1
|
Lai PM, Gong X, Chan KM. Roles of Histone H2B, H3 and H4 Variants in Cancer Development and Prognosis. Int J Mol Sci 2024; 25:9699. [PMID: 39273649 PMCID: PMC11395991 DOI: 10.3390/ijms25179699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Histone variants are the paralogs of core histones (H2A, H2B, H3 and H4). They are stably expressed throughout the cell cycle in a replication-independent fashion and are capable of replacing canonical counterparts under different fundamental biological processes. Variants have been shown to take part in multiple processes, including DNA damage repair, transcriptional regulation and X chromosome inactivation, with some of them even specializing in lineage-specific roles like spermatogenesis. Several reports have recently identified some unprecedented variants from different histone families and exploited their prognostic value in distinct types of cancer. Among the four classes of canonical histones, the H2A family has the greatest number of variants known to date, followed by H2B, H3 and H4. In our prior review, we focused on summarizing all 19 mammalian histone H2A variants. Here in this review, we aim to complete the full summary of the roles of mammalian histone variants from the remaining histone H2B, H3, and H4 families, along with an overview of their roles in cancer biology and their prognostic value in a clinical context.
Collapse
Affiliation(s)
- Po Man Lai
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Xiaoxiang Gong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Karam G, Molaro A. Casting histone variants during mammalian reproduction. Chromosoma 2023:10.1007/s00412-023-00803-9. [PMID: 37347315 PMCID: PMC10356639 DOI: 10.1007/s00412-023-00803-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
During mammalian reproduction, germ cell chromatin packaging is key to prepare parental genomes for fertilization and to initiate embryonic development. While chromatin modifications such as DNA methylation and histone post-translational modifications are well known to carry regulatory information, histone variants have received less attention in this context. Histone variants alter the stability, structure and function of nucleosomes and, as such, contribute to chromatin organization in germ cells. Here, we review histone variants expression dynamics during the production of male and female germ cells, and what is currently known about their parent-of-origin effects during reproduction. Finally, we discuss the apparent conundrum behind these important functions and their recent evolutionary diversification.
Collapse
Affiliation(s)
- Germaine Karam
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Antoine Molaro
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
3
|
Rang FJ, Kind J, Guerreiro I. The role of heterochromatin in 3D genome organization during preimplantation development. Cell Rep 2023; 42:112248. [PMID: 37059092 DOI: 10.1016/j.celrep.2023.112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 04/16/2023] Open
Abstract
During the early stages of mammalian development, the epigenetic state of the parental genome is completely reprogrammed to give rise to the totipotent embryo. An important aspect of this remodeling concerns the heterochromatin and the spatial organization of the genome. While heterochromatin and genome organization are intricately linked in pluripotent and somatic systems, little is known about their relationship in the totipotent embryo. In this review, we summarize the current knowledge on the reprogramming of both regulatory layers. In addition, we discuss available evidence on their relationship and put this in the context of findings in other systems.
Collapse
Affiliation(s)
- Franka J Rang
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, the Netherlands
| | - Jop Kind
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, the Netherlands; Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands.
| | - Isabel Guerreiro
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, the Netherlands.
| |
Collapse
|
4
|
de la Iglesia A, Jodar M, Oliva R, Castillo J. Insights into the sperm chromatin and implications for male infertility from a protein perspective. WIREs Mech Dis 2023; 15:e1588. [PMID: 36181449 DOI: 10.1002/wsbm.1588] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Male germ cells undergo an extreme but fascinating process of chromatin remodeling that begins in the testis during the last phase of spermatogenesis and continues through epididymal sperm maturation. Most of the histones are replaced by small proteins named protamines, whose high basicity leads to a tight genomic compaction. This process is epigenetically regulated at many levels, not only by posttranslational modifications, but also by readers, writers, and erasers, in a context of a highly coordinated postmeiotic gene expression program. Protamines are key proteins for acquiring this highly specialized chromatin conformation, needed for sperm functionality. Interestingly, and contrary to what could be inferred from its very specific DNA-packaging function across protamine-containing species, human sperm chromatin contains a wide spectrum of protamine proteoforms, including truncated and posttranslationally modified proteoforms. The generation of protamine knock-out models revealed not only chromatin compaction defects, but also collateral sperm alterations contributing to infertile phenotypes, evidencing the importance of sperm chromatin protamination toward the generation of a new individual. The unique features of sperm chromatin have motivated its study, applying from conventional to the most ground-breaking techniques to disentangle its peculiarities and the cellular mechanisms governing its successful conferment, especially relevant from the protein point of view due to the important epigenetic role of sperm nuclear proteins. Gathering and contextualizing the most striking discoveries will provide a global understanding of the importance and complexity of achieving a proper chromatin compaction and exploring its implications on postfertilization events and beyond. This article is categorized under: Reproductive System Diseases > Genetics/Genomics/Epigenetics Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Alberto de la Iglesia
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
5
|
Latham KE. Preimplantation embryo gene expression: 56 years of discovery, and counting. Mol Reprod Dev 2023; 90:169-200. [PMID: 36812478 DOI: 10.1002/mrd.23676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The biology of preimplantation embryo gene expression began 56 years ago with studies of the effects of protein synthesis inhibition and discovery of changes in embryo metabolism and related enzyme activities. The field accelerated rapidly with the emergence of embryo culture systems and progressively evolving methodologies that have allowed early questions to be re-addressed in new ways and in greater detail, leading to deeper understanding and progressively more targeted studies to discover ever more fine details. The advent of technologies for assisted reproduction, preimplantation genetic testing, stem cell manipulations, artificial gametes, and genetic manipulation, particularly in experimental animal models and livestock species, has further elevated the desire to understand preimplantation development in greater detail. The questions that drove enquiry from the earliest years of the field remain drivers of enquiry today. Our understanding of the crucial roles of oocyte-expressed RNA and proteins in early embryos, temporal patterns of embryonic gene expression, and mechanisms controlling embryonic gene expression has increased exponentially over the past five and a half decades as new analytical methods emerged. This review combines early and recent discoveries on gene regulation and expression in mature oocytes and preimplantation stage embryos to provide a comprehensive understanding of preimplantation embryo biology and to anticipate exciting future advances that will build upon and extend what has been discovered so far.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA.,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Zhu J, Chen K, Sun YH, Ye W, Liu J, Zhang D, Su N, Wu L, Kou X, Zhao Y, Wang H, Gao S, Kang L. LSM1-mediated Major Satellite RNA decay is required for nonequilibrium histone H3.3 incorporation into parental pronuclei. Nat Commun 2023; 14:957. [PMID: 36810573 PMCID: PMC9944933 DOI: 10.1038/s41467-023-36584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Epigenetic reprogramming of the parental genome is essential for zygotic genome activation and subsequent embryo development in mammals. Asymmetric incorporation of histone H3 variants into the parental genome has been observed previously, but the underlying mechanism remains elusive. In this study, we discover that RNA-binding protein LSM1-mediated major satellite RNA decay plays a central role in the preferential incorporation of histone variant H3.3 into the male pronucleus. Knockdown of Lsm1 disrupts nonequilibrium pronucleus histone incorporation and asymmetric H3K9me3 modification. Subsequently, we find that LSM1 mainly targets major satellite repeat RNA (MajSat RNA) for decay and that accumulated MajSat RNA in Lsm1-depleted oocytes leads to abnormal incorporation of H3.1 into the male pronucleus. Knockdown of MajSat RNA reverses the anomalous histone incorporation and modifications in Lsm1-knockdown zygotes. Our study therefore reveals that accurate histone variant incorporation and incidental modifications in parental pronuclei are specified by LSM1-dependent pericentromeric RNA decay.
Collapse
Affiliation(s)
- Jiang Zhu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.,Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Kang Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.,Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu H Sun
- Departments of Biology, University of Rochester, 14642, Rochester, NY, USA
| | - Wen Ye
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Juntao Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Dandan Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Nan Su
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Li Wu
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaochen Kou
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Yanhong Zhao
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Hong Wang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China. .,Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China. .,Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| | - Lan Kang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China. .,Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
7
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
8
|
Mu J, Zhou Z, Sang Q, Wang L. The physiological and pathological mechanisms of early embryonic development. FUNDAMENTAL RESEARCH 2022; 2:859-872. [PMID: 38933386 PMCID: PMC11197659 DOI: 10.1016/j.fmre.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022] Open
Abstract
Early embryonic development is a complex process. The zygote undergoes several rounds of division to form a blastocyst, and during this process, the zygote undergoes the maternal-to-zygotic transition to gain control of embryonic development and makes two cell fate decisions to differentiate into an embryonic and two extra-embryonic lineages. With the use of new molecular biotechnologies and animal models, we can now further study the molecular mechanisms of early embryonic development and the pathological causes of early embryonic arrest. Here, we first summarize the known molecular regulatory mechanisms of early embryonic development in mice. Then we discuss the pathological factors leading to the early embryonic arrest. We hope that this review will give researchers a relatively complete view of the physiology and pathology of early embryonic development.
