1
|
Wang B, Zhu Y, Wei B, Zeng H, Zhang P, Li L, Wang H, Wu X, Zheng Y, Sun M. miR-377-3p Regulates Hippocampal Neurogenesis via the Zfp462-Pbx1 Pathway and Mediates Anxiety-Like Behaviors in Prenatal Hypoxic Offspring. Mol Neurobiol 2024; 61:1920-1935. [PMID: 37817032 DOI: 10.1007/s12035-023-03683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023]
Abstract
Prenatal hypoxia (PH) is one of the most common complications of obstetrics and is closely associated with many neurological disorders such as depression, anxiety, and cognitive impairment. Our previous study found that Zfp462 heterozygous (Het) mice exhibit significant anxiety-like behavior. Interestingly, offspring mice with PH also have anxiety-like behaviors in adulthood, accompanied by reduced expression of Zfp462 and increased expression of miR-377-3p; however, the exact regulatory mechanisms remain unclear. In this study, western blotting, gene knockdown, immunofluorescence, dual-luciferase reporter assay, immunoprecipitation, cell transfection with miR-377-3p mimics or inhibitors, quantitative real-time PCR, and rescue assay were used to detect changes in the miR-377-3p-Zfp462-Pbx1 (pre-B-cell leukemia homeobox1) pathway in the brains of prenatal hypoxic offspring to explain the pathogenesis of anxiety-like behaviors. We found that Zfp462 deficiency promoted Pbx1 protein degradation through ubiquitination and that Zfp462 Het mice showed downregulation of the protein kinase B (PKB, also called Akt)-glycogen synthase kinase-3β (GSK3β)-cAMP response element-binding protein (CREB) pathway and hippocampal neurogenesis with anxiety-like behavior. In addition, PH mice exhibited upregulation of miR-377-3p, downregulation of Zfp462/Pbx1-Akt-GSK3β-CREB pathway activity, reduced hippocampal neurogenesis, and an anxiety-like phenotype. Intriguingly, miR-377-3p directly targets the 3'UTR of Zfp462 mRNA to regulate Zfp462 expression. Importantly, microinjection of miR-377-3p antagomir into the hippocampal dentate gyrus of PH mice upregulated Zfp462/Pbx1-Akt-GSK3β-CREB pathway activity, increased hippocampal neurogenesis, and improved anxiety-like behaviors. Collectively, our findings demonstrated a crucial role for miR-377-3p in the regulation of hippocampal neurogenesis and anxiety-like behaviors via the Zfp462/Pbx1-Akt-GSK3β-CREB pathway. Therefore, miR-377-3p could be a potential therapeutic target for anxiety-like behavior in prenatal hypoxic offspring.
Collapse
Affiliation(s)
- Bin Wang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.
| | - Yichen Zhu
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, Suzhou Medical College of Soochow University, Jiangsu, 215123, China
| | - Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Hongtao Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Pengjie Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Lingjun Li
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital Research Center, Institute of Reproduction and Development, Fudan University, Shanghai, 200433, China
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaohui Wu
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, 200433, China
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital Research Center, Institute of Reproduction and Development, Fudan University, Shanghai, 200433, China
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, 200433, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.
| |
Collapse
|
2
|
Chang LW, Tseng IC, Wang LH, Sun YH. Isoform-specific functions of an evolutionarily conserved 3 bp micro-exon alternatively spliced from another exon in Drosophila homothorax gene. Sci Rep 2020; 10:12783. [PMID: 32732884 PMCID: PMC7392893 DOI: 10.1038/s41598-020-69644-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/14/2020] [Indexed: 12/03/2022] Open
Abstract
Micro-exons are exons of very small size (usually 3–30 nts). Some micro-exons are alternatively spliced. Their functions, regulation and evolution are largely unknown. Here, we present an example of an alternatively spliced 3 bp micro-exon (micro-Ex8) in the homothorax (hth) gene in Drosophila. Hth is involved in many developmental processes. It contains a MH domain and a TALE-class homeodomain (HD). It binds to another homeodomain Exd via its MH domain to promote the nuclear import of the Hth-Exd complex and serve as a cofactor for Hox proteins. The MH and HD domains in Hth as well as the HTh-Exd interaction are highly conserved in evolution. The alternatively spliced micro-exon lies between the exons encoding the MH and HD domains. We provide clear proof that the micro-Ex8 is produced by alternative splicing from a 48 bp full-length exon 8 (FL-Ex8) and the micro-Ex8 is the first three nt is FL-Ex8. We found that the micro-Ex8 is the ancient form and the 3 + 48 organization of alternatively spliced overlapping exons only emerged in the Schizophora group of Diptera and is absolutely conserved in this group. We then used several strategies to test the in vivo function of the two types of isoforms and found that the micro-Ex8 and FL-Ex8 isoforms have largely overlapping functions but also have non-redundant functions that are tissue-specific, which supports their strong evolutionary conservation. Since the different combinations of protein interaction of Hth with Exd and/or Hox can have different DNA target specificity, our finding of alternatively spliced isoforms adds to the spectrum of structural and functional diversity under developmental regulation.
