RAD-seq). The genetic map consisted of 24 linkage groups with 2,481 single nucleotide polymorphism (SNP) markers. The total map length was 1,784 cM with an average marker space of 0.72 cM. The genetic map was integrated with the reference-assisted chromosome assembly (RACA) of O. melastigma, which anchored 90.7% of the assembled sequence onto the linkage map. The values of complete Benchmarking Universal Single-Copy Orthologs were similar to RACA assembly but N50 (23.74 Mb; total genome length 779.4 Mb; gap 5.29%) increased to 29.99 Mb (total genome length 778.7 Mb; gap 5.2%). Using MapQTL analysis with SNP markers, we identified a major quantitative trait locus for sex traits on the Om10. The integration of the genetic map with the reference genome of marine medaka will serve as a good resource for studies in molecular toxicology, genomics, CRISPR/Cas9, and epigenetics.
Collapse
|
13
|
Dechaud C, Volff JN, Schartl M, Naville M. Sex and the TEs: transposable elements in sexual development and function in animals. Mob DNA 2019; 10:42. [PMID: 31700550 PMCID: PMC6825717 DOI: 10.1186/s13100-019-0185-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
Transposable elements are endogenous DNA sequences able to integrate into and multiply within genomes. They constitute a major source of genetic innovations, as they can not only rearrange genomes but also spread ready-to-use regulatory sequences able to modify host gene expression, and even can give birth to new host genes. As their evolutionary success depends on their vertical transmission, transposable elements are intrinsically linked to reproduction. In organisms with sexual reproduction, this implies that transposable elements have to manifest their transpositional activity in germ cells or their progenitors. The control of sexual development and function can be very versatile, and several studies have demonstrated the implication of transposable elements in the evolution of sex. In this review, we report the functional and evolutionary relationships between transposable elements and sexual reproduction in animals. In particular, we highlight how transposable elements can influence expression of sexual development genes, and how, reciprocally, they are tightly controlled in gonads. We also review how transposable elements contribute to the organization, expression and evolution of sexual development genes and sex chromosomes. This underscores the intricate co-evolution between host functions and transposable elements, which regularly shift from a parasitic to a domesticated status useful to the host.
Collapse
Affiliation(s)
- Corentin Dechaud
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| | - Manfred Schartl
- Entwicklungsbiochemie, Biozentrum, Universität Würzburg, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX USA
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| |
Collapse
|
14
|
Miller JT, Reid NM, Nacci DE, Whitehead A. Developing a High-Quality Linkage Map for the Atlantic Killifish Fundulus heteroclitus. G3 (BETHESDA, MD.) 2019; 9:2851-2862. [PMID: 31289021 PMCID: PMC6723127 DOI: 10.1534/g3.119.400262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022]
Abstract
Killifish (Fundulus heteroclitus) are widely distributed among different aquatic environments where they demonstrate an impressive range of highly-plastic and locally adaptive phenotypes. High-throughput sequencing has begun to unravel the mechanisms and evolutionary history of these interesting features by establishing relationships in the genotype-phenotype map. However, some genotype-phenotype analyses require a higher order of contiguity than what initial scaffolded (fragmented genome assembly where contigs have been assemble into scaffolds) genome assemblies can provide. Here, we used 5,685 high-quality RAD-Seq markers from a single mapping family to order 84% of the scaffolded genome assembly to 24 chromosomes. This serves to: 1) expand the killifish genomic toolkit, 2) estimate genome-wide recombination rates, and 3) compare genome synteny to humans and other fishes. After initially building our map, we found that the selection of thresholds for sequence data filtration highly impacted scaffold placement in the map. We outline each step of the approach that dramatically improved our map to help guide others toward more effective linkage mapping for genome assembly. Our final map supports strong conservation of genomic synteny among closely related fish species and reveals previously described chromosomal rearrangements between more distantly related clades. However, we also commonly found minor scaffold misorientations in F. heteroclitus and in other assemblies, suggesting that further mapping (such as optical mapping) is necessary for finer scale resolution of genome structure. Lastly, we discuss the problems that would be expected from misoriented/unplaced scaffolds and stress the importance of a quality mapped genome as a key feature for further investigating population and comparative genomic questions with F. heteroclitus and other taxa.
Collapse
Affiliation(s)
- Jeffrey T Miller
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences Institute, University of California, Davis, CA
| | - Noah M Reid
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT, and
| | - Diane E Nacci
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Narragansett, RI
| | - Andrew Whitehead
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences Institute, University of California, Davis, CA
| |
Collapse
|
15
|
The autosomal Gsdf gene plays a role in male gonad development in Chinese tongue sole (Cynoglossus semilaevis). Sci Rep 2018; 8:17716. [PMID: 30531973 PMCID: PMC6286346 DOI: 10.1038/s41598-018-35553-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022] Open
Abstract
Gsdf is a key gene for testicular differentiation in teleost. However, little is known about the function of Gsdf in Chinese tongue sole (Cynoglossus semilaevis). In this study, we obtained the full-length Gsdf gene (CS-Gsdf), and functional characterization revealed its potential participation during germ cell differentiation in testes. CS-Gsdf transcription was predominantly detected in gonads, while the levels in testes were significantly higher than those in ovaries. During the different developmental stages in male gonads, the mRNA level was significantly upregulated at 86 dph, and a peak appeared at 120 dph; then, the level decreased at 1 and 2 yph. In situ hybridization revealed that CS-Gsdf mRNA was mainly localized in the Sertoli cells, spermatogonia, and spermatids in mature testes. After CS-Gsdf knockdown in the male testes cell line by RNA interference, a series of sex-related genes was influenced, including several sex differentiation genes, CS-Wnt4a, CS-Cyp19a1a and CS-Star. Based on these data, we speculated that CS-Gsdf may play a positive role in germ differentiation and proliferation via influencing genes related to sex differentiation.