Collapse
Affiliation(s)
- Jian Mu
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhou Zhou
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Qing Sang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Wang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Huang YC, Yuan W, Jacob Y. The Role of the TSK/TONSL-H3.1 Pathway in Maintaining Genome Stability in Multicellular Eukaryotes. Int J Mol Sci 2022; 23:9029. [PMID: 36012288 PMCID: PMC9409234 DOI: 10.3390/ijms23169029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Replication-dependent histone H3.1 and replication-independent histone H3.3 are nearly identical proteins in most multicellular eukaryotes. The N-terminal tails of these H3 variants, where the majority of histone post-translational modifications are made, typically differ by only one amino acid. Despite extensive sequence similarity with H3.3, the H3.1 variant has been hypothesized to play unique roles in cells, as it is specifically expressed and inserted into chromatin during DNA replication. However, identifying a function that is unique to H3.1 during replication has remained elusive. In this review, we discuss recent findings regarding the involvement of the H3.1 variant in regulating the TSK/TONSL-mediated resolution of stalled or broken replication forks. Uncovering this new function for the H3.1 variant has been made possible by the identification of the first proteins containing domains that can selectively bind or modify the H3.1 variant. The functional characterization of H3-variant-specific readers and writers reveals another layer of chromatin-based information regulating transcription, DNA replication, and DNA repair.
Collapse
Affiliation(s)
| | | | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, 260 Whitney Avenue, New Haven, CT 06511, USA
| |
Collapse
|
10
|
Parental competition for the regulators of chromatin dynamics in mouse zygotes. Commun Biol 2022; 5:699. [PMID: 35835981 PMCID: PMC9283401 DOI: 10.1038/s42003-022-03623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
The underlying mechanism for parental asymmetric chromatin dynamics is still unclear. To reveal this, we investigate chromatin dynamics in parthenogenetic, androgenic, and several types of male germ cells-fertilized zygotes. Here we illustrate that parental conflicting role mediates the regulation of chromatin dynamics. Sperm reduces chromatin dynamics in both parental pronuclei (PNs). During spermiogenesis, male germ cells acquire this reducing ability and its resistance. On the other hand, oocytes can increase chromatin dynamics. Notably, the oocytes-derived chromatin dynamics enhancing ability is dominant for the sperm-derived opposing one. This maternal enhancing ability is competed between parental pronuclei. Delayed fertilization timing is critical for this competition and compromises parental asymmetric chromatin dynamics and zygotic transcription. Together, parental competition for the maternal factor enhancing chromatin dynamics is a determinant to establish parental asymmetry, and paternal repressive effects have supporting roles to enhance asymmetry.
Collapse
|
11
|
Gopinathan G, Diekwisch TGH. Epigenetics and Early Development. J Dev Biol 2022; 10:jdb10020026. [PMID: 35735917 PMCID: PMC9225096 DOI: 10.3390/jdb10020026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
The epigenome controls all aspect of eukaryotic development as the packaging of DNA greatly affects gene expression. Epigenetic changes are reversible and do not affect the DNA sequence itself but rather control levels of gene expression. As a result, the science of epigenetics focuses on the physical configuration of chromatin in the proximity of gene promoters rather than on the mechanistic effects of gene sequences on transcription and translation. In the present review we discuss three prominent epigenetic modifications, DNA methylation, histone methylation/acetylation, and the effects of chromatin remodeling complexes. Specifically, we introduce changes to the methylated state of DNA through DNA methyltransferases and DNA demethylases, discuss the effects of histone tail modifications such as histone acetylation and methylation on gene expression and present the functions of major ATPase subunit containing chromatin remodeling complexes. We also introduce examples of how changes in these epigenetic factors affect early development in humans and mice. In summary, this review provides an overview over the most important epigenetic mechanisms and provides examples of the dramatic effects of epigenetic changes in early mammalian development.
Collapse
|
12
|
Abstract
Dramatic nuclear reorganization occurs during early development to convert terminally differentiated gametes to a totipotent zygote, which then gives rise to an embryo. Aberrant epigenome resetting severely impairs embryo development and even leads to lethality. How the epigenomes are inherited, reprogrammed, and reestablished in this critical developmental period has gradually been unveiled through the rapid development of technologies including ultrasensitive chromatin analysis methods. In this review, we summarize the latest findings on epigenetic reprogramming in gametogenesis and embryogenesis, and how it contributes to gamete maturation and parental-to-zygotic transition. Finally, we highlight the key questions that remain to be answered to fully understand chromatin regulation and nuclear reprogramming in early development.
Collapse
Affiliation(s)
- Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ke Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
13
|
Das A, Iwata-Otsubo A, Destouni A, Dawicki-McKenna JM, Boese KG, Black BE, Lampson MA. Epigenetic, genetic and maternal effects enable stable centromere inheritance. Nat Cell Biol 2022; 24:748-756. [PMID: 35534577 PMCID: PMC9107508 DOI: 10.1038/s41556-022-00897-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 03/16/2022] [Indexed: 12/31/2022]
Abstract
Centromeres are defined epigenetically by the histone H3 variant, CENP-A. The propagation cycle by which preexisting CENP-A nucleosomes serve as templates for nascent assembly predicts epigenetic memory of weakened centromeres. Using a mouse model with reduced levels of CENP-A nucleosomes, we find that an embryonic plastic phase precedes epigenetic memory through development. During this phase, nascent CENP-A nucleosome assembly depends on the maternal Cenpa genotype rather than the preexisting template. Weakened centromeres are thus limited to a single generation, and parental epigenetic differences are eliminated by equal assembly on maternal and paternal centromeres. These differences persist, however, when the underlying DNA of parental centromeres differs in repeat abundance, as assembly during the plastic phase also depends on sufficient repetitive centromere DNA. With contributions of centromere DNA and Cenpa maternal effect, we propose that centromere inheritance naturally minimizes fitness costs associated with weakened centromeres or epigenetic differences between parents.
Collapse
Affiliation(s)
- Arunika Das
- Department of Biochemistry and Biophysics; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Aiko Iwata-Otsubo
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aspasia Destouni
- Department of Biochemistry and Biophysics; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Jennine M Dawicki-McKenna
- Department of Biochemistry and Biophysics; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katelyn G Boese
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA. .,Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA. .,Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Rajam SM, Varghese PC, Dutta D. Histone Chaperones as Cardinal Players in Development. Front Cell Dev Biol 2022; 10:767773. [PMID: 35445016 PMCID: PMC9014011 DOI: 10.3389/fcell.2022.767773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamicity and flexibility of the chromatin landscape are critical for most of the DNA-dependent processes to occur. This higher-order packaging of the eukaryotic genome into the chromatin is mediated by histones and associated non-histone proteins that determine the states of chromatin. Histone chaperones- “the guardian of genome stability and epigenetic information” controls the chromatin accessibility by escorting the nucleosomal and non-nucleosomal histones as well as their variants. This distinct group of molecules is involved in all facets of histone metabolism. The selectivity and specificity of histone chaperones to the histones determine the maintenance of the chromatin in an open or closed state. This review highlights the functional implication of the network of histone chaperones in shaping the chromatin function in the development of an organism. Seminal studies have reported embryonic lethality at different stages of embryogenesis upon perturbation of some of the chaperones, suggesting their essentiality in development. We hereby epitomize facts and functions that emphasize the relevance of histone chaperones in orchestrating different embryonic developmental stages starting from gametogenesis to organogenesis in multicellular organisms.
Collapse
Affiliation(s)
- Sruthy Manuraj Rajam
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Pallavi Chinnu Varghese
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| |
Collapse
|
15
|
Borsuk E, Michalkiewicz J, Kubiak JZ, Kloc M. Histone Modifications in Mouse Pronuclei and Consequences for Embryo Development. Results Probl Cell Differ 2022; 70:397-415. [PMID: 36348116 DOI: 10.1007/978-3-031-06573-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Epigenetic marks, such as DNA methylation and posttranslational modifications of core histones, are the key regulators of gene expression. In the mouse, many of these marks are erased during gamete formation and must be introduced de novo after fertilization. Some of them appear synchronously, but the others are deposited asynchronously and/or remain differently distributed on maternal and paternal chromatin. Although the mechanisms regulating these processes are not entirely understandable, it is commonly accepted that epigenetic reprogramming occurring during the first cell cycle of a mouse embryo is crucial for its further development. This chapter focuses on selected epigenetic modifications, such as DNA methylation, the introduction of histone variants, histones acetylation, phosphorylation, and methylation. Properly depositing these marks on maternal and paternal chromatin is crucial for normal embryonic development.
Collapse
Affiliation(s)
- Ewa Borsuk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Julia Michalkiewicz
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jacek Z Kubiak
- Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes, UMR 6290, CNRS, Faculty of Medicine, University of Rennes, Rennes, France
- Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
- Department of Genetics, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| |
Collapse
|
16
|
Dean W. Pathways of DNA Demethylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:211-238. [DOI: 10.1007/978-3-031-11454-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Guo SM, Liu XP, Zhou LQ. H3.3 kinetics predicts chromatin compaction status of parental genomes in early embryos. Reprod Biol Endocrinol 2021; 19:87. [PMID: 34116678 PMCID: PMC8194155 DOI: 10.1186/s12958-021-00776-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/03/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND After fertilization, the fusion of gametes results in the formation of totipotent zygote. During sperm-egg fusion, maternal factors participate in parental chromatin remodeling. H3.3 is a histone H3 variant that plays essential roles in mouse embryogenesis. METHODS Here, we used transgenic early embryos expressing H3.3-eGFP or H2B-mCherry to elucidate changes of histone mobility. RESULTS We used FRAP analysis to identify that maternally stored H3.3 has a more significant change than H2B during maternal-to-embryonic transition. We also found that H3.3 mobile fraction, which may be regulated by de novo H3.3 incorporation, reflects chromatin compaction of parental genomes in GV oocytes and early embryos. CONCLUSIONS Our results show that H3.3 kinetics in GV oocytes and early embryos is highly correlated with chromatin compaction status of parental genomes, indicating critical roles of H3.3 in higher-order chromatin organization.
