1
|
Caioni G, Merola C, Perugini M, Angelozzi G, Amorena M, Benedetti E, Lucon-Xiccato T, Bertolucci C. Sodium valproate effects on the morphological and neurobehavioral phenotype of zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104500. [PMID: 38977114 DOI: 10.1016/j.etap.2024.104500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
The anticonvulsant sodium valproate (SV) is frequently administered as a medicament but bears several negative effects in case of exposure during development. We analyzed extensively these early development effects of using the zebrafish model. Zebrafish embryos were exposed as eggs to two sublethal concentrations of SV, 10 and 25 mg/L. A general embryo toxicity analysis revealed extended anomalies in the cardiovascular system, and in the craniofacial and the spinal skeleton, as well as high mortality, in the embryos exposed to SV. The teratogenic potential of SV was confirmed in hacthed larvae by morphometric and cartilage profile analysis. Last, neurobehavioral impairments due to SV were highlighted in subjects' activity, anxiety, response to stimulations, habituation learning, and daily synchronization of locomotor activity, overall mirroring typical phenotypes associated with autistic spectrum disorders. In conclusion, our results confirmed the presence of extended and multifaced impacts of exposure to SV during development.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy; Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Carmine Merola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Monia Perugini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Giovanni Angelozzi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Michele Amorena
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Camussi D, Naef V, Brogi L, Della Vecchia S, Marchese M, Nicoletti F, Santorelli FM, Licitra R. Delving into the Complexity of Valproate-Induced Autism Spectrum Disorder: The Use of Zebrafish Models. Cells 2024; 13:1349. [PMID: 39195239 PMCID: PMC11487397 DOI: 10.3390/cells13161349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental condition with several identified risk factors, both genetic and non-genetic. Among these, prenatal exposure to valproic acid (VPA) has been extensively associated with the development of the disorder. The zebrafish, a cost- and time-effective model, is useful for studying ASD features. Using validated VPA-induced ASD zebrafish models, we aimed to provide new insights into VPA exposure effects during embryonic development and to identify new potential biomarkers associated with ASD-like features. Dose-response analyses were performed in vivo to study larval phenotypes and mechanisms underlying neuroinflammation, mitochondrial dysfunction, oxidative stress, microglial cell status, and motor behaviour. Wild-type and transgenic Tg(mpeg1:EGFP) zebrafish were water-exposed to VPA doses (5 to 500 µM) from 6 to 120 h post-fertilisation (hpf). Embryos and larvae were monitored daily to assess survival and hatching rates, and numerous analyses and tests were conducted from 24 to 120 hpf. VPA doses higher than 50 µM worsened survival and hatching rates, while doses of 25 µM or more altered morphology, microglial status, and larval behaviours. VPA 50 µM also affected mRNA expression of inflammatory cytokines and neurogenesis-related genes, mitochondrial respiration, and reactive oxygen species accumulation. The study confirmed that VPA alters brain homeostasis, synaptic interconnections, and neurogenesis-related signalling pathways, contributing to ASD aetiopathogenesis. Further studies are essential to identify novel ASD biomarkers for developing new drug targets and tailored therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Diletta Camussi
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Valentina Naef
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Letizia Brogi
- Bio@SNS, Department of Neurosciences, Scuola Normale Superiore, 56126 Pisa, Italy;
| | - Stefania Della Vecchia
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Maria Marchese
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology Vittorio Erspamer, “La Sapienza” University of Rome, 00185 Rome, Italy;
- IRCSS Neuromed, “La Sapienza” University of Rome, 86077 Pozzilli, Italy
| | - Filippo M. Santorelli
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Rosario Licitra
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
3
|
Fonteles CSR, Steele JW, Idowu DI, Burgelin B, Finnell RH, Corradetti B. Amniotic fluid-derived stem cells: potential factories of natural and mimetic strategies for congenital malformations. RESEARCH SQUARE 2024:rs.3.rs-4325422. [PMID: 38883749 PMCID: PMC11177991 DOI: 10.21203/rs.3.rs-4325422/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background Mesenchymal stem cells (MSCs) from gestational tissues represent promising strategies for in utero treatment of congenital malformations, but plasticity and required high-risk surgical procedures limit their use. Here we propose natural exosomes (EXOs) isolated from amniotic fluid-MSCs (AF-MSCs), and their mimetic counterparts (MIMs), as valid, stable, and minimally invasive therapeutic alternatives. Methods MIMs were generated from AF-MSCs by combining sequential filtration steps through filter membranes with different porosity and size exclusion chromatography columns. Physiochemical and molecular characterization was performed to compare them to EXOs released from the same number of cells. The possibility to exploit both formulations as mRNA-therapeutics was explored by evaluating cell uptake (using two different cell types, fibroblasts, and macrophages) and mRNA functionality overtime in an in vitro experimental setting as well as in an ex vivo, whole embryo culture using pregnant C57BL6 dams. Results Molecular and physiochemical characterization showed no differences between EXOs and MIMs, with MIMs determining a 3-fold greater yield. MIMs delivered a more intense and prolonged expression of mRNA encoding for green fluorescent protein (GFP) in macrophages and fibroblasts. An ex-vivo whole embryo culture demonstrated that MIMs mainly accumulate at the level of the yolk sac, while EXOs reach the embryo. Conclusions The present data confirms the potential application of EXOs for the prenatal repair of neural tube defects and proposes MIMs as prospective vehicles to prevent congenital malformations caused by in utero exposure to drugs.
