1
|
Kahane N, Dahan-Barda Y, Kalcheim C. A Spatio-Temporal-Dependent Requirement of Sonic Hedgehog in the Early Development of Sclerotome-Derived Vertebrae and Ribs. Int J Mol Sci 2024; 25:5602. [PMID: 38891790 PMCID: PMC11171667 DOI: 10.3390/ijms25115602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of sclerotome-derived vertebrae and ribs, and of lateral mesoderm-derived sternum. To this end, Hedgehog interacting protein (Hhip) was electroporated at various times between days 2 and 5. While the vertebral body and rib primordium showed consistent size reduction, rib expansion into the somatopleura remained unaffected, and the sternal bud developed normally. Additionally, we compared these effects with those of locally inhibiting BMP activity. Transfection of Noggin in the lateral mesoderm hindered sternal bud formation. Unlike Hhip, BMP inhibition via Noggin or Smad6 induced myogenic differentiation of the lateral dermomyotome lip, while impeding the growth of the myotome/rib complex into the somatic mesoderm, thus affirming the role of the lateral dermomyotome epithelium in rib guidance. Overall, these findings underscore the continuous requirement for opposing gradients of Shh and BMP activity in the morphogenesis of proximal and distal flank skeletal structures, respectively. Future research should address the implications of these early interactions to the later morphogenesis and function of the musculo-skeletal system and of possible associated malformations.
Collapse
Affiliation(s)
| | | | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 9112102, Israel; (N.K.); (Y.D.-B.)
| |
Collapse
|
2
|
Homma S, Shimada T, Wada I, Kumaki K, Sato N, Yaginuma H. A three-component model of the spinal nerve ramification: Bringing together the human gross anatomy and modern Embryology. Front Neurosci 2023; 16:1009542. [PMID: 36726852 PMCID: PMC9884977 DOI: 10.3389/fnins.2022.1009542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/05/2022] [Indexed: 01/17/2023] Open
Abstract
Due to its long history, the study of human gross anatomy has not adequately incorporated modern embryological findings; consequently, the current understanding has often been incompatible with recent discoveries from molecular studies. Notably, the traditional epaxial and hypaxial muscle distinction, and their corresponding innervation by the dorsal and ventral rami of the spinal nerve, do not correspond to the primaxial and abaxial muscle distinction, defined by the mesodermal lineages of target tissues. To resolve the disagreement between adult anatomy and embryology, we here propose a novel hypothetical model of spinal nerve ramification. Our model is based on the previously unknown developmental process of the intercostal nerves. Observations of these nerves in the mouse embryos revealed that the intercostal nerves initially had superficial and deep ventral branches, which is contrary to the general perception of a single ventral branch. The initial dual innervation pattern later changes into an adult-like single branch pattern following the retraction of the superficial branch. The modified intercostal nerves consist of the canonical ventral branches and novel branches that run on the muscular surface of the thorax, which sprout from the lateral cutaneous branches. We formulated the embryonic branching pattern into the hypothetical ramification model of the human spinal nerve so that the branching pattern is compatible with the developmental context of the target muscles. In our model, every spinal nerve consists of three components: (1) segmental branches that innervate the primaxial muscles, including the dorsal rami, and short branches and long superficial anterior branches from the ventral rami; (2) plexus-forming intramural branches, the serial homolog of the canonical intercostal nerves, which innervate the abaxial portion of the body wall; and (3) plexus-forming extramural branches, the series of novel branches located outside of the body wall, which innervate the girdle and limb muscles. The selective elaboration or deletion of each component successfully explains the reasoning for the standard morphology and variability of the spinal nerve. Therefore, our model brings a novel understanding of spinal nerve development and valuable information for basic and clinical sciences regarding the diverse branching patterns of the spinal nerve.