Collapse
|
16
|
Tripathi V, Raman R. Conservation of Ovary-Specific Genes, Foxl2, Aromatase, and Rspo1, in the Common Indian Garden Lizard, Calotes versicolor, That Lacks Chromosomal or Temperature-Dependent Sex Determination. Sex Dev 2018; 12:295-307. [PMID: 30227435 DOI: 10.1159/000491621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2018] [Indexed: 11/19/2022] Open
Abstract
Foxl2,Rspo1, and Aromatase are genes important in the ovary developmental pathway in mammals and birds. Here, we show their presence in the lizard, Calotes versicolor, which is known to lack a chromosomal as well as a temperature-dependent mode of sex determination and has an indeterminate, bipotential gonad throughout embryonic development. The expression of the 3 genes, as well as that of CvSox9 and Wnt4 - the known testis and ovary pathway genes - was studied by RT-PCR and whole tissue RNA in situ hybridization (WRISH) on the developing mesonephros gonadal complex (MGC). The expression of all 3 genes was initiated in the gonad shortly after its evagination from the mesonephros (day 5 onwards). CvFoxl2 generally was expressed in those MGCs in which CvSox9 was either not expressed or lowly expressed and vice versa. On the other hand, CvArom was expressed rather sporadically and randomly, showing no association with CvFoxl2, CvRspo1, or CvSox9, though in later stages WRISH preparations showed its coincidence with CvWnt4. CvRspo1 was expressed in almost all embryos right from day 5. Immunofluorescence localization of Rspo1 and Foxl2 proteins showed their presence in the gonads from day 10 onwards, and by day 25 it was primarily confined to the cortex but away from the coelomic epithelium of the gonadal cortex. Apparently both proteins were localized in the pregranulosa cells, Rspo1 in the cytoplasm and Foxl2 in the nucleus. Thus, it is clear that both CvFoxl2 and CvRspo1 are active in ovary formation, but whether they are expressed in the same or different cells is unknown. Though the transcription pattern of CvArom remains circumspect for its role in differentiation of the ovary, earlier evidence on aromatase inhibitor-induced reversal to the male sex indicates its importance in ovary function.
Collapse
|
17
|
Expression Characterization of Six Genes Possibly Involved in Gonad Development for Stellate Sturgeon Individuals ( Acipenser stellatus, Pallas 1771). Int J Genomics 2018; 2018:7835637. [PMID: 29785396 PMCID: PMC5896241 DOI: 10.1155/2018/7835637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/12/2017] [Accepted: 03/11/2018] [Indexed: 02/04/2023] Open
Abstract
Nowadays, in sturgeon's aquaculture, there is a necessity for sex identification at early stages in order to increase the efficiency of this commercial activity. The basis for a correct identification is studying the different factors that influence the gonad development. The research has been directed towards molecular methods that have been employed with various degrees of success in identifying genes with different expression patterns between male and female sturgeons during their development stages. For the purpose of understanding the sexual development of 4-year-old stellate sturgeon (Acipenser stellatus) individuals, we have selected six genes (foxl2, cyp17a1, ar, dmrt1, sox9, and star). We analysed the gene expression of the selected genes for gonads, anal fin, liver, body kidney, and white muscle. The cyp17a1, ar, dmrt1, and sox9 genes have a significant higher expression in male gonads than in female gonads, while the data shows no significant differences in the expression of the investigated genes in the other organs. We investigate these genes to shed light on aquaculture sturgeon sexual development.
Collapse
|
18
|
Han CC, Yen TB, Chen NC, Tseng MC. Cytogenetics of Two Onychostoma Species in Taiwan by Ag-NOR and 18S rDNA Profiles. Zool Stud 2017; 56:e25. [PMID: 31966224 PMCID: PMC6517726 DOI: 10.6620/zs.2017.56-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/05/2017] [Indexed: 11/18/2022]
Abstract
Chiao-Chuan Han, Tsair-Bor Yen, Nian-Cih Chen, and Mei-Chen Tseng (2017) Both Onychostoma barbatulum and O. alticorpus are primary freshwater fish in Taiwan. The former has been developed as an aquaculture species with high economic value, while the latter is a native endemic species in Taiwan. Understanding the cytogenetic information of these two species is necessary for their selected breeding, recovery, and management. In this study, Giemsa staining, silver-binding nucleolar organizer region (Ag-NOR), C-banding, and fluorescence in situ hybridization (FISH) with 18S ribosomal (r)DNA probes were used to analyze the cytogenetic characteristics. Results of Giemsa staining showed that the two Onychostoma species shared the same number of chromosomes, 2n = 50. Respective karyotype formulas of the female and male were 10 m + 22 sm + 10 st + 8 t and 11 m + 22 sm + 10 st + 7 t in O. barbatulum, and 14 m + 18 sm + 8 st + 10 t and 15 m + 18 sm + 8 st + 9 t in O. alticorpus. Karyotypes of both species showed a pair of heteromorphic chromosomes in male fish. Their sex determination should be the XX/XY system. Two pairs of Ag-NORs were found in O. barbatulum, but only one pair occurred in O. alticorpus. C-banding areas were observed on centromeres or telomeres of some chromosomes. FISH revealed different cytogenetic characters between these two species. The above cytogenetic information will contribute to species identification, population recovery, and advantages for breeding and management in the future.
Collapse
Affiliation(s)
- Chiao-Chuan Han
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan. E-mail:
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien 974, Taiwan
| | - Tsair-Bor Yen
- Department of Tropical Agriculture and International Cooperation, National Pingtung
University of Science and Technology, Pingtung 912, Taiwan. E-mail:
| | - Nian-Cih Chen
- Department of Aquaculture, National Pingtung University of Science and Technology,
Pingtung 912, Taiwan
| | - Mei-Chen Tseng
- Department of Aquaculture, National Pingtung University of Science and Technology,
Pingtung 912, Taiwan
| |
Collapse
|
19
|
Mu J, Chernick M, Dong W, Di Giulio RT, Hinton DE. Early life co-exposures to a real-world PAH mixture and hypoxia result in later life and next generation consequences in medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:162-173. [PMID: 28728047 PMCID: PMC5584607 DOI: 10.1016/j.aquatox.2017.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 05/12/2023]
Abstract
Acute effects of individual and complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are well documented in vertebrate species. Hypoxia in fish reduces metabolic rate and reproduction. However, less is known about the later life consequences stemming from early-life exposure to PAHs or hypoxia, particularly their co-exposure. To address this, medaka (Oryzias latipes) embryos were exposed to a complex PAH mixture sediment extract from the Elizabeth River, VA (ERSE) at concentrations of 0.1, 0.5, or 1.0% or to one of three different hypoxia scenarios: continuous, nocturnal, or late stage embryogenesis hypoxia. Co-exposures with 0.1% ERSE and each of the hypoxia scenarios were conducted. Results included decreased survival with ERSE, hatching delays with hypoxia, and higher occurrences of deformities with each. The continuous hypoxia scenario caused the most significant changes in all endpoints. These early-life exposures altered later-life growth, impaired reproductive capacity, and reduced the quality of their offspring. ERSE alone resulted in a female-biased sex ratio while continuous or nocturnal hypoxia produced significantly greater numbers of males; and co-exposure produced an equal sex ratio. Exposure to a PAH mixture and hypoxia during early life stages has meaningful later-life and next generational consequences.