Collapse
Affiliation(s)
- Shi-Meng Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Xing-Ping Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Li Y, Mi P, Chen X, Wu J, Qin W, Shen Y, Zhang P, Tang Y, Cheng CY, Sun F. Dynamic Profiles and Transcriptional Preferences of Histone Modifications During Spermiogenesis. Endocrinology 2021; 162:5974117. [PMID: 33175103 DOI: 10.1210/endocr/bqaa210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 02/07/2023]
Abstract
During spermiogenesis, extensive histone modifications take place in developing haploid spermatids besides morphological alterations of the genetic material to form compact nuclei. Better understanding on the overall transcriptional dynamics and preferences of histones and enzymes involved in histone modifications may provide valuable information to dissect the epigenetic characteristics and unique chromatin status during spermiogenesis. Using single-cell RNA-Sequencing, the expression dynamics of histone variants, writers, erasers, and readers of histone acetylation and methylation, as well as histone phosphorylation, ubiquitination, and chaperones were assessed through transcriptome profiling during spermiogenesis. This approach provided an unprecedented panoramic perspective of the involving genes in epigenetic modifier/histone variant expression during spermiogenesis. Results reported here revealed the transcriptional ranks of histones, histone modifications, and their readers during spermiogenesis, emphasizing the unique preferences of epigenetic regulation in spermatids. These findings also highlighted the impact of spermatid metabolic preferences on epigenetic modifications. Despite the observed rising trend on transcription levels of all encoding genes and histone variants, the transcriptome profile of genes in histone modifications and their readers displayed a downward expression trend, suggesting that spermatid nuclei condensation is a progressive process that occurred in tandem with a gradual decrease in overall epigenetic activity during spermiogenesis.
Collapse
Affiliation(s)
- Yinchuan Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Panpan Mi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xue Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Yiqi Shen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Pingbao Zhang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
19
|
Ray-Gallet D, Almouzni G. The Histone H3 Family and Its Deposition Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1283:17-42. [PMID: 33155135 DOI: 10.1007/978-981-15-8104-5_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Within the cell nucleus, the organization of the eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. This chromatin organization contributes to the regulation of all DNA template-based reactions impacting genome function, stability, and plasticity. Histones and their variants endow chromatin with unique properties and show a distinct distribution into the genome that is regulated by dedicated deposition machineries. The histone variants have important roles during early development, cell differentiation, and chromosome segregation. Recent progress has also shed light on how mutations and transcriptional deregulation of these variants participate in tumorigenesis. In this chapter we introduce the organization of the genome in chromatin with a focus on the basic unit, the nucleosome, which contains histones as the major protein component. Then we review our current knowledge on the histone H3 family and its variants-in particular H3.3 and CenH3CENP-A-focusing on their deposition pathways and their dedicated histone chaperones that are key players in histone dynamics.
Collapse
Affiliation(s)
- Dominique Ray-Gallet
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Institut Curie, Sorbonne Université, CNRS UMR3664, Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France. .,Institut Curie, Sorbonne Université, CNRS UMR3664, Paris, France.
| |
Collapse
|
20
|
Oblette A, Rives-Feraille A, Dumont L, Delessard M, Saulnier J, Rives N, Rondanino C. Dynamics of epigenetic modifications in ICSI embryos from in vitro-produced spermatozoa. Andrology 2020; 9:640-656. [PMID: 33112482 DOI: 10.1111/andr.12926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/26/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND In prepubertal boys with cancer, fertility preservation relies on testicular tissue freezing before treatment. In vitro maturation of frozen/thawed tissues could be one of the procedures envisaged to restore the fertility of cured patients. It is necessary to ascertain in the mouse model that in vitro-generated spermatozoa are able to ensure embryo development, without altering the epigenetic processes occurring during the pre-implantation period. OBJECTIVES The aims of the present study were to investigate the fertilizing ability of in vitro-produced spermatozoa and explore several epigenetic marks at different stages of embryo development. MATERIALS AND METHODS Fresh or controlled slow-frozen (CSF)/thawed testicular tissues from 6 to 7 days post-partum (dpp) mice were cultured for 30 days. Intracytoplasmic sperm injection (ICSI) experiments were performed using in vitro-produced spermatozoa. Testicular spermatozoa from 36 to 37 dpp mice were used as in vivo controls. DNA methylation/hydroxymethylation and histone post-translational modifications (H3K4me3, H3K27me3 and H3K9ac) were analysed by immunofluorescence from the zygote to the blastocyst stages. RESULTS The spermatozoa generated in cultures of fresh or CSF testicular tissues were able to initiate embryonic development. The freezing of prepubertal testicular tissues limits the production of spermatozoa in vitro and the fertilization rate after ICSI. Similar levels of H3K4me3, H3K27me3 and H3K9ac were found in ICSI embryos derived from in vitro- and in vivo-produced spermatozoa. DNA methylation levels were increased in 4-cell embryos and morula obtained by ICSI with in vitro-produced spermatozoa. DISCUSSION AND CONCLUSION Our study shows for the first time that the use of in vitro-produced spermatozoa alters DNA methylation/demethylation dynamics but has little impact on H3K4me3, H3K27me3 and H3K9ac levels in mouse early embryos. Further work will have to be performed to determine whether the use of these gametes is not deleterious for embryo development before considering a human application.
Collapse
Affiliation(s)
- Antoine Oblette
- Department of Reproductive Biology-CECOS, Normandie Univ, UNIROUEN, EA4308 'Gametogenesis and Gamete Quality', Rouen University Hospital, Rouen, France
| | - Aurélie Rives-Feraille
- Department of Reproductive Biology-CECOS, Normandie Univ, UNIROUEN, EA4308 'Gametogenesis and Gamete Quality', Rouen University Hospital, Rouen, France
| | - Ludovic Dumont
- Department of Reproductive Biology-CECOS, Normandie Univ, UNIROUEN, EA4308 'Gametogenesis and Gamete Quality', Rouen University Hospital, Rouen, France
| | - Marion Delessard
- Department of Reproductive Biology-CECOS, Normandie Univ, UNIROUEN, EA4308 'Gametogenesis and Gamete Quality', Rouen University Hospital, Rouen, France
| | - Justine Saulnier
- Department of Reproductive Biology-CECOS, Normandie Univ, UNIROUEN, EA4308 'Gametogenesis and Gamete Quality', Rouen University Hospital, Rouen, France
| | - Nathalie Rives
- Department of Reproductive Biology-CECOS, Normandie Univ, UNIROUEN, EA4308 'Gametogenesis and Gamete Quality', Rouen University Hospital, Rouen, France
| | - Christine Rondanino
- Department of Reproductive Biology-CECOS, Normandie Univ, UNIROUEN, EA4308 'Gametogenesis and Gamete Quality', Rouen University Hospital, Rouen, France
| |
Collapse
|
21
|
Bogolyubova I, Bogolyubov D. Heterochromatin Morphodynamics in Late Oogenesis and Early Embryogenesis of Mammals. Cells 2020; 9:cells9061497. [PMID: 32575486 PMCID: PMC7348780 DOI: 10.3390/cells9061497] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
During the period of oocyte growth, chromatin undergoes global rearrangements at both morphological and molecular levels. An intriguing feature of oogenesis in some mammalian species is the formation of a heterochromatin ring-shaped structure, called the karyosphere or surrounded "nucleolus", which is associated with the periphery of the nucleolus-like bodies (NLBs). Morphologically similar heterochromatin structures also form around the nucleolus-precursor bodies (NPBs) in zygotes and persist for several first cleavage divisions in blastomeres. Despite recent progress in our understanding the regulation of gene silencing/expression during early mammalian development, as well as the molecular mechanisms that underlie chromatin condensation and heterochromatin structure, the biological significance of the karyosphere and its counterparts in early embryos is still elusive. We pay attention to both the changes of heterochromatin morphology and to the molecular mechanisms that can affect the configuration and functional activity of chromatin. We briefly discuss how DNA methylation, post-translational histone modifications, alternative histone variants, and some chromatin-associated non-histone proteins may be involved in the formation of peculiar heterochromatin structures intimately associated with NLBs and NPBs, the unique nuclear bodies of oocytes and early embryos.