Collapse
Affiliation(s)
- Shunsaku Homma
- Department of Neuroanatomy and Embryology, Fukushima Medical University, Fukushima, Japan
| | - Takako Shimada
- Department of Neuroanatomy and Embryology, Fukushima Medical University, Fukushima, Japan
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Katsuji Kumaki
- Division of Gross Anatomy and Morphogenesis, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Noboru Sato
- Division of Gross Anatomy and Morphogenesis, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Yaginuma
- Department of Neuroanatomy and Embryology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
3
|
Double-layered two-directional somatopleural cell migration during chicken body wall development revealed with local fluorescent tissue labeling. Anat Sci Int 2022; 97:380-390. [DOI: 10.1007/s12565-022-00652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/05/2022] [Indexed: 11/01/2022]
|
4
|
Scaal M. Development of the amniote ventrolateral body wall. Dev Dyn 2020; 250:39-59. [PMID: 32406962 DOI: 10.1002/dvdy.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
In vertebrates, the trunk consists of the musculoskeletal structures of the back and the ventrolateral body wall, which together enclose the internal organs of the circulatory, digestive, respiratory and urogenital systems. This review gives an overview on the development of the thoracic and abdominal wall during amniote embryogenesis. Specifically, I briefly summarize relevant historical concepts and the present knowledge on the early embryonic development of ribs, sternum, intercostal muscles and abdominal muscles with respect to anatomical bauplan, origin and specification of precursor cells, initial steps of pattern formation, and cellular and molecular regulation of morphogenesis.
Collapse
Affiliation(s)
- Martin Scaal
- Faculty of Medicine, Institute of Anatomy II, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Matsutani K, Ikegami K, Aoyama H. An in vitro model of region-specific rib formation in chick axial skeleton: Intercellular interaction between somite and lateral plate cells. Mech Dev 2019; 159:103568. [PMID: 31493459 DOI: 10.1016/j.mod.2019.103568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 07/22/2019] [Accepted: 08/30/2019] [Indexed: 11/30/2022]
Abstract
The axial skeleton is divided into different regions based on its morphological features. In particular, in birds and mammals, ribs are present only in the thoracic region. The axial skeleton is derived from a series of somites. In the thoracic region of the axial skeleton, descendants of somites coherently penetrate into the somatic mesoderm to form ribs. In regions other than the thoracic, descendants of somites do not penetrate the somatic lateral plate mesoderm. We performed live-cell time-lapse imaging to investigate the difference in the migration of a somite cell after contact with the somatic lateral plate mesoderm obtained from different regions of anterior-posterior axis in vitro on cytophilic narrow paths. We found that a thoracic somite cell continues to migrate after contact with the thoracic somatic lateral plate mesoderm, whereas it ceases migration after contact with the lumbar somatic lateral plate mesoderm. This suggests that cell-cell interaction works as an important guidance cue that regulates migration of somite cells. We surmise that the thoracic somatic lateral plate mesoderm exhibits region-specific competence to allow penetration of somite cells, whereas the lumbosacral somatic lateral plate mesoderm repels somite cells by contact inhibition of locomotion. The differences in the behavior of the somatic lateral plate mesoderm toward somite cells may confirm the distinction between different regions of the axial skeleton.
Collapse
Affiliation(s)
- Kaoru Matsutani
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Koji Ikegami
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Hirohiko Aoyama
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; Department of Medical Science and Technology, Faculty of Health Sciences, Hiroshima International University, 555-36 Kurosegakuendai, Higashihiroshima City, Hiroshima 739-2695, Japan.
| |
Collapse
|
6
|
Snowball J, Ambalavanan M, Cornett B, Lang R, Whitsett J, Sinner D. Mesenchymal Wnt signaling promotes formation of sternum and thoracic body wall. Dev Biol 2015; 401:264-75. [PMID: 25727890 DOI: 10.1016/j.ydbio.2015.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/25/2022]
Abstract
Midline defects account for approximately 5% of congenital abnormalities observed at birth. However, the molecular mechanisms underlying the formation of the ventral body wall are not well understood. Recent studies linked mutations in Porcupine-an O-acetyl transferase mediating Wnt ligand acylation-with defects in the thoracic body wall. We hypothesized that anomalous Wnt signaling is involved in the pathogenesis of defective closure of the thoracic body wall. We generated a mouse model wherein Wntless (Wls), which encodes a cargo receptor mediating secretion of Wnt ligands, was conditionally deleted from the developing mesenchyme using Dermo1Cre mice. Wls(f/f);Dermo1(Cre/+) embryos died during mid-gestation. At E13.5, skeletal defects were observed in the forelimbs, jaw, and rib cage. At E14.5, midline defects in the thoracic body wall began to emerge: the sternum failed to fuse and the heart protruded through the body wall at the midline (ectopia cordis). To determine the molecular mechanism underlying the phenotype observed in Wls(f/f);Dermo1(Cre/+) embryos, we tested whether Wnt/β-catenin signaling was operative in developing the embryonic ventral body wall using Axin2(LacZ) and BatGal reporter mice. While Wnt/β-catenin signaling activity was observed at the midline of the ventral body wall before sternal fusion, this pattern of activity was altered and scattered throughout the body wall after mesenchymal deletion of Wls. Mesenchymal cell migration was disrupted in Wls(f/f);Dermo1(Cre/+) thoracic body wall partially due to anomalous β-catenin independent Wnt signaling as determined by in vitro assays. Deletion of Lrp5 and Lrp6 receptors, which mediate Wnt/β-catenin signaling in the mesenchyme, partially recapitulated the phenotype observed in the chest midline of Wls(f/f);Dermo1(Cre/+) embryos supporting a role for Wnt/β-catenin signaling activity in the normal formation of the ventral body wall mesenchyme. We conclude that Wls-mediated secretion of Wnt ligands from the developing ventral body wall mesenchyme plays a critical role in fusion of the sternum and closure of the secondary body wall. Thus, impaired Wls activity in the ventral body wall mesenchyme is a mechanism underlying ectopia cordis and unfused sternum.