Collapse
Affiliation(s)
- Jingli Mu
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Wu Dong
- Nicholas School of the Environment, Duke University, Durham, NC, USA; College of Animal Science and Technology, Inner Mongolia University for the Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao, China
| | | | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| |
Collapse
|
20
|
Baroiller JF, D'Cotta H. The Reversible Sex of Gonochoristic Fish: Insights and Consequences. Sex Dev 2016; 10:242-266. [PMID: 27907925 DOI: 10.1159/000452362] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 01/06/2023] Open
Abstract
Fish sex reversal is a means to understand sex determination and differentiation, but it is also used to control sex in aquaculture. This review discusses sex reversal in gonochoristic fish, with the coexistence of genetic and environmental influences. The different periods of fish sensitivity to sex reversal treatments are presented with the mechanisms implicated. The old players of sex differentiation are revisited with transcriptome data and loss of function studies following hormone- or temperature-induced sex reversal. We also discuss whether cortisol is the universal mediator of sex reversal in fish due to its implication in ovarian meiosis and 11KT increase. The large plasticity in fish for sex reversal is also evident in the brain, with a reversibility existing even in adulthood. Studies on epigenetics are presented, since it links the environment, gene expression, and sex reversal, notably the association of DNA methylation in sex reversal. Manipulations with exogenous factors reverse the primary sex in many fish species under controlled conditions, but several questions arise on whether this can occur under wild conditions and what is the ecological significance. Cases of sex reversal in wild fish populations are shown and their fitness and future perspectives are discussed.
Collapse
|
21
|
Machado MP, Matos I, Grosso AR, Schartl M, Coelho MM. Non-canonical expression patterns and evolutionary rates of sex-biased genes in a seasonal fish. Mol Reprod Dev 2016; 83:1102-1115. [PMID: 27770608 DOI: 10.1002/mrd.22752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/10/2016] [Indexed: 01/12/2023]
Abstract
Sex determination is a highly variable process that utilizes many different mechanisms to initiate the cascade of differentiation processes. The molecular pathways controlling sexual development are less conserved than previously assumed, and appear to require active maintenance in some species; indeed, the developmental decision of gonad phenotype in gonochoristic species is not fixed at an early developmental stage. Much of the knowledge about sex determination mechanisms was derived from research on gonochoristic, non-seasonal breeders. In this study, the transcriptome of resting adult gonads of a seasonal breeder, the endangered Iberian cyprinid fish Squalius pyrenaicus, was analyzed to assess the expression patterns and evolutionary rates of sex-biased genes that could be involved in maintenance of gonad identity as well as in sex determination. Remarkably, some crucial female genes-such as aromatase cyp19a1a, estrogen receptor esr1a, and foxl2-were expressed more abundantly in S. pyrenaicus testis than in ovaries. Moreover, contrary to the higher evolutionary rate changes observed in male-biased genes, higher dN /dS ratios were observed for female-biased genes than for male-biased genes in S. pyrenaicus. These results help unravel the impact of seasonality in sex determination mechanisms and the evolution of genes, and highlight the need to study fish at different gonadal maturation states to understand the function of sex-biased genes. Mol. Reprod. Dev. 83: 1102-1115, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Miguel P Machado
- Centre for Ecology Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Edifício C2, Lisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Edifício Egas Moniz, Lisboa, Portugal
| | - Isa Matos
- Centre for Ecology Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Edifício C2, Lisboa, Portugal
| | - Ana R Grosso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Edifício Egas Moniz, Lisboa, Portugal
| | - Manfred Schartl
- Department of Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany.,Comprehensive Cancer Center, University Clinic Würzburg, Würzburg, Germany.,Department of Biology, Texas Institute for Advanced Study, Texas A&M University, College Station, Texas
| | - Maria M Coelho
- Centre for Ecology Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Edifício C2, Lisboa, Portugal
| |
Collapse
|
22
|
Fowler BLS, Buonaccorsi VP. Genomic characterization of sex‐identification markers in
Sebastes carnatus
and
Sebastes chrysomelas
rockfishes. Mol Ecol 2016; 25:2165-75. [DOI: 10.1111/mec.13594] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/10/2016] [Accepted: 01/20/2016] [Indexed: 01/16/2023]
|
23
|
Autosomal gsdf acts as a male sex initiator in the fish medaka. Sci Rep 2016; 6:19738. [PMID: 26813267 PMCID: PMC4728440 DOI: 10.1038/srep19738] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022] Open
Abstract
Sex is pivotal for reproduction, healthcare and evolution. In the fish medaka, the Y-chromosomal dmy (also dmrt1bY) serves the sex determiner, which activates dmrt1 for male sex maintenance. However, how dmy makes the male decision via initiating testicular differentiation has remained unknown. Here we report that autosomal gsdf serves a male sex initiator. Gene addition and deletion revealed that gsdf was necessary and sufficient for maleness via initiating testicular differentiation. We show that gsdf transcription is activated directly by dmy. These results establish the autosomal gsdf as the first male sex initiator. We propose that dmy determines maleness through activating gsdf and dmrt1 without its own participation in developmental processes of sex initiation and maintenance. gsdf may easily become a sex determiner or other autosomal genes can be recruited as new sex determiners to initiate gsdf expression. Our findings offer new insights into molecular mechanisms underlying sex development and evolution of sex-controlling genes in vertebrates.
Collapse
|
24
|
Pfennig F, Standke A, Gutzeit HO. The role of Amh signaling in teleost fish--Multiple functions not restricted to the gonads. Gen Comp Endocrinol 2015; 223:87-107. [PMID: 26428616 DOI: 10.1016/j.ygcen.2015.09.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
This review summarizes the important role of Anti-Müllerian hormone (Amh) during gonad development in fishes. This Tgfβ-domain bearing hormone was named after one of its known functions, the induction of the regression of Müllerian ducts in male mammalian embryos. Later in development it is involved in male and female gonad differentiation and extragonadal expression has been reported in mammals as well. Teleosts lack Müllerian ducts, but they have amh orthologous genes. amh expression is reported from 21 fish species and possible regulatory interactions with further factors like sex steroids and gonadotropic hormones are discussed. The gonadotropin Fsh inhibits amh expression in all fish species studied. Sex steroids show no consistent influence on amh expression. Amh is produced in male Sertoli cells and female granulosa cells and inhibits germ cell proliferation and differentiation as well as steroidogenesis in both sexes. Therefore, Amh might be a central player in gonad development and a target of gonadotropic Fsh. Furthermore, there is evidence that an Amh-type II receptor is involved in germ cell regulation. Amh and its corresponding type II receptor are also present in brain and pituitary, at least in some teleosts, indicating additional roles of Amh effects in the brain-pituitary-gonadal axis. Unraveling Amh signaling is important in stem cell research and for reproduction as well as for aquaculture and in environmental science.