Collapse
|
22
|
Tang SB, Yang LL, Zhang TT, Wang Q, Yin S, Luo SM, Shen W, Ge ZJ, Sun QY. Multiple superovulations alter histone modifications in mouse early embryos. Reproduction 2020; 157:511-523. [PMID: 30884466 PMCID: PMC6454231 DOI: 10.1530/rep-18-0495] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022]
Abstract
It is demonstrated that repeated superovulation has deleterious effects on mouse ovaries and cumulus cells. However, little is known about the effects of repeated superovulation on early embryos. Epigenetic reprogramming is an important event in early embryonic development and could be easily disrupted by the environment. Thus, we speculated that multiple superovulations may have adverse effects on histone modifications in the early embryos. Female CD1 mice were randomly divided into four groups: (a) spontaneous estrus cycle (R0); (b) with once superovulation (R1); (c) with three times superovulation at a 7-day interval (R3) and (d) with five times superovulation at a 7-day interval (R5). We found that repeated superovulation remarkably decreased the fertilization rate. With the increase of superovulation times, the rate of early embryo development was decreased. The expression of Oct4, Sox2 and Nanog was also affected by superovulation in blastocysts. The immunofluorescence results showed that the acetylation level of histone 4 at lysine 12 (H4K12ac) was significantly reduced by repeated superovulation in mouse early embryos (P < 0.01). Acetylation level of histone 4 at lysine 16 (H4K16ac) was also significantly reduced in pronuclei and blastocyst along with the increase of superovulation times (P < 0.01). H3K9me2 and H3K27me3 were significantly increased in four-cell embryos and blastocysts. We further found that repeated superovulation treatment increased the mRNA level of histone deacetylases Hdac1, Hdac2 and histone methyltransferase G9a, but decreased the expression level of histone demethylase-encoding genes Kdm6a and Kdm6b in early embryos. In a word, multiple superovulations alter histone modifications in early embryos.
Collapse
Affiliation(s)
- Shou-Bin Tang
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Lei-Lei Yang
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Ting-Ting Zhang
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Qian Wang
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Shi-Ming Luo
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Qing-Yuan Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
23
|
Shikata D, Yamamoto T, Honda S, Ikeda S, Minami N. H4K20 monomethylation inhibition causes loss of genomic integrity in mouse preimplantation embryos. J Reprod Dev 2020; 66:411-419. [PMID: 32378528 PMCID: PMC7593633 DOI: 10.1262/jrd.2020-036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Maintaining genomic integrity in mammalian early embryos, which are deficient in DNA damage repair, is critical for normal preimplantation and subsequent
development. Abnormalities in DNA damage repair in preimplantation embryos can cause not only developmental arrest, but also diseases such as congenital
disorders and cancers. Histone H4 lysine 20 monomethylation (H4K20me1) is involved in DNA damage repair and regulation of gene expression. However, little is
known about the role of H4K20me1 during mouse preimplantation development. In this study, we revealed that H4K20me1 mediated by SETD8 is involved in maintaining
genomic integrity. H4K20me1 was present throughout preimplantation development. In addition, reduction in the level of H4K20me1 by inhibition of SETD8 activity
or a dominant-negative mutant of histone H4 resulted in developmental arrest at the S/G2 phase and excessive accumulation of DNA double-strand breaks. Together,
our results suggest that H4K20me1, a type of epigenetic modification, is associated with the maintenance of genomic integrity and is essential for
preimplantation development. A better understanding of the mechanisms involved in maintaining genome integrity during preimplantation development could
contribute to advances in reproductive medicine and technology.
Collapse
Affiliation(s)
- Daiki Shikata
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takuto Yamamoto
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shinnosuke Honda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shuntaro Ikeda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
24
|
Harvey AJ. Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction 2020; 157:R159-R179. [PMID: 30870807 DOI: 10.1530/rep-18-0431] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022]
Abstract
Mitochondria, originally of bacterial origin, are highly dynamic organelles that have evolved a symbiotic relationship within eukaryotic cells. Mitochondria undergo dynamic, stage-specific restructuring and redistribution during oocyte maturation and preimplantation embryo development, necessary to support key developmental events. Mitochondria also fulfil a wide range of functions beyond ATP synthesis, including the production of intracellular reactive oxygen species and calcium regulation, and are active participants in the regulation of signal transduction pathways. Communication between not only mitochondria and the nucleus, but also with other organelles, is emerging as a critical function which regulates preimplantation development. Significantly, perturbations and deficits in mitochondrial function manifest not only as reduced quality and/or poor oocyte and embryo development but contribute to post-implantation failure, long-term cell function and adult disease. A growing body of evidence indicates that altered availability of metabolic co-factors modulate the activity of epigenetic modifiers, such that oocyte and embryo mitochondrial activity and dynamics have the capacity to establish long-lasting alterations to the epigenetic landscape. It is proposed that preimplantation embryo development may represent a sensitive window during which epigenetic regulation by mitochondria is likely to have significant short- and long-term effects on embryo, and offspring, health. Hence, mitochondrial integrity, communication and metabolism are critical links between the environment, the epigenome and the regulation of embryo development.
Collapse
Affiliation(s)
- Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Abstract
Mammalian embryogenesis depends on maternal factors accumulated in eggs prior to fertilization and on placental transfers later in gestation. In this review, we focus on initial events when the organism has insufficient newly synthesized embryonic factors to sustain development. These maternal factors regulate preimplantation embryogenesis both uniquely in pronuclear formation, genome reprogramming and cell fate determination and more universally in regulating cell division, transcription and RNA metabolism. Depletion, disruption or inappropriate persistence of maternal factors can result in developmental defects in early embryos. To better understand the origins of these maternal effects, we include oocyte maturation processes that are responsible for their production. We focus on recent publications and reference comprehensive reviews that include earlier scientific literature of early mouse development.
Collapse
Affiliation(s)
- Di Wu
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States.
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
26
|
Xavier MJ, Roman SD, Aitken RJ, Nixon B. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update 2019; 25:518-540. [DOI: 10.1093/humupd/dmz017] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/19/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Abstract
BACKGROUND
A defining feature of sexual reproduction is the transmission of genomic information from both parents to the offspring. There is now compelling evidence that the inheritance of such genetic information is accompanied by additional epigenetic marks, or stable heritable information that is not accounted for by variations in DNA sequence. The reversible nature of epigenetic marks coupled with multiple rounds of epigenetic reprogramming that erase the majority of existing patterns have made the investigation of this phenomenon challenging. However, continual advances in molecular methods are allowing closer examination of the dynamic alterations to histone composition and DNA methylation patterns that accompany development and, in particular, how these modifications can occur in an individual’s germline and be transmitted to the following generation. While the underlying mechanisms that permit this form of transgenerational inheritance remain unclear, it is increasingly apparent that a combination of genetic and epigenetic modifications plays major roles in determining the phenotypes of individuals and their offspring.
OBJECTIVE AND RATIONALE
Information pertaining to transgenerational inheritance was systematically reviewed focusing primarily on mammalian cells to the exclusion of inheritance in plants, due to inherent differences in the means by which information is transmitted between generations. The effects of environmental factors and biological processes on both epigenetic and genetic information were reviewed to determine their contribution to modulating inheritable phenotypes.
SEARCH METHODS
Articles indexed in PubMed were searched using keywords related to transgenerational inheritance, epigenetic modifications, paternal and maternal inheritable traits and environmental and biological factors influencing transgenerational modifications. We sought to clarify the role of epigenetic reprogramming events during the life cycle of mammals and provide a comprehensive review of how the genomic and epigenomic make-up of progenitors may determine the phenotype of its descendants.
OUTCOMES
We found strong evidence supporting the role of DNA methylation patterns, histone modifications and even non-protein-coding RNA in altering the epigenetic composition of individuals and producing stable epigenetic effects that were transmitted from parents to offspring, in both humans and rodent species. Multiple genomic domains and several histone modification sites were found to resist demethylation and endure genome-wide reprogramming events. Epigenetic modifications integrated into the genome of individuals were shown to modulate gene expression and activity at enhancer and promoter domains, while genetic mutations were shown to alter sequence availability for methylation and histone binding. Fundamentally, alterations to the nuclear composition of the germline in response to environmental factors, ageing, diet and toxicant exposure have the potential to become hereditably transmitted.
WIDER IMPLICATIONS
The environment influences the health and well-being of progeny by working through the germline to introduce spontaneous genetic mutations as well as a variety of epigenetic changes, including alterations in DNA methylation status and the post-translational modification of histones. In evolutionary terms, these changes create the phenotypic diversity that fuels the fires of natural selection. However, rather than being adaptive, such variation may also generate a plethora of pathological disease states ranging from dominant genetic disorders to neurological conditions, including spontaneous schizophrenia and autism.
Collapse
Affiliation(s)
- Miguel João Xavier
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shaun D Roman
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - R John Aitken
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett Nixon
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
27
|
Fice HE, Robaire B. Telomere Dynamics Throughout Spermatogenesis. Genes (Basel) 2019; 10:genes10070525. [PMID: 31336906 PMCID: PMC6678359 DOI: 10.3390/genes10070525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
Telomeres are repeat regions of DNA that cap either end of each chromosome, thereby providing stability and protection from the degradation of gene-rich regions. Each cell replication causes the loss of telomeric repeats due to incomplete DNA replication, though it is well-established that progressive telomere shortening is evaded in male germ cells by the maintenance of active telomerase. However, germ cell telomeres are still susceptible to disruption or insult by oxidative stress, toxicant exposure, and aging. Our aim was to examine the relative telomere length (rTL) in an outbred Sprague Dawley (SD) and an inbred Brown Norway (BN) rat model for paternal aging. No significant differences were found when comparing pachytene spermatocytes (PS), round spermatids (RS), and sperm obtained from the caput and cauda of the epididymis of young and aged SD rats; this is likely due to the high variance observed among individuals. A significant age-dependent decrease in rTL was observed from 115.6 (±6.5) to 93.3 (±6.3) in caput sperm and from 142.4 (±14.6) to 105.3 (±2.5) in cauda sperm from BN rats. Additionally, an increase in rTL during epididymal maturation was observed in both strains, most strikingly from 115.6 (±6.5) to 142 (±14.6) in young BN rats. These results confirm the decrease in rTL in rodents, but only when an inbred strain is used, and represent the first demonstration that rTL changes as sperm transit through the epididymis.