Collapse
Affiliation(s)
- John Snowball
- The Perinatal Institute Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, OH 4522, USA
| | - Manoj Ambalavanan
- The Perinatal Institute Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, OH 4522, USA
| | - Bridget Cornett
- The Perinatal Institute Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, OH 4522, USA
| | - Richard Lang
- The Visual Systems Group Division of Developmental Biology and Ophthalmology, Cincinnati Children׳s Medical Center Research Foundation, Cincinnati, OH 45229, USA; University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - Jeffrey Whitsett
- The Perinatal Institute Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, OH 4522, USA; University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - Debora Sinner
- The Perinatal Institute Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, OH 4522, USA; University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
7
|
Lehman AM, Cowan JR, McFadden DE, Patel MS. Anterolateral diaphragmatic hernia with body wall defect understood in relation to the abaxial domain. Am J Med Genet A 2014; 164A:1860-2. [PMID: 24700809 DOI: 10.1002/ajmg.a.36529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/14/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Anna M Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
8
|
Buchholtz EA. Crossing the frontier: a hypothesis for the origins of meristic constraint in mammalian axial patterning. ZOOLOGY 2013; 117:64-9. [PMID: 24290362 DOI: 10.1016/j.zool.2013.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/28/2013] [Indexed: 11/17/2022]
Abstract
Serially homologous systems with high internal differentiation frequently exhibit meristic constraints, although the developmental basis for constraint is unknown. Constraints in the counts of the cervical and lumbosacral vertebral series are unique to mammals, and appeared in the Triassic, early in their history. Concurrent adaptive modifications of the mammalian respiratory and locomotor systems involved a novel source of cells for muscularization of the diaphragm from cervical somites, and the loss of ribs from lumbar vertebrae. Each of these innovations increased the modularity of the somitic mesoderm, and altered somitic and lateral plate mesodermal interactions across the lateral somitic frontier. These developmental innovations are hypothesized here to constrain the anteroposterior transposition of the limbs along the column, and thus also cervical and thoracolumbar count. Meristic constraints are therefore regarded here as the nonadaptive, secondary consequences of adaptive respiratory and locomotor traits.
Collapse
Affiliation(s)
- Emily A Buchholtz
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA.
| |
Collapse
|
9
|
Buchholtz EA, Bailin HG, Laves SA, Yang JT, Chan MY, Drozd LE. Fixed cervical count and the origin of the mammalian diaphragm. Evol Dev 2012; 14:399-411. [PMID: 22947313 DOI: 10.1111/j.1525-142x.2012.00560.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Why is mammalian cervical count fixed across the historically long and ecologically broad mammalian radiation? Multiple lines of evidence, considered together, suggest a link between fixed cervical count and the muscularization of the diaphragm, a key innovation in mammalian history. We test this hypothesis by documenting the anteroposterior (AP) movement of the diaphragm, a lateral plate derivative, relative to that of the somitic thoracolumbar transition in unusually patterned mammals, by comparing the temporal occurrence of an osteological proxy for the diaphragm and fixed cervical counts in the fossil record, and by quantifying morphological differentiation within the mammalian cervical series. We then integrate these anatomical observations with details of diaphragm function and development to propose a sequence of innovations in mammalian evolution that could have led to fixed cervical count. We argue that the novel commitment of migratory muscle precursor cells (MMPs) of mid-cervical somites to a fate in the abaxial diaphragm defined these somites as a new and uniquely mammalian modular subunit. We further argue that the coordination of primaxial abaxial patterning constrained subsequent AP migration of the forelimb, thereby secondarily fixing cervical count.