Collapse
Affiliation(s)
- Frank Pfennig
- Institut für Zoologie, TU Dresden, D-01062 Dresden, Germany.
| | - Andrea Standke
- Institut für Zoologie, TU Dresden, D-01062 Dresden, Germany
| | | |
Collapse
|
25
|
Mcnair A, Lokman PM, Closs GP, Nakagawa S. ECOLOGICAL AND EVOLUTIONARY APPLICATIONS FOR ENVIRONMENTAL SEX REVERSAL OF FISH. QUARTERLY REVIEW OF BIOLOGY 2015; 90:23-44. [PMID: 26434164 DOI: 10.1086/679762] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Environmental sex reversal (ESR), which results in a mismatch between genotypic and phenotypic sex, is well documented in numerous fish species and may be induced by chemical exposure. Historically, research involving piscine ESR has been carried out with a view to improving profitability in aquaculture or to elucidate the processes governing sex determination and sexual differentiation. However, recent studies in evolution and ecology suggest research on ESR now has much wider applications and ramifications. We begin with an overview of ESR in fish and a brief review of the traditional applications thereof. We then discuss ESR and its potential demographic consequences in wild populations. Theory even suggests sex-reversed fish may be purposefully released to manipulate population dynamics. We suggest new research directions that may prove fruitful in understanding how ESR at the individual level translates to population-level processes. In the latter portion of the review we focus on evolutionary applications of ESR. Sex-reversal studies from the aquaculture literature provide insight in to the evolvability of determinants of sexual phenotype. Additionally, induced sex reversal can provide information about the evolution of sex chromosomes and sex-linked traits. Recently, naturally occurring ESR has been implicated as a mechanism contributing to the evolution of sex chromosomes.
Collapse
|
26
|
Luzio A, Coimbra AM, Benito C, Fontaínhas-Fernandes AA, Matos M. Screening and identification of potential sex-associated sequences in Danio rerio. Mol Reprod Dev 2015; 82:756-64. [PMID: 26013562 DOI: 10.1002/mrd.22508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/18/2015] [Indexed: 02/02/2023]
Abstract
Current knowledge on zebrafish (Danio rerio) suggests that sex determination has a polygenic genetic basis in this species, although environmental factors may also be involved. This study aimed to identify sex-associated genomic regions using two different marker systems: inter-simple sequence repeats (ISSRs) and random-amplified polymorphic DNA (RAPDs). Two bulks were constructed: one with DNA from zebrafish females and the other from males; then, a total of 100 ISSR and 280 RAPD primers were tested. Three DNA fragments presenting sexual dimorphism (female-linked: OPA17436 and OPQ191027 ; male-linked: OPQ19951 ) were determined from sequential analysis of the bulks followed by assessment in individuals. These fragments were cloned and convert into the following sequenced characterized amplified regions (SCAR): DrSM_F1, DrSM_F2, and DrSM_M, which share identities with sequences located in chromosomes 2, 3, and 11 (Zv9), respectively. Using these potential markers in zebrafish samples it was possible to correctly identify 80% of the males (DrSM_M) and 100% of the females (DrSM_F1 + DrSM_F2) in the analyzed population.
Collapse
Affiliation(s)
- Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - César Benito
- Departamento de Genética, Facultad de Biologia, Universidad Complutense, Madrid, Spain
| | - António A Fontaínhas-Fernandes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Manuela Matos
- Departamento de Genética e Biotecnologia (DGB), Escola de Ciências da Vida e do Ambiente (ECVA), Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
27
|
Tamschick S, Rozenblut-Kościsty B, Bonato L, Dufresnes C, Lymberakis P, Kloas W, Ogielska M, Stöck M. Sex Chromosome Conservation, DMRT1 Phylogeny and Gonad Morphology in Diploid Palearctic Green Toads ( Bufo viridis Subgroup). Cytogenet Genome Res 2015; 144:315-24. [DOI: 10.1159/000380841] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
|
28
|
A syntenic region conserved from fish to Mammalian x chromosome. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2014; 2014:873935. [PMID: 25506037 PMCID: PMC4254068 DOI: 10.1155/2014/873935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/30/2014] [Accepted: 11/02/2014] [Indexed: 11/29/2022]
Abstract
Sex chromosomes bearing the sex-determining gene initiate development along the male or female pathway, no matter which sex is determined by XY male or ZW female heterogamety. Sex chromosomes originate from ancient autosomes but evolved rapidly after the acquisition of sex-determining factors which are highly divergent between species. In the heterogametic male system (XY system), the X chromosome is relatively evolutionary silent and maintains most of its ancestral genes, in contrast to its Y counterpart that has evolved rapidly and degenerated. Sex in a teleost fish, the Nile tilapia (Oreochromis niloticus), is determined genetically via an XY system, in which an unpaired region is present in the largest chromosome pair. We defined the differences in DNA contents present in this chromosome with a two-color comparative genomic hybridization (CGH) and the random amplified polymorphic DNA (RAPD) approach in XY males. We further identified a syntenic segment within this region that is well conserved in several teleosts. Through comparative genome analysis, this syntenic segment was also shown to be present in mammalian X chromosomes, suggesting a common ancestral origin of vertebrate sex chromosomes.
Collapse
|
29
|
Hattori RS, Strüssmann CA, Fernandino JI, Somoza GM. Genotypic sex determination in teleosts: insights from the testis-determining amhy gene. Gen Comp Endocrinol 2013; 192:55-9. [PMID: 23602719 DOI: 10.1016/j.ygcen.2013.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/18/2013] [Accepted: 03/26/2013] [Indexed: 01/22/2023]
Abstract
The master sex-determining genes identified so far in fishes are clearly not conserved, as evidenced by several unrelated genes reported to play critical roles in sex determination. In this study, we reviewed the molecular process of sex determination in the Patagonian pejerrey Odontesthes hatcheri, an emerging model due to the recent discovery that a Y-chromosome linked, duplicated copy of the anti-Müllerian hormone gene, amhy plays a pivotal role in sex determination. A comparative analysis with other newly found sex-determining genes of teleost fish, DMY/dmrt1bY, sdY, amhr2, and gsdf(Y) is performed and alternative ideas are proposed to explain the mechanism involved in the rise of various types of non-homologous sex-determining genes.