Collapse
|
4
|
Jones AA, Willoner Jr. T, Mishoe Hernandez L, DeLaurier A. Exposure to valproic acid (VPA) reproduces hdac1 loss of function phenotypes in zebrafish. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000908. [PMID: 37829572 PMCID: PMC10565572 DOI: 10.17912/micropub.biology.000908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023]
Abstract
Histone deacetylases are enzymes that remove acetyl groups from histone tails and are understood to act as repressors of transcriptional activity. Hdac1 has been previously shown to function in eye, pectoral fin, heart, liver, and pharyngeal skeletal development. We show that high doses of Valproic Acid (VPA) reproduce the hdac1 phenotype. We identify tbx5 genes as potential targets of Hdac1 in eye, pectoral fin, and heart development. Using timed exposures, we show that skeletal structures in the pharyngeal arches are impacted by VPA between 24-36 hours post-fertilization, indicating a role for Hdac1 during post-migration patterning, differentiation, or proliferation of cranial neural crest cells.
Collapse
Affiliation(s)
- Alec A. Jones
- Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina, United States
| | - Terence Willoner Jr.
- Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina, United States
| | - Lacie Mishoe Hernandez
- Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina, United States
| | - April DeLaurier
- Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina, United States
| |
Collapse
|
5
|
Skiba A, Pellegata D, Morozova V, Kozioł E, Budzyńska B, Lee SMY, Gertsch J, Skalicka-Woźniak K. Pharmacometabolic Effects of Pteryxin and Valproate on Pentylenetetrazole-Induced Seizures in Zebrafish Reveal Vagus Nerve Stimulation. Cells 2023; 12:1540. [PMID: 37296660 PMCID: PMC10252891 DOI: 10.3390/cells12111540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Zebrafish (Danio rerio) assays provide a versatile pharmacological platform to test compounds on a wide range of behaviors in a whole organism. A major challenge lies in the lack of knowledge about the bioavailability and pharmacodynamic effects of bioactive compounds in this model organism. Here, we employed a combined methodology of LC-ESI-MS/MS analytics and targeted metabolomics with behavioral experiments to evaluate the anticonvulsant and potentially toxic effects of the angular dihydropyranocoumarin pteryxin (PTX) in comparison to the antiepileptic drug sodium valproate (VPN) in zebrafish larvae. PTX occurs in different Apiaceae plants traditionally used in Europe to treat epilepsy but has not been investigated so far. To compare potency and efficacy, the uptake of PTX and VPN into zebrafish larvae was quantified as larvae whole-body concentrations together with amino acids and neurotransmitters as proxy pharmacodynamic readout. The convulsant agent pentylenetetrazole (PTZ) acutely reduced the levels of most metabolites, including acetylcholine and serotonin. Conversely, PTX strongly reduced neutral essential amino acids in a LAT1 (SLCA5)-independent manner, but, similarly to VPN specifically increased the levels of serotonin, acetylcholine, and choline, but also ethanolamine. PTX dose and time-dependent manner inhibited PTZ-induced seizure-like movements resulting in a ~70% efficacy after 1 h at 20 µM (the equivalent of 4.28 ± 0.28 µg/g in larvae whole-body). VPN treated for 1 h with 5 mM (the equivalent of 18.17 ± 0.40 µg/g in larvae whole-body) showed a ~80% efficacy. Unexpectedly, PTX (1-20 µM) showed significantly higher bioavailability than VPN (0.1-5 mM) in immersed zebrafish larvae, possibly because VPN in the medium dissociated partially to the readily bioavailable valproic acid. The anticonvulsive effect of PTX was confirmed by local field potential (LFP) recordings. Noteworthy, both substances specifically increased and restored whole-body acetylcholine, choline, and serotonin levels in control and PTZ-treated zebrafish larvae, indicative of vagus nerve stimulation (VNS), which is an adjunctive therapeutic strategy to treat refractory epilepsy in humans. Our study demonstrates the utility of targeted metabolomics in zebrafish assays and shows that VPN and PTX pharmacologically act on the autonomous nervous system by activating parasympathetic neurotransmitters.