Collapse
Affiliation(s)
- Ling-Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| | - I-Chieh Tseng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.,Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Department of Life Science, Chinese Culture University, Taipei, Taiwan, ROC
| | - Lan-Hsin Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| | - Y Henry Sun
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC. .,Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.
| |
Collapse
|
3
|
Liu N, Zhang Z, Li L, Shen X, Sun B, Wang R, Zhong H, Shi Q, Wei L, Zhang Y, Wang Y, Xu C, Liu Y, Yuan W. MicroRNA-181 regulates the development of Ossification of Posterior longitudinal ligament via Epigenetic Modulation by targeting PBX1. Theranostics 2020; 10:7492-7509. [PMID: 32685001 PMCID: PMC7359103 DOI: 10.7150/thno.44309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives: Ossification of the posterior longitudinal ligament (OPLL) presents as the development of heterotopic ossification in the posterior longitudinal ligament of the spine. The etiology of OPLL is genetically linked, as shown by its high prevalence in Asian populations. However, the molecular mechanism of the disease remains obscure. In this study, we explored the function and mechanism of OPLL-specific microRNAs. Methods: The expression levels of the ossification-related OPLL-specific miR-181 family were measured in normal or OPLL ligament tissues. The effect of miR-181a on the ossification of normal or pathogenic ligament cells was tested using real-time polymerase chain reaction (PCR), Western blot, alizarin red staining and alkaline phosphatase (ALP) staining. The candidate targets of miR-181 were screened using a dual luciferase reporter assay and functional analysis. The link between miR-181a and its target PBX1 was investigated using chromatin immunoprecipitation, followed by real-time PCR detection. Histological and immunohistochemical analysis as well as micro-CT scanning were used to evaluate the effects of miR-181 and its antagonist using both tip-toe-walking OPLL mice and in vivo bone formation assays. Results: Using bioinformatic analysis, we found that miR-181a-5p is predicted to play important roles in the development of OPLL. Overexpression of miR-181a-5p significantly increased the expression of ossification-related genes, staining level of alizarin red and ALP activity, while the inhibition of miR-181a-5p by treatment with an antagomir had the opposite effects. Functional analysis identified PBX1 as a direct target of miR-181a-5p, and we determined that PBX1 was responsible for miR-181a-5p's osteogenic phenotype. By chromatin immunoprecipitation assay, we found that miR-181a-5p controls ligament cell ossification by regulating PBX1-mediated modulation of histone methylation and acetylation levels in the promoter region of osteogenesis-related genes. Additionally, using an in vivo model, we confirmed that miR-181a-5p can substantially increase the bone formation ability of posterior ligament cells and cause increased osteophyte formation in the cervical spine of tip-toe-walking mice. Conclusions: Our data unveiled the mechanism by which the miR-181a-5p/PBX1 axis functions in the development of OPLL, and it revealed the therapeutic effects of the miR-181a-5p antagomir in preventing OPLL development both in vivo and in vitro. Our work is the first to demonstrate that microRNA perturbation could modulate the development of OPLL through epigenetic regulation.