Collapse
Affiliation(s)
- Ricardo Shohei Hattori
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7 Minato, Tokyo, Japan.
| | | | | | | |
Collapse
|
30
|
Kikuchi K, Hamaguchi S. Novel sex-determining genes in fish and sex chromosome evolution. Dev Dyn 2013; 242:339-53. [PMID: 23335327 DOI: 10.1002/dvdy.23927] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 12/13/2022] Open
Abstract
Although the molecular mechanisms underlying many developmental events are conserved across vertebrate taxa, the lability at the top of the sex-determining (SD) cascade has been evident from the fact that four master SD genes have been identified: mammalian Sry; chicken DMRT1; medaka Dmy; and Xenopus laevis DM-W. This diversity is thought to be associated with the turnover of sex chromosomes, which is likely to be more frequent in fishes and other poikilotherms than in therian mammals and birds. Recently, four novel candidates for vertebrate SD genes were reported, all of them in fishes. These include amhy in the Patagonian pejerrey, Gsdf in Oryzias luzonensis, Amhr2 in fugu and sdY in rainbow trout. These studies provide a good opportunity to infer patterns from the seemingly chaotic picture of sex determination systems. Here, we review recent advances in our understanding of the master SD genes in fishes.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Fisheries Laboratory, University of Tokyo, Hamamatsu, Shizuoka, Japan.
| | | |
Collapse
|
31
|
Characterisation and expression during sex differentiation of Sox19 from the sea bass Dicentrarchus labrax. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:316-23. [PMID: 22940139 DOI: 10.1016/j.cbpb.2012.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 02/07/2023]
Abstract
The Sox family of transcription factors are involved in a variety of developmental processes including sex determination and gonadal differentiation. Sox19 is a particularly interesting member of this family that has been found only in fish, though mammals have a very diverged orthologue that is designated Sox15 and assigned to a different Sox family subgroup. Here we describe the cloning and characterisation of sox19 from the European sea bass (Dicentrarchus labrax), an important aquaculture species in which sex ratios skewed in favour of males are frequently encountered. The sea bass sox19 gene contains a single intron, encodes a protein of 309 amino acids, has multiple transcription start sites and may produce a truncated splice variant. Sox19 mRNA is present in many adult tissues, with the highest expression in the brain and gonads. Interestingly, the gene is strongly upregulated in the differentiation of the ovary but not the testis, suggesting a role in ovarian differentiation.
Collapse
|
32
|
Grossen C, Neuenschwander S, Perrin N. The evolution of XY recombination: sexually antagonistic selection versus deleterious mutation load. Evolution 2012; 66:3155-66. [PMID: 23025605 DOI: 10.1111/j.1558-5646.2012.01661.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recombination arrest between X and Y chromosomes, driven by sexually antagonistic genes, is expected to induce their progressive differentiation. However, in contrast to birds and mammals (which display the predicted pattern), most cold-blooded vertebrates have homomorphic sex chromosomes. Two main hypotheses have been proposed to account for this, namely high turnover rates of sex-determining systems and occasional XY recombination. Using individual-based simulations, we formalize the evolution of XY recombination (here mediated by sex reversal; the "fountain-of-youth" model) under the contrasting forces of sexually antagonistic selection and deleterious mutations. The shift between the domains of elimination and accumulation occurs at much lower selection coefficients for the Y than for the X. In the absence of dosage compensation, mildly deleterious mutations accumulating on the Y depress male fitness, thereby providing incentives for XY recombination. Under our settings, this occurs via "demasculinization" of the Y, allowing recombination in XY (sex-reversed) females. As we also show, this generates a conflict with the X, which coevolves to oppose sex reversal. The resulting rare events of XY sex reversal are enough to purge the Y from its load of deleterious mutations. Our results support the "fountain of youth" as a plausible mechanism to account for the maintenance of sex-chromosome homomorphy.
Collapse
Affiliation(s)
- Christine Grossen
- Department of Ecology & Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
33
|
Kobayashi H, Iwamatsu T, Shibata Y, Ishihara M, Kobayashi Y. Effects of Co-Administration of Estrogen and Androgen on Induction of Sex Reversal in the MedakaOryzias latipes. Zoolog Sci 2011; 28:355-9. [DOI: 10.2108/zsj.28.355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Zhang Z, Wang Y, Wang S, Liu J, Warren W, Mitreva M, Walter RB. Transcriptome analysis of female and male Xiphophorus maculatus Jp 163 A. PLoS One 2011; 6:e18379. [PMID: 21483681 PMCID: PMC3071723 DOI: 10.1371/journal.pone.0018379] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 03/06/2011] [Indexed: 01/23/2023] Open
Abstract
Background Xiphophorus models are important for melanoma, sex determination and differentiation, ovoviviparity and evolution. To gain a global view of the molecular mechanism(s) whereby gene expression may influence sexual dimorphism in Xiphophorus and to develop a database for future studies, we performed a large-scale transcriptome study. Methodology/Principal Findings The 454-FLX massively parallel DNA sequencing platform was employed to obtain 742,771 and 721,543 reads from 2 normalized cDNA libraries generated from whole adult female and male X. maculatus Jp 163 A, respectively. The reads assembled into 45,538 contigs (here, a "contig" is a set of contiguous sequences), of which, 11,918 shared homology to existing protein sequences. These numbers estimate that the contigs may cover 53% of the total number of Xiphophorus transcriptome. Putative translations were obtained for 11,918 cDNA contigs, of which, 3,049 amino acid sequences contain Pfam domains and 11,064 contigs encode secretory proteins. A total of 3,898 contigs were associated with 2,781 InterPro (IPR) entries and 5,411 contigs with 132 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. There were 10,446 contigs annotated with 69,778 gene ontology (GO) terms and the three corresponding organizing principles. Fifty-four potential sex differentially expressed genes have been identified from these contigs. Eight and nine of these contigs were confirmed by real-time PCR as female and male predominantly expressed genes respectively. Based on annotation results, 34 contigs were predicted to be differentially expressed in male and female and 17 of them were also confirmed by real-time PCR. Conclusions/Significance This is the first report of an annotated overview of the transcriptome of X. maculatus and identification of sex differentially expressed genes. These data will be of interest to researchers using the Xiphophorus model. This work also provides an archive for future studies in molecular mechanisms of sexual dimorphism and evolution, and can be used in comparative studies of other fish.