Collapse
Affiliation(s)
- Adrianna Skiba
- Department of Chemistry of Natural Products, Medical University of Lublin, 20-093 Lublin, Poland
| | - Daniele Pellegata
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland (V.M.)
| | - Veronika Morozova
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland (V.M.)
| | - Ewelina Kozioł
- Department of Chemistry of Natural Products, Medical University of Lublin, 20-093 Lublin, Poland
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 519020, China;
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland (V.M.)
| | | |
Collapse
|
6
|
Yuan W, Hu Y, Lu C, Zhang J, Liu Y, Li X, Jia K, Huang Y, Li Z, Chen X, Wang F, Yi X, Che X, Xiong H, Cheng B, Ma J, Zhao Y, Lu H. Propineb induced notochord deformity, craniofacial malformation, and osteoporosis in zebrafish through dysregulated reactive oxygen species generation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106596. [PMID: 37290275 DOI: 10.1016/j.aquatox.2023.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Dithiocarbamate (DTC) fungicides are contaminants that are ubiquitous in the environment. Exposure to DTC fungicides has been associated with a variety of teratogenic developmental effects. Propineb, a member of DTCs, was evaluated for the toxicological effects on notochord and craniofacial development, osteogenesis in zebrafish model. Embryos at 6 hours post-fertilization (hpf) were exposed to propineb at dosages of 1 and 4 μM. Morphological parameters were evaluated at exposure times of 24, 48, 72, and 120 hpf after propineb exposure. The survival and hatching rates as well as body length decreased at 1 and 4 μmol/L groups. Besides, transgenic zebrafish exposed to propineb showed abnormal vacuole biogenesis in notochord cells at the early stage of development. The expression of collagen type 2 alpha 1a (col2a1a), sonic hedgehog (shh), and heat shock protein family B member 11 (hspb11) measured by quantitative PCR and in situ hybridization experiment of col8a1a gene have consolidated the proposal process. Besides, Alcian blue, calcein, and alizarin red staining profiles displayed craniofacial malformations and osteoporosis were induced following propineb exposure. PPB exposure induced the changes in oxidative stress and reactive oxygen species inhibitor alleviated the deformities of PPB. Collectively, our data suggested that propineb exposure triggered bone abnormalities in different phenotypes of zebrafish. Therefore, propineb is a potential toxicant of high priority concern for aquatic organisms.
Collapse
Affiliation(s)
- Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ying Hu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Chen Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jun Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, Jiangsu, China
| | - Ye Liu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xinran Li
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Kun Jia
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zekun Li
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaomei Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Fei Wang
- The First Clinical College of Gannan Medical Uinversity, Ganzhou, 341000, Jiangxi, China
| | - Xiaokun Yi
- The First Clinical College of Gannan Medical Uinversity, Ganzhou, 341000, Jiangxi, China
| | - Xiaofang Che
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Haibin Xiong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yan Zhao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009, Jiangxi, China..