Collapse
Affiliation(s)
- Ning Liu
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Zicheng Zhang
- Undergraduate Brigade, Changhai Hospital Affiliated to Second Military Medical University, 168th Chang Hai Road, Shanghai, 200433, China
| | - Li Li
- Research Center of Developmental Biology, Second Military Medical University, 800th Xiang Yin Road, Shanghai, 200433, PR China
| | - Xiaolong Shen
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Baifeng Sun
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Ruizhe Wang
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Huajian Zhong
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Qianghui Shi
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Leixin Wei
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Yizhi Zhang
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Yue Wang
- Research Center of Developmental Biology, Second Military Medical University, 800th Xiang Yin Road, Shanghai, 200433, PR China
| | - Chen Xu
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Yang Liu
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Wen Yuan
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| |
Collapse
|
4
|
Wang B, Zheng Y, Shi H, Du X, Zhang Y, Wei B, Luo M, Wang H, Wu X, Hua X, Sun M, Xu X. Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice. GENES BRAIN AND BEHAVIOR 2016; 16:296-307. [PMID: 27621227 DOI: 10.1111/gbb.12339] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/30/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022]
Abstract
Zfp462 is a newly identified vertebrate-specific zinc finger protein that contains nearly 2500 amino acids and 23 putative C2H2-type zinc finger domains. So far, the functions of Zfp462 remain unclear. In our study, we showed that Zfp462 is expressed predominantly in the developing brain, especially in the cerebral cortex and hippocampus regions from embryonic day 7.5 to early postnatal stage. By using a piggyBac transposon-generated Zfp462 knockout (KO) mouse model, we found that Zfp462 KO mice exhibited prenatal lethality with normal neural tube patterning, whereas heterozygous (Het) Zfp462 KO (Zfp462+/- ) mice showed developmental delay with low body weight and brain weight. Behavioral studies showed that Zfp462+/- mice presented anxiety-like behaviors with excessive self-grooming and hair loss, which were similar to the pathological grooming behaviors in Hoxb8 KO mice. Further analysis of grooming microstructure showed the impairment of grooming patterning in Zfp462+/- mice. In addition, the mRNA levels of Pbx1 (pre-B-cell leukemia homeobox 1, an interacting protein of Zfp462) and Hoxb8 decreased in the brains of Zfp462+/- mice, which may be the cause of anxiety-like behaviors. Finally, imipramine, a widely used and effective anti-anxiety medicine, rescued anxiety-like behaviors and excessive self-grooming in Zfp462+/- mice. In conclusion, Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice. This provides a novel genetic mouse model for anxiety disorders and a useful tool to determine potential therapeutic targets for anxiety disorders and screen anti-anxiety drugs.
Collapse
Affiliation(s)
- B Wang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Shanghai, China.,Institute for Fetology, The First Affiliated Hospital of Soochow University, Shanghai, China.,Institute of Neuroscience, Soochow University, Shanghai, China
| | - Y Zheng
- Obstetrics and Gynecology Hospital Research Center, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, China
| | - H Shi
- Institute of Neuroscience, Soochow University, Shanghai, China
| | - X Du
- Department of Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou City, China
| | - Y Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Shanghai, China
| | - B Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Shanghai, China
| | - M Luo
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Shanghai, China
| | - H Wang
- Obstetrics and Gynecology Hospital Research Center, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, China
| | - X Wu
- Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, China
| | - X Hua
- Department of Emergency, Emory University Hospital, Atlanta, GA, USA
| | - M Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Shanghai, China
| | - X Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Shanghai, China.,Institute of Neuroscience, Soochow University, Shanghai, China
| |
Collapse
|
5
|
Beccari L, Marco-Ferreres R, Tabanera N, Manfredi A, Souren M, Wittbrodt B, Conte I, Wittbrodt J, Bovolenta P. A trans-Regulatory Code for the Forebrain Expression of Six3.2 in the Medaka Fish. J Biol Chem 2015; 290:26927-26942. [PMID: 26378230 PMCID: PMC4646366 DOI: 10.1074/jbc.m115.681254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/11/2015] [Indexed: 12/16/2022] Open
Abstract
A well integrated and hierarchically organized gene regulatory network is responsible for the progressive specification of the forebrain. The transcription factor Six3 is one of the central components of this network. As such, Six3 regulates several components of the network, but its upstream regulators are still poorly characterized. Here we have systematically identified such regulators, taking advantage of the detailed functional characterization of the regulatory region of the medaka fish Six3.2 ortholog and of a time/cost-effective trans-regulatory screening, which complemented and overcame the limitations of in silico prediction approaches. The candidates resulting from this search were validated with dose-response luciferase assays and expression pattern criteria. Reconfirmed candidates with a matching expression pattern were also tested with chromatin immunoprecipitation and functional studies. Our results confirm the previously proposed direct regulation of Pax6 and further demonstrate that Msx2 and Pbx1 are bona fide direct regulators of early Six3.2 distribution in distinct domains of the medaka fish forebrain. They also point to other transcription factors, including Tcf3, as additional regulators of different spatial-temporal domains of Six3.2 expression. The activity of these regulators is discussed in the context of the gene regulatory network proposed for the specification of the forebrain.