Collapse
Affiliation(s)
- Ziping Zhang
- Department of Chemistry and Biochemistry, Molecular Biosciences Research Group, Texas State University, San Marcos, Texas, United States of America
| | - Yilei Wang
- Key Laboratory of Science and Technology for Aquaculture and Food Safety of Fujian Province University, Fisheries College/Fisheries Biotechnology Institute, Jimei University, Xiamen, China
| | - Shuhong Wang
- Key Laboratory of Science and Technology for Aquaculture and Food Safety of Fujian Province University, Fisheries College/Fisheries Biotechnology Institute, Jimei University, Xiamen, China
| | - Jingtao Liu
- Department of Chemistry and Biochemistry, Molecular Biosciences Research Group, Texas State University, San Marcos, Texas, United States of America
| | - Wesley Warren
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Makedonka Mitreva
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ronald B. Walter
- Department of Chemistry and Biochemistry, Molecular Biosciences Research Group, Texas State University, San Marcos, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Porazinski SR, Wang H, Furutani-Seiki M. Essential techniques for introducing medaka to a zebrafish laboratory--towards the combined use of medaka and zebrafish for further genetic dissection of the function of the vertebrate genome. Methods Mol Biol 2011; 770:211-241. [PMID: 21805266 DOI: 10.1007/978-1-61779-210-6_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The medaka, Oryzias latipes, a small egg-laying freshwater fish, is one of the three vertebrate model organisms in which genome-wide phenotype-driven mutant screens have been carried out. Despite a number of large-scale screens in zebrafish, a substantial number of mutants with new distinct phenotypes were identified in similar large-scale screens in the medaka. This observed difference in phenotype is due to the two species having a unique combination of genetic, biological and evolutional properties. The two genetic models share a whole-genome duplication event over that of tetrapods; however, each has independently specialized or lost the function of one of the two paralogues. The two fish species complement each other as genetic systems as straightforward comparison of phenotypes, ease of side-by-side analysis using the same techniques and simple and inexpensive husbandry of mutants make these small teleosts quite powerful in combination. Furthermore, both have draft genome sequences and bioinformatic tools available that facilitate further genetic dissection including whole-genome approaches. Together with the gene-driven approach to generate gene knockout mutants of the fish models, the two fish models complement the mouse in genetically dissecting vertebrate genome functions. The external embryogenesis and transparent embryos of the fish allow systematic isolation of embryonic lethal mutations, the most difficult targets in mammalian mutant screens. This chapter will describe how to work with both medaka and zebrafish almost as one species in a lab, focusing on medaka and highlighting the differences between the medaka and zebrafish systems.
Collapse
Affiliation(s)
- Sean R Porazinski
- Department of Biology and Biochemistry, Centre for Regenerative Medicine, The University of Bath, Bath, UK
| | | | | |
Collapse
|
36
|
Le Page Y, Diotel N, Vaillant C, Pellegrini E, Anglade I, Mérot Y, Kah O. Aromatase, brain sexualization and plasticity: the fish paradigm. Eur J Neurosci 2010; 32:2105-15. [DOI: 10.1111/j.1460-9568.2010.07519.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Shao CW, Chen SL, Scheuring CF, Xu JY, Sha ZX, Dong XL, Zhang HB. Construction of two BAC libraries from half-smooth tongue sole Cynoglossus semilaevis and identification of clones containing candidate sex-determination genes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:558-568. [PMID: 19957095 DOI: 10.1007/s10126-009-9242-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 10/13/2009] [Indexed: 05/27/2023]
Abstract
Half-smooth tongue sole (Cynoglossus semilaevis) is an increasingly important aquaculture species in China. It is also a tractable model to study sex chromosome evolution and to further elucidate the mechanism of sex determination in teleosts. Two bacterial artificial chromosome (BAC) libraries for C. semilaevis, with large, high-quality inserts and deep coverage, were constructed in the BamHI and HindIII sites of the vector pECBAC1. The two libraries contain a total of 55,296 BAC clones arrayed in 144 384-well microtiter plates and correspond to 13.36 haploid genome equivalents. The combined libraries have a greater than 99% probability of containing any single-copy sequence. Screening high-density arrays of the libraries with probes for female-specific markers and sex-related genes generated between 4-46 primary positive clones per probe. Thus, the two BAC libraries of C. semilaevis provided a readily useable platform for genomics research, illustrated by the isolation of sex determination gene(s).
Collapse
Affiliation(s)
- Chang-Wei Shao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, Shandong, 266071, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Johnsen H, Seppola M, Torgersen JS, Delghandi M, Andersen Ø. Sexually dimorphic expression of dmrt1 in immature and mature Atlantic cod (Gadus morhua L.). Comp Biochem Physiol B Biochem Mol Biol 2010; 156:197-205. [PMID: 20363354 DOI: 10.1016/j.cbpb.2010.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 03/22/2010] [Accepted: 03/22/2010] [Indexed: 01/08/2023]
Abstract
The Doublesex and Mab-3 related transcription factor 1 (Dmrt1) is implicated in testis development in a variety of vertebrates, including teleost fish. Atlantic cod (Gadusmorhua L.) is a promising cold-water aquaculture species, but early sexual maturation of males in particular is a major problem in today's cod farming. Molecular studies of dmrt1 were initiated to gain knowledge about the regulation of gonad development for the first time in a species of the superorder Paracanthopterygii. The predicted cod Dmrt1 of 310 amino acids contains a highly conserved DM domain, including six Cys residues probably involved in the formation of a double zinc-finger motif for DNA binding. The tissue expression analysis revealed that dmrt1 is expressed exclusively in the gonads, and the signal was localized in the germ cells in both genders by in situ hybridization. Sexually dimorphic expression of dmrt1 was documented by quantitative PCR with the highest mRNA levels in immature males corresponding to the start of spermatogenesis. Although significantly less expressed in the ovary, Dmrt1 might also play a role in oogenesis. Southern blot analysis revealed several DM domain-containing genes in the cod genome, but no sex-linked polymorphism was shown.