| |
Collapse
|
7
|
Merola C, Caioni G, Cimini A, Perugini M, Benedetti E. Sodium valproate exposure influences the expression of pparg in the zebrafish model. Birth Defects Res 2023; 115:658-667. [PMID: 36786327 DOI: 10.1002/bdr2.2159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/15/2023]
Abstract
Valproic acid (VPA) is an anti-epileptic drug used alone or in combination with other medications to treat seizures, mania, and bipolar disorder. VPA recognized as a teratogenic chemical can cause severe birth defects mainly affecting the brain and spinal cord when administered during pregnancy. However, the potential mechanisms of developmental toxicity are still less studied, and in the present study, the influence of VPA exposure was evaluated on zebrafish early-life stages. Zebrafish were exposed to two sublethal concentrations of sodium valproate (SV) (0.06 mM and 0.15 mM) from 24 hours post-fertilization (hpf) to 96 hpf and the SV teratogenic potential was investigated through morphometric analysis of zebrafish larvae combined with the evaluation of cartilage profile. Moreover, the effect of SV on the transcription level of pparg was also performed. The results of the study showed the teratogenic potential of SV, which disrupts the morphometric signature of the head and body. The marked distortion of cartilage structures was paralleled to a malformation of telencephalon and optic tectum in both concentrations suggesting a high teratogen effect of SV on the brain. These data were further confirmed by the increased expression of pparg in the zebrafish head. Overall, the present study confirms the teratogenic activity of SV in the zebrafish model and, for the first time, points out the potential protective role of pparg in the SV dose-dependent toxicity.
Collapse
Affiliation(s)
- Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Monia Perugini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
8
|
Tahmasebi E, Mohammadi M, Alam M, Abbasi K, Gharibian Bajestani S, Khanmohammad R, Haseli M, Yazdanian M, Esmaeili Fard Barzegar P, Tebyaniyan H. The current regenerative medicine approaches of craniofacial diseases: A narrative review. Front Cell Dev Biol 2023; 11:1112378. [PMID: 36926524 PMCID: PMC10011176 DOI: 10.3389/fcell.2023.1112378] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Craniofacial deformities (CFDs) develop following oncological resection, trauma, or congenital disorders. Trauma is one of the top five causes of death globally, with rates varying from country to country. They result in a non-healing composite tissue wound as they degenerate in soft or hard tissues. Approximately one-third of oral diseases are caused by gum disease. Due to the complexity of anatomical structures in the region and the variety of tissue-specific requirements, CFD treatments present many challenges. Many treatment methods for CFDs are available today, such as drugs, regenerative medicine (RM), surgery, and tissue engineering. Functional restoration of a tissue or an organ after trauma or other chronic diseases is the focus of this emerging field of science. The materials and methodologies used in craniofacial reconstruction have significantly improved in the last few years. A facial fracture requires bone preservation as much as possible, so tiny fragments are removed initially. It is possible to replace bone marrow stem cells with oral stem cells for CFDs due to their excellent potential for bone formation. This review article discusses regenerative approaches for different types of craniofacial diseases.
Collapse
Affiliation(s)
- Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- School of Dentistry, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Gharibian Bajestani
- Student Research Committee, Dentistry Research Center, Research Institute of Dental Sciences, Dental School, Shahid Behesti University of Medical Sciences, Tehran, Iran
| | - Rojin Khanmohammad
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Haseli
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
9
|
Gebuijs L, Wagener FA, Zethof J, Carels CE, Von den Hoff JW, Metz JR. Targeting fibroblast growth factor receptors causes severe craniofacial malformations in zebrafish larvae. PeerJ 2022; 10:e14338. [PMID: 36444384 PMCID: PMC9700454 DOI: 10.7717/peerj.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Objective A key pathway controlling skeletal development is fibroblast growth factor (FGF) and FGF receptor (FGFR) signaling. Major regulatory functions of FGF signaling are chondrogenesis, endochondral and intramembranous bone development. In this study we focus on fgfr2, as mutations in this gene are found in patients with craniofacial malformations. The high degree of conservation between FGF signaling of human and zebrafish (Danio rerio) tempted us to investigate effects of the mutated fgfr2 sa10729 allele in zebrafish on cartilage and bone formation. Methods We stained cartilage and bone in 5 days post fertilization (dpf) zebrafish larvae and compared mutants with wildtypes. We also determined the expression of genes related to these processes. We further investigated whether pharmacological blocking of all FGFRs with the inhibitor BGJ398, during 0-12 and 24-36 h post fertilization (hpf), affected craniofacial structure development at 5 dpf. Results We found only subtle differences in craniofacial morphology between wildtypes and mutants, likely because of receptor redundancy. After exposure to BGJ398, we found dose-dependent cartilage and bone malformations, with more severe defects in fish exposed during 0-12 hpf. These results suggest impairment of cranial neural crest cell survival and/or differentiation by FGFR inhibition. Compensatory reactions by upregulation of fgfr1a, fgfr1b, fgfr4, sp7 and dlx2a were found in the 0-12 hpf group, while in the 24-36 hpf group only upregulation of fgf3 was found together with downregulation of fgfr1a and fgfr2. Conclusions Pharmacological targeting of FGFR1-4 kinase signaling causes severe craniofacial malformations, whereas abrogation of FGFR2 kinase signaling alone does not induce craniofacial skeletal abnormalities. These findings enhance our understanding of the role of FGFRs in the etiology of craniofacial malformations.