Collapse
Affiliation(s)
- Heather E Fice
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada.
- Departments of Obstetrics and Gynecology, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
28
|
Rissi VB, Glanzner WG, De Macedo MP, Gutierrez K, Baldassarre H, Gonçalves PBD, Bordignon V. The histone lysine demethylase KDM7A is required for normal development and first cell lineage specification in porcine embryos. Epigenetics 2019; 14:1088-1101. [PMID: 31216927 DOI: 10.1080/15592294.2019.1633864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is growing evidence that histone lysine demethylases (KDMs) play critical roles in the regulation of embryo development. This study investigated if KDM7A, a lysine demethylase known to act on mono-(me1) and di-(me2) methylation of H3K9 and H3K27, participates in the regulation of early embryo development. Knockdown of KDM7A mRNA reduced blastocyst formation by 69.2% in in vitro fertilized (IVF), 48.4% in parthenogenetically activated (PA), and 48.1% in somatic cell nuclear transfer (SCNT) embryos compared to controls. Global immunofluorescence (IF) signal in KDM7A knockdown compared to control embryos was increased for H3K27me1 on D7, for H3K27me2 on D3 and D5, for H3K9me1 on D5 and D7, and for H3K9me2 on D5 embryos, but decreased for H3K9me1, me2 and me3 on D3. Moreover, KDM7A knockdown altered mRNA expression, including the downregulation of KDM3C on D3, NANOG on D5 and D7, and OCT4 on D7 embryos, and the upregulation of CDX2, KDM4B and KDM6B on D5 embryos. On D3 and D5 embryos, total cell number and mRNA expression of embryo genome activation (EGA) markers (EIF1AX and PPP1R15B) were not affected by KDM7A knockdown. However, the ratio of inner cell mass (ICM)/total number of cells in D7 blastocysts was reduced by 45.5% in KDM7A knockdown compared to control embryos. These findings support a critical role for KDM7A in the regulation of early development and cell lineage specification in porcine embryos, which is likely mediated through the modulation of H3K9me1/me2 and H3K27me1/me2 levels, and changes in the expression of other KDMs and pluripotency genes.
Collapse
Affiliation(s)
- Vitor Braga Rissi
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM) , Santa Maria , RS , Brazil
| | - Werner Giehl Glanzner
- Department of Animal Science, McGill University , Sainte Anne de Bellevue , QC , Canada
| | | | - Karina Gutierrez
- Department of Animal Science, McGill University , Sainte Anne de Bellevue , QC , Canada
| | - Hernan Baldassarre
- Department of Animal Science, McGill University , Sainte Anne de Bellevue , QC , Canada
| | - Paulo Bayard Dias Gonçalves
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM) , Santa Maria , RS , Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University , Sainte Anne de Bellevue , QC , Canada
| |
Collapse
|
29
|
Battle SL, Doni Jayavelu N, Azad RN, Hesson J, Ahmed FN, Overbey EG, Zoller JA, Mathieu J, Ruohola-Baker H, Ware CB, Hawkins RD. Enhancer Chromatin and 3D Genome Architecture Changes from Naive to Primed Human Embryonic Stem Cell States. Stem Cell Reports 2019; 12:1129-1144. [PMID: 31056477 PMCID: PMC6524944 DOI: 10.1016/j.stemcr.2019.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/01/2022] Open
Abstract
During mammalian embryogenesis, changes in morphology and gene expression are concurrent with epigenomic reprogramming. Using human embryonic stem cells representing the preimplantation blastocyst (naive) and postimplantation epiblast (primed), our data in 2iL/I/F naive cells demonstrate that a substantial portion of known human enhancers are premarked by H3K4me1, providing an enhanced open chromatin state in naive pluripotency. The 2iL/I/F enhancer repertoire occupies 9% of the genome, three times that of primed cells, and can exist in broad chromatin domains over 50 kb. Enhancer chromatin states are largely poised. Seventy-seven percent of 2iL/I/F enhancers are decommissioned in a stepwise manner as cells become primed. While primed topologically associating domains are largely unaltered upon differentiation, naive 2iL/I/F domains expand across primed boundaries, affecting three-dimensional genome architecture. Differential topologically associating domain edges coincide with 2iL/I/F H3K4me1 enrichment. Our results suggest that naive-derived 2iL/I/F cells have a unique chromatin landscape, which may reflect early embryogenesis.
Collapse
Affiliation(s)
- Stephanie L Battle
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Naresh Doni Jayavelu
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Robert N Azad
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jennifer Hesson
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Faria N Ahmed
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Eliah G Overbey
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Joseph A Zoller
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
| | - Hannele Ruohola-Baker
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
| | - Carol B Ware
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
| | - R David Hawkins
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
30
|
Ge XA, Hunter CP. Efficient Homologous Recombination in Mice Using Long Single Stranded DNA and CRISPR Cas9 Nickase. G3 (BETHESDA, MD.) 2019; 9:281-286. [PMID: 30504134 PMCID: PMC6325892 DOI: 10.1534/g3.118.200758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/21/2018] [Indexed: 01/29/2023]
Abstract
The CRISPR/Cas9 nickase mutant is less prone to off-target double-strand (ds)DNA breaks than wild-type Cas9 because to produce dsDNA cleavage it requires two guide RNAs to target the nickase to nearby opposing strands. Like wild-type Cas9 lesions, these staggered lesions are repaired by either non-homologous end joining or, if a repair template is provided, by homologous recombination (HR). Here, we report very efficient (up to 100%) recovery of heterozygous insertions in Mus musculus produced by long (>300 nt), single-stranded DNA donor template-guided repair of paired-nickase lesions.
Collapse
Affiliation(s)
- Xi A Ge
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Craig P Hunter
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
31
|
Wimmer ME, Vassoler FM, White SL, Schmidt HD, Sidoli S, Han Y, Garcia BA, Pierce RC. Impaired cocaine-induced behavioral plasticity in the male offspring of cocaine-experienced sires. Eur J Neurosci 2019; 49:1115-1126. [PMID: 30565761 DOI: 10.1111/ejn.14310] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/19/2018] [Accepted: 11/23/2018] [Indexed: 12/26/2022]
Abstract
Our previous work indicated that male, but not female, offspring of cocaine-experienced sires display blunted cocaine self-administration. We extended this line of investigation to examine behavioral sensitization, a commonly used model of cocaine-induced behavioral and neuronal plasticity. Results indicated that male, but not female, offspring of cocaine-taking sires showed deficits in the ability of repeated systemic cocaine injections to induce augmented locomotor activity. The reduced cocaine sensitization phenotype in male progeny was associated with changes in histone post-translational modifications, epigenetic processes that regulate gene expression by controlling the accessibility of genes to transcriptional machinery, in the nucleus accumbens of first-generation male progeny. Thus, five histone post-translational modifications were significantly altered in the male progeny of cocaine-exposed sires. In contrast, self-administration of nicotine was unaltered in male and female offspring suggesting that the intergenerational effects of paternal cocaine taking may be drug-specific. Interestingly, the reduced sensitivity to cocaine previously observed in the male offspring of cocaine-taking sires dissipated in the grand-offspring. Both male and female grand-progeny of cocaine-exposed sires showed unaltered cocaine-induced behavioral sensitization and cocaine self-administration. Taken together, these findings indicate that paternal cocaine taking produces changes in multiple cocaine addiction-related behaviors in male progeny, which do not persist beyond the first generation of offspring. Moreover, the altered sensitivity to cocaine in first-generation male progeny of cocaine-sired male offspring was associated with epigenetic modifications in the nucleus accumbens, a nucleus that plays a critical role in cocaine-associated behavioral plasticity.
Collapse
Affiliation(s)
- Mathieu E Wimmer
- Department of Psychology and Neuroscience Program, College of Liberal Arts, Temple University, Philadelphia, Pennsylvania
| | - Fair M Vassoler
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts
| | - Samantha L White
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Heath D Schmidt
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yumiao Han
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - R Christopher Pierce
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Wang H, Paulson EE, Ma L, Ross PJ, Schultz RM. Paternal genome rescues mouse preimplantation embryo development in the absence of maternally-recruited EZH2 activity. Epigenetics 2019; 14:94-108. [PMID: 30661456 PMCID: PMC6380398 DOI: 10.1080/15592294.2019.1570771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), a component of the PRC2 complex, trimethylates H3K27, a transcriptionally repressive histone mark. EZH2 is encoded by a dormant maternal mRNA and inhibiting the maturation-associated increase in EZH2 activity using either a combined siRNA/morpholino approach or a small molecule inhibitor (GSK343) inhibits development of diploidized parthenotes to the blastocyst stage but not inseminated eggs, with longer GSK343 treatments leading to progressively greater inhibition of development. GSK343 treatment also results in a decrease in H3K27me3 and a decrease in global transcription in 2-cell parthenotes but not 2-cell embryos derived from inseminated eggs. RNA-sequencing revealed the relative abundance of ~100 zygotically-expressed transcripts is decreased by GSK treatment in parthenotes, but not in embryos, with many of the affected transcripts encoding proteins involved in transcription. A previous study found that parthenotes deficient in maternal Ezh2 readily develop to the blastocyst stage. To reconcile these differences we propose that the H3K27me3 state present in the zygote needs to be faithfully propagated following DNA replication in at least one pronucleus, otherwise development is compromised.