Collapse
Affiliation(s)
- Hanne Johnsen
- Nofima Marin, Muninbakken 9-13, N-9291 Tromsø, Norway
| | | | | | | | | |
Collapse
|
39
|
Diotel N, Le Page Y, Mouriec K, Tong SK, Pellegrini E, Vaillant C, Anglade I, Brion F, Pakdel F, Chung BC, Kah O. Aromatase in the brain of teleost fish: expression, regulation and putative functions. Front Neuroendocrinol 2010; 31:172-92. [PMID: 20116395 DOI: 10.1016/j.yfrne.2010.01.003] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/20/2010] [Accepted: 01/24/2010] [Indexed: 12/25/2022]
Abstract
Unlike that of mammals, the brain of teleost fish exhibits an intense aromatase activity due to the strong expression of one of two aromatase genes (aromatase A or cyp19a1a and aromatase B or cyp19a1b) that arose from a gene duplication event. In situ hybridization, immunohistochemistry and expression of GFP (green fluorescent protein) in transgenic tg(cyp19a1b-GFP) fish demonstrate that aromatase B is only expressed in radial glial cells (RGC) of adult fish. These cells persist throughout life and act as progenitors in the brain of both developing and adult fish. Although aromatase B-positive radial glial cells are most abundant in the preoptic area and the hypothalamus, they are observed throughout the entire central nervous system and spinal cord. In agreement with the fact that brain aromatase activity is correlated to sex steroid levels, the high expression of cyp19a1b is due to an auto-regulatory loop through which estrogens and aromatizable androgens up-regulate aromatase expression. This mechanism involves estrogen receptor binding on an estrogen response element located on the cyp19a1b promoter. Cell specificity is achieved by a mandatory cooperation between estrogen receptors and unidentified glial factors. Given the emerging roles of estrogens in neurogenesis, the unique feature of the adult fish brain suggests that, in addition to classical functions on brain sexual differentiation and sexual behaviour, aromatase expression in radial glial cells could be part of the mechanisms authorizing the maintenance of a high proliferative activity in the brain of fish.
Collapse
Affiliation(s)
- Nicolas Diotel
- Neurogenesis And OEstrogens, UMR CNRS 6026, IFR 140, Université de Rennes 1, Rennes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
STELKENS RIKEB, WEDEKIND CLAUS. Environmental sex reversal, Trojan sex genes, and sex ratio adjustment: conditions and population consequences. Mol Ecol 2010; 19:627-46. [DOI: 10.1111/j.1365-294x.2010.04526.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Pala I, Schartl M, Thorsteinsdóttir S, Coelho MM. Sex determination in the Squalius alburnoides complex: an initial characterization of sex cascade elements in the context of a hybrid polyploid genome. PLoS One 2009; 4:e6401. [PMID: 19636439 PMCID: PMC2713423 DOI: 10.1371/journal.pone.0006401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 06/22/2009] [Indexed: 11/19/2022] Open
Abstract
Background Sex determination processes vary widely among different vertebrate taxa, but no group offers as much diversity for the study of the evolution of sex determination as teleost fish. However, the knowledge about sex determination gene cascades is scarce in this species-rich group and further difficulties arise when considering hybrid fish taxa, in which mechanisms exhibited by parental species are often disrupted. Even though hybridisation is frequent among teleosts, gene based approaches on sex determination have seldom been conducted in hybrid fish. The hybrid polyploid complex of Squalius alburnoides was used as a model to address this question. Methodology/Principal Findings We have initiated the isolation and characterization of regulatory elements (dmrt1, wt1, dax1 and figla) potentially involved in sex determination in S. alburnoides and in the parental species S. pyrenaicus and analysed their expression patterns by in situ hybridisation. In adults, an overall conservation in the cellular localization of the gene transcripts was observed between the hybrids and parental species. Some novel features emerged, such as dmrt1 expression in adult ovaries, and the non-dimorphic expression of figla, an ovarian marker in other species, in gonads of both sexes in S. alburnoides and S. pyrenaicus. The potential contribution of each gene to the sex determination process was assessed based on the timing and location of expression. Dmrt1 and wt1 transcripts were found at early stages of male development in S. alburnoides and are most likely implicated in the process of gonad development. Conclusions/Significance For the first time in the study of this hybrid complex, it was possible to directly compare the gene expression patterns between the bisexual parental species and the various hybrid forms, for an extended set of genes. The contribution of these genes to gonad integrity maintenance and functionality is apparently unaltered in the hybrids, suggesting that no abrupt shifts in gene expression occurred as a result of hybridisation.
Collapse
Affiliation(s)
- Irene Pala
- Centro de Biologia Ambiental, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal.
| | | | | | | |
Collapse
|
42
|
Piferrer F, Guiguen Y. Fish Gonadogenesis. Part II: Molecular Biology and Genomics of Sex Differentiation. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802324644] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Penman DJ, Piferrer F. Fish Gonadogenesis. Part I: Genetic and Environmental Mechanisms of Sex Determination. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802324610] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Herpin A, Schartl M. Regulatory putsches create new ways of determining sexual development. EMBO Rep 2008; 9:966-8. [PMID: 18787556 DOI: 10.1038/embor.2008.182] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 08/26/2008] [Indexed: 11/09/2022] Open
Affiliation(s)
- Amaury Herpin
- University of Würzburg, Physiological Chemistry I, Biozentrum, Am Hubland, D-97074 Würzburg, Germany.
| | | |
Collapse
|
45
|
Ross JA, Peichel CL. Molecular cytogenetic evidence of rearrangements on the Y chromosome of the threespine stickleback fish. Genetics 2008; 179:2173-82. [PMID: 18689886 PMCID: PMC2516089 DOI: 10.1534/genetics.108.088559] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 06/10/2008] [Indexed: 11/18/2022] Open
Abstract
To identify the processes shaping vertebrate sex chromosomes during the early stages of their evolution, it is necessary to study systems in which genetic sex determination was recently acquired. Previous cytogenetic studies suggested that threespine stickleback fish (Gasterosteus aculeatus) do not have a heteromorphic sex chromosome pair, although recent genetic studies found evidence of an XY genetic sex-determination system. Using fluorescence in situ hybridization (FISH), we report that the threespine stickleback Y chromosome is heteromorphic and has suffered both inversions and deletion. Using the FISH data, we reconstruct the rearrangements that have led to the current physical state of the threespine stickleback Y chromosome. These data demonstrate that the threespine Y is more degenerate than previously thought, suggesting that the process of sex chromosome evolution can occur rapidly following acquisition of a sex-determining region.
Collapse
Affiliation(s)
- Joseph A Ross
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98101, USA
| | | |
Collapse
|
46
|
Selected papers on zebrafish and other aquarium fish models. Zebrafish 2008; 1:165-72. [PMID: 18248227 DOI: 10.1089/zeb.2004.1.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
47
|
Genetic analysis of somite formation in laboratory fish models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [PMID: 21038770 DOI: 10.1007/978-0-387-09606-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The repeated appearance of somites is one of the most fascinating aspects of vertebrate embryogenesis. Recent studies identified complex regulatory circuits that provide the molecular basis for the "clock and wave front" model, postulated almost 30 years ago by Cooke and Zeeman. The highly coordinated process of somite formation involves several networks of molecular cascades including the Delta/Notch, Wnt, FGF and retinoid signalling pathways. Studies in mouse, Xenopus and especially chicken over the last decade have helped to understand the role and interactions of these pathways in somitogenesis. More recently, this has been supplemented by experiments in zebrafish. This animal model offers the possibility of performing large scale mutagenesis screens to identify novel factors and pathways involved in somitogenesis. Molecular cloning of zebrafish somite mutants mainly resulted in genes that belong to the Delta/Notch pathway and therefore underlined the importance of this pathway during somitogenesis. The fact that other pathways have not yet been identified by genetic screening in this species was assumed to be caused by functional redundancy of duplicated genes in zebrafish. In 2000, a large-scale mutagenesis screen has been initiated in Kyoto, Japan using the related teleost medaka (Oryzias latipes). In this screen, mutants with unique phenotypes have been identified, which have not been described in zebrafish or mouse. In this chapter, we will review the progress that has been made in understanding the molecular control of somite formation in zebrafish and will discuss recent efforts to screen for novel phenotypes using medaka somitogenesis mutants.