Collapse
Affiliation(s)
- Liesbeth Gebuijs
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands,Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Frank A. Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Carine E. Carels
- Department of Human Genetics and Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Johannes W. Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Juriaan R. Metz
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
10
|
Porretti M, Arrigo F, Di Bella G, Faggio C. Impact of pharmaceutical products on zebrafish: An effective tool to assess aquatic pollution. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109439. [PMID: 35961532 DOI: 10.1016/j.cbpc.2022.109439] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 11/20/2022]
Abstract
Overuse of pharmaceuticals products (PPs) and sometimes ineffective wastewater purification systems have led to the accumulation of these residues in aquatic systems. Raising concerns about the likely harmful effects of these substances both to ecosystems and to human health. Animals as model organisms are nowadays increasingly used to track the health of environmental system around the world. They can be used to understand biological processes, to obtain information on the health status of the environment, and to better understand the effects of xenobiotics on organisms. Among model organisms, the zebrafish (Danio rerio) is one of the best models for studying evolution biology, cancer, toxicology, drug discovery, and genetics. This fish is a multipurpose model organism, due to its easy of maintenance and keeping and the transparency of the embryo during the early stages of development. In this paper, the toxicological effects of typical PPs, and their effects on zebrafish are reviewed. Many PPs have been found to be toxic or even fatal to zebrafish. Showing how these pharmaceuticals compound can affect zebrafish from the larval stage and even in the adult stage. Zebrafish is thus a model for how we can better understand how medications affect not only individual fish but the entire aquatic ecosystem, bringing about perturbations in their behaviour and putting their survival at risk.
Collapse
Affiliation(s)
- Miriam Porretti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy
| | - Federica Arrigo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy
| | - Giuseppa Di Bella
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy.
| |
Collapse
|
11
|
Ohashi ASC, de Souza Schacher HR, Pizzato CS, Vianna MRMR, de Menezes LM. Zebrafish as model for studies in dentistry. J Orthod Sci 2022; 11:46. [PMID: 36411806 PMCID: PMC9674940 DOI: 10.4103/jos.jos_41_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Over the last years, zebrafish has gained prominence in the biomedical community. It is currently considered one of the best vertebrate animal models for various types of studies, such as toxicology and developmental biology. OBJECTIVE The aim of this study was to conduct a literature review on the use of zebrafish in dentistry and whether this animal model could be a viable alternative for performing different types of studies in this area. METHODS A literature search was performed using the PubMed, Lilacs, Embase, and Dentistry and Oral Sciences Source. The keywords used as search terms were zebrafish and dentistry. The selection criteria were articles published in English that used zebrafish as an animal model in dentistry, oral health, and craniofacial growth/development. RESULTS The electronic search of literature yielded 421 articles. After the analysis of the abstracts, 29 articles were selected for an in-depth analysis and reading of the full text. CONCLUSIONS All studies included in this review confirm zebrafish's excellence as an animal model for various types of dentistry studies, as well as assisting and complementing other studies involving mammals.