Collapse
Affiliation(s)
- Huili Wang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis, Davis, CA,USA
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Erika E Paulson
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Libing Ma
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, China
| | - Pablo J Ross
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Richard M Schultz
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis, Davis, CA,USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Barreto RSN, Romagnolli P, Cereta AD, Coimbra-Campos LMC, Birbrair A, Miglino MA. Pericytes in the Placenta: Role in Placental Development and Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1122:125-151. [PMID: 30937867 DOI: 10.1007/978-3-030-11093-2_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The placenta is the most variable organ, in terms of structure, among the species. Besides it, all placental types have the same function: production of viable offspring, independent of pregnancy length, litter number, or invasion level. The angiogenesis is a central mechanism for placental functionality, due to proper maternal-fetal communication and exchanges. Much is known about the vasculature structure, but little is known about vasculature development and cellular interactions. Pericytes are perivascular cells that were described to control vasculature stability and permeability. Nowadays there are several new functions discovered, such as lymphocyte modulation and activation, macrophage-like phagocytic properties, tissue regenerative and repair processes, and also the ability to modulate stem cells, majorly the hematopoietic. In parallel, placental tissues are known to be a particularly immune microenvironment and a rich stem cell niche. The pericyte function plethora could be similar in the placental microenvironment and could have a central role in placental development and homeostasis.
Collapse
Affiliation(s)
- Rodrigo S N Barreto
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, Butantã, Sao Paulo, Brazil
| | - Patricia Romagnolli
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, Butantã, Sao Paulo, Brazil
| | - Andressa Daronco Cereta
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, Butantã, Sao Paulo, Brazil
| | - Leda M C Coimbra-Campos
- Department of Pathology, Federal University of Minas Gerais, Pampulha, Belo Horizonte, Brazil
| | - Alexander Birbrair
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.,Department of Pathology, Federal University of Minas Gerais, Pampulha, Belo Horizonte, Brazil
| | - Maria Angelica Miglino
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, Butantã, Sao Paulo, Brazil.
| |
Collapse
|
34
|
DNA Damage and Repair in Human Reproductive Cells. Int J Mol Sci 2018; 20:ijms20010031. [PMID: 30577615 PMCID: PMC6337641 DOI: 10.3390/ijms20010031] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
The fundamental underlying paradigm of sexual reproduction is the production of male and female gametes of sufficient genetic difference and quality that, following syngamy, they result in embryos with genomic potential to allow for future adaptive change and the ability to respond to selective pressure. The fusion of dissimilar gametes resulting in the formation of a normal and viable embryo is known as anisogamy, and is concomitant with precise structural, physiological, and molecular control of gamete function for species survival. However, along the reproductive life cycle of all organisms, both male and female gametes can be exposed to an array of “stressors” that may adversely affect the composition and biological integrity of their proteins, lipids and nucleic acids, that may consequently compromise their capacity to produce normal embryos. The aim of this review is to highlight gamete genome organization, differences in the chronology of gamete production between the male and female, the inherent DNA protective mechanisms in these reproductive cells, the aetiology of DNA damage in germ cells, and the remarkable DNA repair mechanisms, pre- and post-syngamy, that function to maintain genome integrity.
Collapse
|
35
|
Ladstätter S, Tachibana K. Genomic insights into chromatin reprogramming to totipotency in embryos. J Cell Biol 2018; 218:70-82. [PMID: 30257850 PMCID: PMC6314560 DOI: 10.1083/jcb.201807044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Ladstätter and Tachibana discuss changes in DNA methylation, chromatin accessibility, and topological architecture occurring during the reprogramming to totipotency in the early embryo. The early embryo is the natural prototype for the acquisition of totipotency, which is the potential of a cell to produce a whole organism. Generation of a totipotent embryo involves chromatin reorganization and epigenetic reprogramming that alter DNA and histone modifications. Understanding embryonic chromatin architecture and how this is related to the epigenome and transcriptome will provide invaluable insights into cell fate decisions. Recently emerging low-input genomic assays allow the exploration of regulatory networks in the sparsely available mammalian embryo. Thus, the field of developmental biology is transitioning from microscopy to genome-wide chromatin descriptions. Ultimately, the prototype becomes a unique model for studying fundamental principles of development, epigenetic reprogramming, and cellular plasticity. In this review, we discuss chromatin reprogramming in the early mouse embryo, focusing on DNA methylation, chromatin accessibility, and higher-order chromatin structure.
Collapse
Affiliation(s)
- Sabrina Ladstätter
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
36
|
Assessment of developmental potential of human single pronucleated zygotes derived from conventional in vitro fertilization. J Assist Reprod Genet 2018; 35:1377-1384. [PMID: 29959619 DOI: 10.1007/s10815-018-1241-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/12/2018] [Indexed: 01/11/2023] Open
Abstract
PURPOSE The aim of this study was to non-invasively validate the developmental potential of human single pronucleated (1PN) zygotes derived from conventional in vitro fertilization (c-IVF) at the zygote stage. METHODS Fifty 1PN zygotes derived from 45 patients undergoing c-IVF were used. Immunohistochemistry and fluorescence live cell imaging were used to confirm normal chromosome segregation during the first mitosis. The usefulness of measuring pronuclear diameter was assessed on the basis of the presence or absence of a proper first cleavage and validated by subsequent development. RESULTS Although approximately 80% (15/19) of 1PN zygotes contained a diploid genome, immunohistochemistry revealed an unequal distribution of paternal and maternal genomes at the first mitosis. Fluorescence live imaging revealed that 73% (8/11) of 1PN zygotes formed a functional mitotic spindle at the first mitosis resulting from diploid genomes, with 25% (2/8) of these forming a tripolar spindle. 1PN zygotes in which the pronucleus disappeared and that subsequently underwent cleavage had a pronuclear diameter ≥ 32.2 μm. The selection of 1PN zygotes based on pronuclear diameter resulted in zygotes that all formed mitotic spindles with poles during cleavage. Furthermore, 63% (5/8) of these zygotes reached the blastocyst stage. CONCLUSIONS This study demonstrates the usefulness of a non-invasive assessment of 1PN zygotes derived from c-IVF as an indicator of developmental potential. Furthermore, diploid 1PN zygotes do not always exhibit normal chromosome segregation at the first mitosis. A pronuclear diameter ≥ 32.2 μm just before PN breakdown might be a useful criterion to assess 1PN zygotes that are capable of further development.
Collapse
|
37
|
Yamaguchi K, Hada M, Fukuda Y, Inoue E, Makino Y, Katou Y, Shirahige K, Okada Y. Re-evaluating the Localization of Sperm-Retained Histones Revealed the Modification-Dependent Accumulation in Specific Genome Regions. Cell Rep 2018; 23:3920-3932. [DOI: 10.1016/j.celrep.2018.05.094] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/18/2018] [Accepted: 05/30/2018] [Indexed: 11/24/2022] Open
|
38
|
Champroux A, Cocquet J, Henry-Berger J, Drevet JR, Kocer A. A Decade of Exploring the Mammalian Sperm Epigenome: Paternal Epigenetic and Transgenerational Inheritance. Front Cell Dev Biol 2018; 6:50. [PMID: 29868581 PMCID: PMC5962689 DOI: 10.3389/fcell.2018.00050] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
The past decade has seen a tremendous increase in interest and progress in the field of sperm epigenetics. Studies have shown that chromatin regulation during male germline development is multiple and complex, and that the spermatozoon possesses a unique epigenome. Its DNA methylation profile, DNA-associated proteins, nucleo-protamine distribution pattern and non-coding RNA set up a unique epigenetic landscape which is delivered, along with its haploid genome, to the oocyte upon fertilization, and therefore can contribute to embryogenesis and to the offspring health. An emerging body of compelling data demonstrates that environmental exposures and paternal lifestyle can change the sperm epigenome and, consequently, may affect both the embryonic developmental program and the health of future generations. This short review will attempt to provide an overview of what is currently known about sperm epigenome and the existence of transgenerational epigenetic inheritance of paternally acquired traits that may contribute to the offspring phenotype.