Collapse
Affiliation(s)
- Emily A Buchholtz
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Yang JD, Hwang HP, Kim JH, Rodríguez-Vázquez JF, Abe SI, Murakami G, Cho BH. Development of the rectus abdominis and its sheath in the human fetus. Yonsei Med J 2012; 53:1028-35. [PMID: 22869489 PMCID: PMC3423835 DOI: 10.3349/ymj.2012.53.5.1028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Although the rectus abdominis and its sheath are well known structures, their development in the human fetus is poorly understood. MATERIALS AND METHODS We examined rectus abdominis and sheath development in semiserial horizontal sections of 18 fetuses at 5-9 weeks of gestation. RESULTS Rectus muscle differentiation was found to commence above the umbilicus at 6 weeks and extend inferiorly. Until closure of the anterior chest wall via fusion of the bilateral sternal anlagen (at 7 weeks), the anterior rectal sheath originated from the external oblique and developed towards the medial margin of the rectus abdominis at all levels, including the supracostal part. After formation of the anterior sheath, fascial laminae from the internal oblique and transversus abdominis contributed to formation of the posterior rectus sheath. However, the posterior sheath was absent along the supracostal part of the rectus abdominis, as the transversus muscle fibers reached the sternum or the midline area. Therefore, it appeared that resolution of the physiological umbilical hernia (8-9 weeks) as well as chest wall closure was not required for development of the rectus abdominis and its sheath. Conversely, in the inferior part of the two largest fetal specimens, after resolution of the hernia, the posterior sheath underwent secondary disappearance, possibly due to changes in mechanical stress. CONCLUSION Upward extension of the rectus abdominis suddenly stopped at the margin of the inferiorly developing pectoralis major without facing the external intercostalis. The rectus thoracis, if present, might correspond to the pectoralis.
Collapse
Affiliation(s)
- Jae Do Yang
- Department of Surgery, Chonbuk National University Medical School, Jeonju, Korea
| | - Hong Pil Hwang
- Department of Surgery, Chonbuk National University Medical School, Jeonju, Korea
| | - Ji Hyun Kim
- Department of Anatomy, Chonbuk National University Medical School, Jeonju, Korea
| | | | - Shin-ichi Abe
- Oral Health Science Center hrc-8 and Department of Anatomy, Tokyo Dental College, Chiba, Japan
| | - Gen Murakami
- Division of Internal Medicine, Iwamizawa Kojin-kai Hospital, Iwamizawa, Japan
| | - Baik Hwan Cho
- Department of Surgery, Chonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine, Chonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
11
|
Abstract
Developmental biology research has used various avian species as model organisms for studying morphogenesis, with the chick embryo being used by the majority of groups. The focus on the chick embryo led Hamburger and Hamilton to develop their definitive staging series nearly 60 years ago and this series is still the mainstay of all laboratories working with avian embryos. The focus on the chick embryo has somewhat overshadowed the importance of another avian embryo that has proved to be equally powerful, the Japanese quail. Since the late 1960s, chimeras have been produced using chick and quail embryos and this technique has revolutionized the approach taken to the investigation of the cellular and molecular interactions that occur during development. Reviews of the literature demonstrate that many research groups are using the quail embryo in a number of established and new ways, and this species has become a primary animal model in developmental biology. Some staging of quail has been performed but this has been incomplete and variations in descriptions, stages and incubation timings mean that comparisons with the chick are not always easily made. There appears to be general agreement that, at the early stages of embryogenesis, there is little developmental difference between chick and quail embryos, although the basis for this has not been established experimentally. The accelerated ontogeny of quail embryos at mid to late stages of development means that registration with the chick is lost. We have therefore developed a definitive developmental stage series for Japanese quail so that differences are fully characterized, misconceptions or assumptions are avoided, and the results of comparative studies are not distorted.
Collapse
Affiliation(s)
- Sophie J Ainsworth
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK
| | | | | |
Collapse
|