Collapse
Affiliation(s)
- Amanda S. C. Ohashi
- PhD Students, Dental Program, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Helena R. de Souza Schacher
- PhD Students, Dental Program, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Mônica R. M. R. Vianna
- Professor at the Postgraduate Programs in Biology Cellular and Molecular and in Ecology and Evolution of Biodiversity, ZebLab, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciane M. de Menezes
- Professor at the School of Health Sciences and life (Dental Program) of the Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil,Address for correspondence: Dr. Luciane M. de Menezes, Dental Program, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, 6681 Ipiranga Avenue, Building n. 6, Porto Alegre, RS, 90619-900, Brazil. E-mail:
| |
Collapse
|
12
|
Acetaminophen Disrupts the Development of Pharyngeal Arch-Derived Cartilage and Muscle in Zebrafish. J Dev Biol 2022; 10:jdb10030030. [PMID: 35893125 PMCID: PMC9326545 DOI: 10.3390/jdb10030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Acetaminophen is a common analgesic, but its potential effects on early embryonic development are not well understood. Previous studies using zebrafish (Danio rerio) have described the effects of acetaminophen on liver development and physiology, and a few have described gross physiological and morphological defects. Using a high but non-embryonic lethal dose of acetaminophen, we probed for defects in zebrafish craniofacial cartilage development. Strikingly, acetaminophen treatment caused severe craniofacial cartilage defects, primarily affecting both the presence and morphology of pharyngeal arch-derived cartilages of the viscerocranium. Delaying acetaminophen treatment restored developing cartilages in an order correlated with their corresponding pharyngeal arches, suggesting that acetaminophen may target pharyngeal arch development. Craniofacial cartilages are derived from cranial neural crest cells; however, many neural crest cells were still seen along their expected migration paths, and most remaining cartilage precursors expressed the neural crest markers sox9a and sox10, then eventually col2a1 (type II collagen). Therefore, the defects are not primarily due to an early breakdown of neural crest or cartilage differentiation. Instead, apoptosis is increased around the developing pharyngeal arches prior to chondrogenesis, further suggesting that acetaminophen may target pharyngeal arch development. Many craniofacial muscles, which develop in close proximity to the affected cartilages, were also absent in treated larvae. Taken together, these results suggest that high amounts of acetaminophen can disrupt multiple aspects of craniofacial development in zebrafish.
Collapse
|
13
|
Zhang Y, Chen Y, Xu K, Fang L, Huang J, Xia S, Zhou Q, Lv L, Wang C. Embryonic exposure to phenanthrene caused developmental defects of craniofacial cartilage in F1 larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106080. [PMID: 35065452 DOI: 10.1016/j.aquatox.2022.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
As a representative polycyclic aromatic hydrocarbon with low ring numbers, phenanthrene (Phe) is ubiquitously present in the environment. In this study, zebrafish embryos were exposed to Phe at 0.05, 0.5, 5 and 50 nmol/L for 96 h, and then cultured to adulthood in clean water, the developmental defects of craniofacial cartilage were observed in F1 larvae produced by adult males and females mated with untreated fish. Delayed development of craniofacial cartilage, including a shorter and wider Meckel's cartilage and mandibular arch were observed in F1 larvae from adult fish of both sexes. Maternal F1 larvae showed a greater impact on the lower jaw than paternal F1 larvae, this may be connected with greater downregulation of the transcription of genes related to the development of craniofacial cartilage such as runt-related transcription factor 2 (runx2), fibroblast growth factor 8 (fgf8), sonic hedgehog (shh), Indian hedgehog (ihh). Further results indicated that the modification DNA methylation levels in the promotors of gene runx2 and shh in maternal and paternal F1 larvae were inherited from embryonic F0 larvae, and might be linked with the toxicity of craniofacial cartilage in F1 larvae. This study illustrated that embryonic exposure to Phe could induce adverse effects on craniofacial development in F1 offspring, emphasizing the importance of transgenerational toxicology studies in risk assessment.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ke Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Jie Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Siyu Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qian Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Liangju Lv
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
14
|
Battistoni M, Bacchetta R, Di Renzo F, Metruccio F, Moretto A, Menegola E. Modified Xenopus laevis approach (R-FETAX) as an alternative test for the evaluation of foetal valproate spectrum disorder. Reprod Toxicol 2021; 107:140-149. [PMID: 34923091 DOI: 10.1016/j.reprotox.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
In compliance to animal welfare 3Rs principle there is a great demand for refined tests alternative to classical mammal teratogenicity tests. We propose a refined alternative amphibian method (R-FETAX) to evaluate chemical induced embryotoxicity. The human foetal valproate spectrum disorder (FVSD) characteristics are morphological defects (including cranio-facial, neural tube defects) and behavioural alterations due to valproate (VPA) exposure in pregnancy. Vertebrate assays to evaluate FVSD include classical and alternative mammal (implying adult sacrifice), and non-mammal developmental models (zebrafish, amphibians, chick). Among these latter only zebrafish assays report in the same test both morphological and behavioural examinations. Compared to zebrafish, the amphibian Xenopus laevis excels having a more comparable organ development and morphology to mammalian systems. We used X. laevis embryos exposed during developmental specific windows to VPA therapeutic concentrations. Different VPA effects were observed depending on the exposure window: concentration-related embryo-lethal and teratogenic effects (neural tube, facial, tail defects) were observed in groups exposed at the organogenetic phylotypic stages. Neurobehavioral deficits were described using a functional swimming test at the highest VPA concentration exposure during the phylotypic stages and at any concentration during neurocognitive competent stages. Malformations were compared to those obtained in a mammalian assay (the rat post-implantation whole embryo culture method, WEC), that we used in the past to evaluate VPA teratogenicity. R-FETAX and WEC data were modelled and their relative sensitivity was calculated. We suggest the amphibian R-FETAX as a refined windowed alternative test for the evaluation of chemicals inducing both morphological and behavioural anomalies, including VPA.