Collapse
Affiliation(s)
- Alexandre Champroux
- GReD, Laboratoire “Génétique, Reproduction and Développement,” UMR Centre National de la Recherche Scientifique 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julie Cocquet
- INSERM U1016, Institut Cochin, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Joëlle Henry-Berger
- GReD, Laboratoire “Génétique, Reproduction and Développement,” UMR Centre National de la Recherche Scientifique 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Joël R. Drevet
- GReD, Laboratoire “Génétique, Reproduction and Développement,” UMR Centre National de la Recherche Scientifique 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ayhan Kocer
- GReD, Laboratoire “Génétique, Reproduction and Développement,” UMR Centre National de la Recherche Scientifique 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
39
|
Biermann MHC, Boeltz S, Pieterse E, Knopf J, Rech J, Bilyy R, van der Vlag J, Tincani A, Distler JHW, Krönke G, Schett GA, Herrmann M, Muñoz LE. Autoantibodies Recognizing Secondary NEcrotic Cells Promote Neutrophilic Phagocytosis and Identify Patients With Systemic Lupus Erythematosus. Front Immunol 2018; 9:989. [PMID: 29867966 PMCID: PMC5949357 DOI: 10.3389/fimmu.2018.00989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022] Open
Abstract
Deficient clearance of apoptotic cells reportedly contributes to the etiopathogenesis of the autoimmune disease systemic lupus erythematosus (SLE). Based on this knowledge, we developed a highly specific and sensitive test for the detection of SLE autoantibodies (AAb) utilizing secondary NEcrotic cell (SNEC)-derived material as a substrate. The goal of the present study was to validate the use of SNEC as an appropriate antigen for the diagnosis of SLE in large cohort of patients. We confirmed the presence of apoptotically modified autoantigens on SNEC (dsDNA, high mobility group box 1 protein, apoptosis-associated chromatin modifications, e.g., histones H3-K27-me3; H2A/H4 AcK8,12,16; and H2B-AcK12). Anti-SNEC AAb were measured in the serum of 155 patients with SLE, 89 normal healthy donors (NHD), and 169 patients with other autoimmune connective tissue diseases employing SNEC-based indirect enzyme-linked immunosorbent assay (SNEC ELISA). We compared the test performance of SNEC ELISA with the routine diagnostic tests dsDNA Farr radioimmunoassay (RIA) and nucleosome-based ELISA (anti-dsDNA-NcX-ELISA). SNEC ELISA distinguished patients with SLE with a specificity of 98.9% and a sensitivity of 70.6% from NHD clearly surpassing RIA and anti-dsDNA-NcX-ELISA. In contrast to the other tests, SNEC ELISA significantly discriminated patients with SLE from patients with rheumatoid arthritis, primary anti-phospholipid syndrome, spondyloarthropathy, psoriatic arthritis, and systemic sclerosis. A positive test result in SNEC ELISA significantly correlated with serological variables and reflected the uptake of opsonized SNEC by neutrophils. This stresses the relevance of SNECs in the pathogenesis of SLE. We conclude that SNEC ELISA allows for the sensitive detection of pathologically relevant AAb, enabling its diagnostic usage. A positive SNEC test reflects the opsonization of cell remnants by AAb, the neutrophil recruitment to tissues, and the enhancement of local and systemic inflammatory responses.
Collapse
Affiliation(s)
- Mona H C Biermann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sebastian Boeltz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elmar Pieterse
- Department of Nephrology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jasmin Knopf
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jürgen Rech
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rostyslav Bilyy
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Angela Tincani
- Division of Rheumatology and Clinical Immunology, Department of Clinical and Experimental Sciences, Spedali Civili and University of Brescia, Brescia, Italy
| | - Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Andreas Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
40
|
Zhou M, Pan Z, Cao X, Guo X, He X, Sun Q, Di R, Hu W, Wang X, Zhang X, Zhang J, Zhang C, Liu Q, Chu M. Single Nucleotide Polymorphisms in the HIRA Gene Affect Litter Size in Small Tail Han Sheep. Animals (Basel) 2018; 8:ani8050071. [PMID: 29734691 PMCID: PMC5981282 DOI: 10.3390/ani8050071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Litter size is one of the most important reproductive traits in sheep. Two single nucleotide polymorphisms (SNPs), g.71874104G>A and g.71833755T>C, in the Histone Cell Cycle Regulator (HIRA) gene, were identified by whole-genome sequencing (WGS) and may be correlated with litter size in sheep. The two SNPs were genotyped and expression patterns of HIRA was determined in sheep breeds with different fecundity and in groups of Small Tail Han sheep producing large or small litters. Association analysis indicated that both SNPs were significantly correlated with litter size in Small Tail Han sheep. Furthermore, high levels of HIRA expression may have a negative effect on litter size in Small Tail Han sheep. Abstract Maintenance of appropriate levels of fecundity is critical for efficient sheep production. Opportunities to increase sheep litter size include identifying single gene mutations with major effects on ovulation rate and litter size. Whole-genome sequencing (WGS) data of 89 Chinese domestic sheep from nine different geographical locations and ten Australian sheep were analyzed to detect new polymorphisms affecting litter size. Comparative genomic analysis of sheep with contrasting litter size detected a novel set of candidate genes. Two SNPs, g.71874104G>A and g.71833755T>C, were genotyped in 760 Small Tail Han sheep and analyzed for association with litter size. The two SNPs were significantly associated with litter size, being in strong linkage disequilibrium in the region 71.80–71.87 Mb. This haplotype block contains one gene that may affect litter size, Histone Cell Cycle Regulator (HIRA). HIRA mRNA levels in sheep with different lambing ability were significantly higher in ovaries of Small Tail Han sheep (high fecundity) than in Sunite sheep (low fecundity). Moreover, the expression levels of HIRA in eight tissues of uniparous Small Tail Han sheep were significantly higher than in multiparous Small Tail Han sheep (p < 0.05). HIRA SNPs significantly affect litter size in sheep and are useful as genetic markers for litter size.
Collapse
Affiliation(s)
- Mei Zhou
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhangyuan Pan
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China.
| | - Xiaohan Cao
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Xiaofei Guo
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qing Sun
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | - Chunyuan Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
41
|
Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat Cell Biol 2018; 20:620-631. [DOI: 10.1038/s41556-018-0093-4] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 03/21/2018] [Indexed: 12/24/2022]
|
42
|
Kong Q, Banaszynski LA, Geng F, Zhang X, Zhang J, Zhang H, O'Neill CL, Yan P, Liu Z, Shido K, Palermo GD, Allis CD, Rafii S, Rosenwaks Z, Wen D. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos. J Biol Chem 2018; 293:3829-3838. [PMID: 29358330 DOI: 10.1074/jbc.ra117.001150] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/02/2018] [Indexed: 12/22/2022] Open
Abstract
Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis.
Collapse
Affiliation(s)
- Qingran Kong
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and.,Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Laura A Banaszynski
- Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, New York, New York 10065
| | - Fuqiang Geng
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Xiaolei Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Jiaming Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Heng Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Claire L O'Neill
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and
| | - Peidong Yan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Koji Shido
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Gianpiero D Palermo
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, New York, New York 10065
| | - Shahin Rafii
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Zev Rosenwaks
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and
| | - Duancheng Wen
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and
| |
Collapse
|
43
|
Chung N, Bogliotti YS, Ding W, Vilarino M, Takahashi K, Chitwood JL, Schultz RM, Ross PJ. Active H3K27me3 demethylation by KDM6B is required for normal development of bovine preimplantation embryos. Epigenetics 2018; 12:1048-1056. [PMID: 29160132 DOI: 10.1080/15592294.2017.1403693] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The substantial epigenetic remodeling that occurs during early stages of mammalian embryonic development likely contributes to reprogramming the parental genomes from a differentiated to a totipotent state and activation of the embryonic genome. Trimethylation of lysine 27 of histone 3 (H3K27me3) is a repressive mark that undergoes global dynamic changes during preimplantation development of several species. To ascertain the role of H3K27me3 in bovine preimplantation development we perturbed the activity of KDM6B, which demethylates H3K27me3. Knockdown of maternal KDM6B mRNA inhibited the reduction in global levels of H3K27me3 from 2-cell to 8-cell embryo stages and compromised development to the blastocyst stage; embryos that developed to the blastocyst stage had fewer inner cell mass (ICM) and trophectoderm (TE) cells. In addition, the transcriptome of KDM6B knockdown embryos was altered at the 8-cell stage and characterized by downregulation of transcripts related to transcriptional regulation, chromatin remodeling, and protein catabolism. Inhibiting the catalytic activity of KDM6B with a specific small molecule inhibitor also prevented the global decrease in H3K27me3 and compromised development to the blastocyst stage. These results indicate that histone demethylation activity, mediated by KDM6B, is required for the global decrease in H3K27me3, correct activation of the embryonic genome, and development to the blastocyst stage in bovine embryos.