Collapse
|
48
|
Hong CS, Park BY, Saint-Jeannet JP. The function of Dmrt genes in vertebrate development: It is not just about sex. Dev Biol 2007; 310:1-9. [PMID: 17720152 DOI: 10.1016/j.ydbio.2007.07.035] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 07/25/2007] [Accepted: 07/25/2007] [Indexed: 11/29/2022]
Abstract
The Dmrt genes encode a large family of transcription factors whose function in sexual development has been well studied in invertebrates and vertebrates. Their expression pattern is not restricted to the developing gonads, indicating that Dmrt genes might regulate other developmental processes. Here we review the expression pattern of several members of this family across species and summarize recent findings on the function of a subset of these genes in non-gonadal tissues.
Collapse
Affiliation(s)
- Chang-Soo Hong
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
49
|
Herpin A, Schindler D, Kraiss A, Hornung U, Winkler C, Schartl M. Inhibition of primordial germ cell proliferation by the medaka male determining gene Dmrt I bY. BMC DEVELOPMENTAL BIOLOGY 2007; 7:99. [PMID: 17760954 PMCID: PMC2034567 DOI: 10.1186/1471-213x-7-99] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 08/30/2007] [Indexed: 12/19/2022]
Abstract
Background Dmrt1 is a highly conserved gene involved in the determination and early differentiation phase of the primordial gonad in vertebrates. In the fish medaka dmrt1bY, a functional duplicate of the autosomal dmrt1a gene on the Y-chromosome, has been shown to be the master regulator of male gonadal development, comparable to Sry in mammals. In males mRNA and protein expression was observed before morphological sex differentiation in the somatic cells surrounding primordial germ cells (PGCs) of the gonadal anlage and later on exclusively in Sertoli cells. This suggested a role for dmrt1bY during male gonad and germ cell development. Results We provide functional evidence that expression of dmrt1bY leads to negative regulation of PGC proliferation. Flow cytometric measurements revealed a G2 arrest of dmrt1bY expressing cells. Interestingly, also non-transfected cells displayed a significantly lower fraction of proliferating cells, pointing to a possible non-cell autonomous action of dmrt1bY. Injection of antisense morpholinos led to an increase of PGCs in genetically male embryos due to loss of proliferation inhibition. Conclusion In medaka, dmrt1bY mediates a mitotic arrest of PGCs in males prior to testes differentiation at the sex determination stage. This occurs possibly via a cross-talk of Sertoli cells and PGCs.
Collapse
Affiliation(s)
- Amaury Herpin
- University of Wurzburg, Physiological Chemistry I, Biozentrum, Am Hubland, D-97074 Wurzburg, Germany
| | - Detlev Schindler
- University of Wurzburg, Department of Human Genetics, Biozentrum, Am Hubland, D-97074 Wurzburg, Germany
| | - Anita Kraiss
- University of Wurzburg, Physiological Chemistry I, Biozentrum, Am Hubland, D-97074 Wurzburg, Germany
| | - Ute Hornung
- University of Wurzburg, Physiological Chemistry I, Biozentrum, Am Hubland, D-97074 Wurzburg, Germany
| | - Christoph Winkler
- University of Wurzburg, Physiological Chemistry I, Biozentrum, Am Hubland, D-97074 Wurzburg, Germany
| | - Manfred Schartl
- University of Wurzburg, Physiological Chemistry I, Biozentrum, Am Hubland, D-97074 Wurzburg, Germany
- University of Wurzburg, Rudolf-Virchow-Center for Experimental Biomedicine (DFG research Center), Versbacher Str. 9, D-97078 Wurzburg, Germany
| |
Collapse
|
50
|
Matsuda M, Shinomiya A, Kinoshita M, Suzuki A, Kobayashi T, Paul-Prasanth B, Lau EL, Hamaguchi S, Sakaizumi M, Nagahama Y. DMY gene induces male development in genetically female (XX) medaka fish. Proc Natl Acad Sci U S A 2007; 104:3865-70. [PMID: 17360444 PMCID: PMC1820675 DOI: 10.1073/pnas.0611707104] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the sex-determining gene SRY/Sry has been identified in mammals, homologues and genes that have a similar function have yet to be identified in nonmammalian vertebrates. Recently, DMY (the DM-domain gene on the Y chromosome) was cloned from the sex-determining region on the Y chromosome of the teleost fish medaka (Oryzias latipes). DMY has been shown to be required for the normal development of male individuals. In this study, we show that a 117-kb genomic DNA fragment that carries DMY is able to induce testis differentiation and subsequent male development in XX (genetically female) medaka. In addition, overexpression of DMY cDNA under the control of the CMV promoter also caused XX sex reversal. These results demonstrate that DMY is sufficient for male development in medaka and suggest that the functional difference between the X and Y chromosomes in medaka is a single gene. Our data indicate that DMY is an additional sex-determining gene in vertebrates.
Collapse
Affiliation(s)
- Masaru Matsuda
- *Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Solution-Oriented Research for Science and Technology (SORST), JST, Kawaguchi 332-0012, Japan
| | - Ai Shinomiya
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata 950-2181, Japan
| | - Masato Kinoshita
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; and
| | - Aya Suzuki
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Solution-Oriented Research for Science and Technology (SORST), JST, Kawaguchi 332-0012, Japan
| | - Tohru Kobayashi
- National Research Institute of Aquaculture, Tamaki, Mie 519-0423, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Solution-Oriented Research for Science and Technology (SORST), JST, Kawaguchi 332-0012, Japan
| | - En-lieng Lau
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Solution-Oriented Research for Science and Technology (SORST), JST, Kawaguchi 332-0012, Japan
| | - Satoshi Hamaguchi
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata 950-2181, Japan
| | - Mitsuru Sakaizumi
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata 950-2181, Japan
| | - Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Solution-Oriented Research for Science and Technology (SORST), JST, Kawaguchi 332-0012, Japan
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|