Collapse
Affiliation(s)
- Maria Battistoni
- Università Degli Studi di Milano, Department of Physics Aldo Pontremoli, via Celoria, 16-20133, Milan, Italy; Università Degli Studi di Milano, Department of Environmental Science and Policy, via Celoria, 26-20133, Milan, Italy.
| | - Renato Bacchetta
- Università Degli Studi di Milano, Department of Environmental Science and Policy, via Celoria, 26-20133, Milan, Italy.
| | - Francesca Di Renzo
- Università Degli Studi di Milano, Department of Environmental Science and Policy, via Celoria, 26-20133, Milan, Italy.
| | | | - Angelo Moretto
- Università Degli Studi di Milano, Department of Biomedical and Clinical Sciences "L. Sacco", via GB Grassi, 74- 20159, Milan, Italy.
| | - Elena Menegola
- Università Degli Studi di Milano, Department of Environmental Science and Policy, via Celoria, 26-20133, Milan, Italy.
| |
Collapse
|
15
|
Huang W, Wu T, Au WW, Wu K. Impact of environmental chemicals on craniofacial skeletal development: Insights from investigations using zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117541. [PMID: 34118758 DOI: 10.1016/j.envpol.2021.117541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Craniofacial skeletal anomalies are among the most common structural birth defects around the world. Various studies using human populations and experimental animals have shown that genetic and environmental factors play significant roles in the causation and progression of these anomalies. Environmental factors, such as teratogens and toxin mixtures, induce craniofacial anomalies are gaining heightened attention. Among experimental investigations, the use of the zebrafish (Danio rerio) has been increasing. A major reason for the increased use is that the zebrafish boast a simple craniofacial structure, and facial morphogenesis is readily observed due to external fertilization and transparent embryo, making it a valuable platform to screen and identify environmental factors involved in the etiology of craniofacial skeletal malformation. This review provides an update on harmful effects from exposure to environmental chemicals, involving metallic elements, nanoparticles, persistent organic pollutants, pesticides and pharmaceutical formulations on craniofacial skeletal development in zebrafish embryos. The collected data provide a better understanding for induction of craniofacial skeletal anomalies and for development of better prevention strategies.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, China
| | - William W Au
- University of Medicine, Pharmacy, Science and Techonology, 540142, Tirgu Mures, Romania
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou, 515041, Guangdong, China.
| |
Collapse
|
16
|
Raterman ST, Metz JR, Wagener FADTG, Von den Hoff JW. Zebrafish Models of Craniofacial Malformations: Interactions of Environmental Factors. Front Cell Dev Biol 2020; 8:600926. [PMID: 33304906 PMCID: PMC7701217 DOI: 10.3389/fcell.2020.600926] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
The zebrafish is an appealing model organism for investigating the genetic (G) and environmental (E) factors, as well as their interactions (GxE), which contribute to craniofacial malformations. Here, we review zebrafish studies on environmental factors involved in the etiology of craniofacial malformations in humans including maternal smoking, alcohol consumption, nutrition and drug use. As an example, we focus on the (cleft) palate, for which the zebrafish ethmoid plate is a good model. This review highlights the importance of investigating ExE interactions and discusses the variable effects of exposure to environmental factors on craniofacial development depending on dosage, exposure time and developmental stage. Zebrafish also promise to be a good tool to study novel craniofacial teratogens and toxin mixtures. Lastly, we discuss the handful of studies on gene–alcohol interactions using mutant sensitivity screens and reverse genetic techniques. We expect that studies addressing complex interactions (ExE and GxE) in craniofacial malformations will increase in the coming years. These are likely to uncover currently unknown mechanisms with implications for the prevention of craniofacial malformations. The zebrafish appears to be an excellent complementary model with high translational value to study these complex interactions.
Collapse
Affiliation(s)
- S T Raterman
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - J R Metz
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Frank A D T G Wagener
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes W Von den Hoff
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|