Collapse
Affiliation(s)
- Leonardo Beccari
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolas Cabrera 1, Madrid 28049, Spain,; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain,.
| | - Raquel Marco-Ferreres
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolas Cabrera 1, Madrid 28049, Spain,; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain
| | - Noemi Tabanera
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolas Cabrera 1, Madrid 28049, Spain,; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain
| | - Anna Manfredi
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain
| | - Marcel Souren
- the Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Beate Wittbrodt
- the Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ivan Conte
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain,; the Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, 80078, Italy
| | - Jochen Wittbrodt
- the Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolas Cabrera 1, Madrid 28049, Spain,; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain,.
| |
Collapse
|
6
|
Longobardi E, Penkov D, Mateos D, De Florian G, Torres M, Blasi F. Biochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates. Dev Dyn 2014; 243:59-75. [PMID: 23873833 PMCID: PMC4232920 DOI: 10.1002/dvdy.24016] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/19/2013] [Accepted: 07/05/2013] [Indexed: 12/22/2022] Open
Abstract
TALE (three amino acids loop extension) homeodomain transcription factors are required in various steps of embryo development, in many adult physiological functions, and are involved in important pathologies. This review focuses on the PREP, MEIS, and PBX sub-families of TALE factors and aims at giving information on their biochemical properties, i.e., structure, interactors, and interaction surfaces. Members of the three sets of protein form dimers in which the common partner is PBX but they can also directly interact with other proteins forming higher-order complexes, in particular HOX. Finally, recent advances in determining the genome-wide DNA-binding sites of PREP1, MEIS1, and PBX1, and their partial correspondence with the binding sites of some HOX proteins, are reviewed. These studies have generated a few general rules that can be applied to all members of the three gene families. PREP and MEIS recognize slightly different consensus sequences: PREP prefers to bind to promoters and to have PBX as a DNA-binding partner; MEIS prefers HOX as partner, and both PREP and MEIS drive PBX to their own binding sites. This outlines the clear individuality of the PREP and MEIS proteins, the former mostly devoted to basic cellular functions, the latter more to developmental functions.
Collapse
Affiliation(s)
- E Longobardi
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milano, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Ladam F, Sagerström CG. Hox regulation of transcription: more complex(es). Dev Dyn 2013; 243:4-15. [PMID: 23765878 DOI: 10.1002/dvdy.23997] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 11/10/2022] Open
Abstract
Hox genes encode transcription factors with important roles during embryogenesis and tissue differentiation. Genetic analyses initially demonstrated that interfering with Hox genes has profound effects on the specification of cell identity, suggesting that Hox proteins regulate very specific sets of target genes. However, subsequent biochemical analyses revealed that Hox proteins bind DNA with relatively low affinity and specificity. Furthermore, it became clear that a given Hox protein could activate or repress transcription, depending on the context. A resolution to these paradoxes presented itself with the discovery that Hox proteins do not function in isolation, but interact with other factors in complexes. The first such "cofactors" were members of the Extradenticle/Pbx and Homothorax/Meis/Prep families. However, the list of Hox-interacting proteins has continued to grow, suggesting that Hox complexes contain many more components than initially thought. Additionally, the activities of the various components and the exact mechanisms whereby they modulate the activity of the complex remain puzzling. Here, we review the various proteins known to participate in Hox complexes and discuss their likely functions. We also consider that Hox complexes of different compositions may have different activities and discuss mechanisms whereby Hox complexes may be switched between active and inactive states.