Collapse
Affiliation(s)
- Nhi Chung
- a Department of Animal Science , University of California Davis , Davis , CA , USA
| | - Yanina S Bogliotti
- a Department of Animal Science , University of California Davis , Davis , CA , USA
| | - Wei Ding
- a Department of Animal Science , University of California Davis , Davis , CA , USA.,b Department of Animal Husbandry and Veterinary Medicine , Jiangsu Polytechnic College of Agriculture and Forestry , Jurong , Jiangsu Province , China
| | - Marcela Vilarino
- a Department of Animal Science , University of California Davis , Davis , CA , USA
| | - Kazuki Takahashi
- a Department of Animal Science , University of California Davis , Davis , CA , USA
| | - James L Chitwood
- a Department of Animal Science , University of California Davis , Davis , CA , USA
| | - Richard M Schultz
- c Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine , University of California Davis , Davis , CA , USA.,d Department of Biology, School of Arts and Sciences , University of Pennsylvania , Philadelphia , PA , USA
| | - Pablo J Ross
- a Department of Animal Science , University of California Davis , Davis , CA , USA
| |
Collapse
|
44
|
Zhang K, Wang H, Rajput SK, Folger JK, Smith GW. Characterization of H3.3 and HIRA expression and function in bovine early embryos. Mol Reprod Dev 2018; 85:106-116. [PMID: 29232016 DOI: 10.1002/mrd.22939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/01/2017] [Indexed: 01/20/2023]
Abstract
Histone variant H3.3 is encoded by two distinct genes, H3F3A and H3F3B, that are closely associated with actively transcribed genes. H3.3 replacement is continuous and essential for maintaining correct chromatin structure during mouse oogenesis. Upon fertilization, H3.3 is incorporated to parental chromatin, and is required for blastocyst formation in mice. The H3.3 exchange process is facilitated by the chaperone HIRA, particularly during zygote development. We previously demonstrated that H3.3 is required for bovine early embryonic development; here, we explored the mechanisms of its functional requirement. H3F3A mRNA abundance is stable whereas H3F3B and HIRA mRNA are relatively dynamic during early embryonic development. H3F3B mRNA quantity is also considerably higher than H3F3A. Immunofluorescence analysis revealed an even distribution of H3.3 between paternal and maternal pronuclei in zygotes, and subsequent stage-specific localization of H3.3 in early bovine embryos. Knockdown of H3.3 by targeting both H3F3A and H3F3B dramatically decreased the expression of NANOG (a pluripotency marker) and CTGF (Connective tissue growth factor; a trophectoderm marker) in bovine blastocysts. Additionally, we noted that Histone H3 lysine 36 dimethylation and linker Histone H1 abundance is reduced in H3.3-deficient embryos, which was similar to effects following knockdown of CHD1 (Chromodomain helicase DNA-binding protein 1). By contrast, no difference was observed in the abundance of Histone H3 lysine 4 trimethylation, Histone H3 lysine 9 dimethylation, or Splicing factor 3 B1. Collectively, these results established that H3.3 is required for correct epigenetic modifications and H1 deposition, dysregulation of which likely mediate the poor development in H3.3-deficient embryos.
Collapse
Affiliation(s)
- Kun Zhang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Dairy Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Han Wang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sandeep K Rajput
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Joseph K Folger
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - George W Smith
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| |
Collapse
|
45
|
Gassler J, Brandão HB, Imakaev M, Flyamer IM, Ladstätter S, Bickmore WA, Peters JM, Mirny LA, Tachibana K. A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J 2017; 36:3600-3618. [PMID: 29217590 PMCID: PMC5730859 DOI: 10.15252/embj.201798083] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 02/03/2023] Open
Abstract
Fertilization triggers assembly of higher-order chromatin structure from a condensed maternal and a naïve paternal genome to generate a totipotent embryo. Chromatin loops and domains have been detected in mouse zygotes by single-nucleus Hi-C (snHi-C), but not bulk Hi-C. It is therefore unclear when and how embryonic chromatin conformations are assembled. Here, we investigated whether a mechanism of cohesin-dependent loop extrusion generates higher-order chromatin structures within the one-cell embryo. Using snHi-C of mouse knockout embryos, we demonstrate that the zygotic genome folds into loops and domains that critically depend on Scc1-cohesin and that are regulated in size and linear density by Wapl. Remarkably, we discovered distinct effects on maternal and paternal chromatin loop sizes, likely reflecting differences in loop extrusion dynamics and epigenetic reprogramming. Dynamic polymer models of chromosomes reproduce changes in snHi-C, suggesting a mechanism where cohesin locally compacts chromatin by active loop extrusion, whose processivity is controlled by Wapl. Our simulations and experimental data provide evidence that cohesin-dependent loop extrusion organizes mammalian genomes over multiple scales from the one-cell embryo onward.
Collapse
Affiliation(s)
- Johanna Gassler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Hugo B Brandão
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
| | - Maxim Imakaev
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Ilya M Flyamer
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Sabrina Ladstätter
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Leonid A Mirny
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
46
|
Ueda J, Harada A, Urahama T, Machida S, Maehara K, Hada M, Makino Y, Nogami J, Horikoshi N, Osakabe A, Taguchi H, Tanaka H, Tachiwana H, Yao T, Yamada M, Iwamoto T, Isotani A, Ikawa M, Tachibana T, Okada Y, Kimura H, Ohkawa Y, Kurumizaka H, Yamagata K. Testis-Specific Histone Variant H3t Gene Is Essential for Entry into Spermatogenesis. Cell Rep 2017; 18:593-600. [PMID: 28099840 DOI: 10.1016/j.celrep.2016.12.065] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/16/2016] [Accepted: 12/20/2016] [Indexed: 01/09/2023] Open
Abstract
Cellular differentiation is associated with dynamic chromatin remodeling in establishing a cell-type-specific epigenomic landscape. Here, we find that mouse testis-specific and replication-dependent histone H3 variant H3t is essential for very early stages of spermatogenesis. H3t gene deficiency leads to azoospermia because of the loss of haploid germ cells. When differentiating spermatogonia emerge in normal spermatogenesis, H3t appears and replaces the canonical H3 proteins. Structural and biochemical analyses reveal that H3t-containing nucleosomes are more flexible than the canonical nucleosomes. Thus, by incorporating H3t into the genome during spermatogonial differentiation, male germ cells are able to enter meiosis and beyond.
Collapse
Affiliation(s)
- Jun Ueda
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi 487-8501, Japan; Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan.
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Urahama
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Shinichi Machida
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Masashi Hada
- Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Yoshinori Makino
- Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Naoki Horikoshi
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Akihisa Osakabe
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Hiroyuki Taguchi
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Hiroki Tanaka
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Hiroaki Tachiwana
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Tatsuma Yao
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka 536-8523, Japan; Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Minami Yamada
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Takashi Iwamoto
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Ayako Isotani
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Masahito Ikawa
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | - Yuki Okada
- Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Kazuo Yamagata
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan; Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan.
| |
Collapse
|
47
|
Xu Q, Xie W. Epigenome in Early Mammalian Development: Inheritance, Reprogramming and Establishment. Trends Cell Biol 2017; 28:237-253. [PMID: 29217127 DOI: 10.1016/j.tcb.2017.10.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/17/2023]
Abstract
Drastic epigenetic reprogramming takes place during preimplantation development, leading to the conversion of terminally differentiated gametes to a totipotent embryo. Deficiencies in remodeling of the epigenomes can cause severe developmental defects, including embryonic lethality. However, how chromatin modifications and chromatin organization are reprogrammed upon fertilization in mammals has long remained elusive. Here, we review recent progress in understanding how the epigenome is dynamically regulated during early mammalian development. The latest studies, including many from genome-wide perspectives, have revealed unusual principles of reprogramming for histone modifications, chromatin accessibility, and 3D chromatin architecture. These advances have shed light on the regulatory network controlling the earliest development and maternal-zygotic transition.
Collapse
Affiliation(s)
- Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
48
|
Seah MKY, Messerschmidt DM. From Germline to Soma: Epigenetic Dynamics in the Mouse Preimplantation Embryo. Curr Top Dev Biol 2017; 128:203-235. [PMID: 29477164 DOI: 10.1016/bs.ctdb.2017.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When reflecting about cell fate commitment we think of differentiation. Be it during embryonic development or in an adult stem cell niche, where cells of a higher potency specialize and cell fate decisions are taken. Under normal circumstances this process is definitive and irreversible. Cell fate commitment is achieved by the establishment of cell-type-specific transcriptional programmes, which in turn are guided, reinforced, and ultimately locked-in by epigenetic mechanisms. Yet, this plunging drift in cellular potency linked to epigenetically restricted access to genomic information is problematic for reproduction. Particularly in mammals where germ cells are not set aside early on like in other species. Instead they are rederived from the embryonic ectoderm, a differentiating embryonic tissue with somatic epigenetic features. The epigenomes of germ cell precursors are efficiently reprogrammed against the differentiation trend, only to specialize once more into highly differentiated, sex-specific gametes: oocyte and sperm. Their differentiation state is reflected in their specialized epigenomes, and erasure of these features is required to enable the acquisition of the totipotent cell fate to kick start embryonic development of the next generation. Recent technological advances have enabled unprecedented insights into the epigenetic dynamics, first of DNA methylation and then of histone modifications, greatly expanding the historically technically limited understanding of this processes. In this chapter we will focus on the details of embryonic epigenetic reprogramming, a cell fate determination process against the tide to a higher potency.
Collapse
Affiliation(s)
- Michelle K Y Seah
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Daniel M Messerschmidt
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
49
|
Lu X, Gao Z, Qin D, Li L. A Maternal Functional Module in the Mammalian Oocyte-To-Embryo Transition. Trends Mol Med 2017; 23:1014-1023. [DOI: 10.1016/j.molmed.2017.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 01/21/2023]
|
50
|
Involvement of sperm acetylated histones and the nuclear isoform of Glutathione peroxidase 4 in fertilization. J Cell Physiol 2017; 233:3093-3104. [DOI: 10.1002/jcp.26146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/11/2017] [Indexed: 12/30/2022]
|