Collapse
Affiliation(s)
- Franck Ladam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | | |
Collapse
|
8
|
Sengupta M, Liang S, Potula HHS, Chang LJ, Morel L. The SLE-associated Pbx1-d isoform acts as a dominant-negative transcriptional regulator. Genes Immun 2012; 13:653-7. [PMID: 22992721 DOI: 10.1038/gene.2012.43] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pbx1 is a transcription factor involved in multiple cellular processes, including the maintenance of self-renewal of hematopoietic progenitors. We have shown that the CD4(+) T-cell expression of a novel splice isoform of Pbx1, Pbx1-d, is associated with lupus susceptibility in the NZM2410 mouse and in lupus patients. The function of Pbx1 in T cells is unknown, but the splicing out of the DNA-binding domain in Pbx1-d predicts a dominant-negative function. In support of this hypothesis, we have shown that Pbx1-d transduction accelerates differentiation of MC3T3-E1 osteoblast pregenitors and mimics the effect of short hairpin RNA silencing of Pbx1. Conversely, Pbx1-d transduction reduced the expression of Sox3, a gene strongly transactivated by Pbx1, and Pbx1-d did not bind the Sox3 promoter. These results constitute a first step towards the understanding on how Pbx1-d contributes to systemic autoimmunity in the NZM2410 mouse model as well as in lupus patients.
Collapse
Affiliation(s)
- M Sengupta
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
9
|
Downing C, Balderrama-Durbin C, Kimball A, Biers J, Wright H, Gilliam D, Johnson TE. Quantitative trait locus mapping for ethanol teratogenesis in BXD recombinant inbred mice. Alcohol Clin Exp Res 2012; 36:1340-54. [PMID: 22413943 DOI: 10.1111/j.1530-0277.2012.01754.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 12/13/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Individual differences in susceptibility to the detrimental effects of prenatal ethanol (EtOH) exposure have been demonstrated. Many factors, including genetics, play a role in susceptibility and resistance. We have previously shown that C57BL/6J (B6) mice display a number of morphological malformations following an acute dose of EtOH in utero, while DBA/2J (D2) mice are relatively resistant. Here, we present the results of quantitative trait locus (QTL) mapping for EtOH teratogenesis in recombinant inbred strains derived from a cross between B6 and D2 (BXD RIs). METHODS Pregnant dams were intubated with either maltose-dextrin or 5.8 g/kg EtOH on day 9 of gestation (GD9). On GD 18, dams were sacrificed and fetuses and placentae were removed. Placentae and fetuses were weighed; fetuses were sexed and examined for gross morphological malformations. Fetuses were then either placed in Bouin's fixative for subsequent soft-tissue analyses or eviscerated and placed in EtOH for subsequent skeletal examinations. QTL mapping for maternal weight gain (MWG), prenatal mortality, fetal weight (FW) at c-section, placental weight (PW), and several morphological malformations was performed using WebQTL. RESULTS Heritability for our traits ranged from 0.06 for PW to 0.39 for MWG. We found suggestive QTLs mediating all phenotypes and significant QTLs for FW and digit and rib malformations. While most QTL regions are large, several intriguing candidate genes emerged based on polymorphisms between B6 and D2 and gene function. CONCLUSIONS In this first mapping study for EtOH teratogenesis, several QTLs were identified. Future studies will further characterize these regions. Identification of genes and epigenetic modifications mediating susceptibility to the teratogenic effects of alcohol in mice will provide targets to examine in human populations.
Collapse
Affiliation(s)
- Chris Downing
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Magnani L, Ballantyne EB, Zhang X, Lupien M. PBX1 genomic pioneer function drives ERα signaling underlying progression in breast cancer. PLoS Genet 2011; 7:e1002368. [PMID: 22125492 PMCID: PMC3219601 DOI: 10.1371/journal.pgen.1002368] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/18/2011] [Indexed: 01/19/2023] Open
Abstract
Altered transcriptional programs are a hallmark of diseases, yet how these are established is still ill-defined. PBX1 is a TALE homeodomain protein involved in the development of different types of cancers. The estrogen receptor alpha (ERα) is central to the development of two-thirds of all breast cancers. Here we demonstrate that PBX1 acts as a pioneer factor and is essential for the ERα-mediated transcriptional response driving aggressive tumors in breast cancer. Indeed, PBX1 expression correlates with ERα in primary breast tumors, and breast cancer cells depleted of PBX1 no longer proliferate following estrogen stimulation. Profiling PBX1 recruitment and chromatin accessibility across the genome of breast cancer cells through ChIP-seq and FAIRE-seq reveals that PBX1 is loaded and promotes chromatin openness at specific genomic locations through its capacity to read specific epigenetic signatures. Accordingly, PBX1 guides ERα recruitment to a specific subset of sites. Expression profiling studies demonstrate that PBX1 controls over 70% of the estrogen response. More importantly, the PBX1-dependent transcriptional program is associated with poor-outcome in breast cancer patients. Correspondingly, PBX1 expression alone can discriminate a priori the outcome in ERα-positive breast cancer patients. These features are markedly different from the previously characterized ERα-associated pioneer factor FoxA1. Indeed, PBX1 is the only pioneer factor identified to date that discriminates outcome such as metastasis in ERα-positive breast cancer patients. Together our results reveal that PBX1 is a novel pioneer factor defining aggressive ERα-positive breast tumors, as it guides ERα genomic activity to unique genomic regions promoting a transcriptional program favorable to breast cancer progression.
Collapse
Affiliation(s)
- Luca Magnani
- Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
- Institute of Quantitative Biomedical Sciences, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Elizabeth B. Ballantyne
- Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
- Institute of Quantitative Biomedical Sciences, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Xiaoyang Zhang
- Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
- Institute of Quantitative Biomedical Sciences, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Mathieu Lupien
- Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
- Institute of Quantitative Biomedical Sciences, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| |
Collapse
|
11
|
ZFPIP/Zfp462 is involved in P19 cell pluripotency and in their neuronal fate. Exp Cell Res 2011; 317:1922-34. [DOI: 10.1016/j.yexcr.2011.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/13/2011] [Accepted: 04/26/2011] [Indexed: 11/23/2022]
|
12
|
Massé J, Laurent A, Nicol B, Guerrier D, Pellerin I, Deschamps S. Involvement of ZFPIP/Zfp462 in chromatin integrity and survival of P19 pluripotent cells. Exp Cell Res 2010; 316:1190-201. [DOI: 10.1016/j.yexcr.2010.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 01/27/2023]
|
13
|
Laurent A, Masse J, Deschamps S, Burel A, Omilli F, Richard-Parpaillon L, Pellerin I. Interaction of ZFPIP with PBX1 is crucial for proper expression of neural genetic markers during Xenopus development. Dev Growth Differ 2009; 51:699-706. [DOI: 10.1111/j.1440-169x.2009.01129.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Laurent A, Masse J, Omilli F, Deschamps S, Richard-Parpaillon L, Chartrain I, Pellerin I. ZFPIP/Zfp462 is maternally required for proper early Xenopus laevis development. Dev Biol 2009; 327:169-76. [DOI: 10.1016/j.ydbio.2008.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/04/2008] [Accepted: 12/05/2008] [Indexed: 11/26/2022]
|
15
|
Mann RS, Lelli KM, Joshi R. Hox specificity unique roles for cofactors and collaborators. Curr Top Dev Biol 2009; 88:63-101. [PMID: 19651302 DOI: 10.1016/s0070-2153(09)88003-4] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hox proteins are well known for executing highly specific functions in vivo, but our understanding of the molecular mechanisms underlying gene regulation by these fascinating proteins has lagged behind. The premise of this review is that an understanding of gene regulation-by any transcription factor-requires the dissection of the cis-regulatory elements that they act upon. With this goal in mind, we review the concepts and ideas regarding gene regulation by Hox proteins and apply them to a curated list of directly regulated Hox cis-regulatory elements that have been validated in the literature. Our analysis of the Hox-binding sites within these elements suggests several emerging generalizations. We distinguish between Hox cofactors, proteins that bind DNA cooperatively with Hox proteins and thereby help with DNA-binding site selection, and Hox collaborators, proteins that bind in parallel to Hox-targeted cis-regulatory elements and dictate the sign and strength of gene regulation. Finally, we summarize insights that come from examining five X-ray crystal structures of Hox-cofactor-DNA complexes. Together, these analyses reveal an enormous amount of flexibility into how Hox proteins function to regulate gene expression, perhaps providing an explanation for why these factors have been central players in the evolution of morphological diversity in the animal kingdom.
Collapse
Affiliation(s)
- Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | |
Collapse
|