1
|
Lu Y, Saibro-Girardi C, Fitz NF, McGuire MR, Ostach MA, Mamun-Or-Rashid ANM, Lefterov I, Koldamova R. Multi-transcriptomics reveals brain cellular responses to peripheral infection in Alzheimer's disease model mice. Cell Rep 2023; 42:112785. [PMID: 37436901 PMCID: PMC10530196 DOI: 10.1016/j.celrep.2023.112785] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/03/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023] Open
Abstract
Peripheral inflammation has been linked to various neurodegenerative disorders, including Alzheimer's disease (AD). Here we perform bulk, single-cell, and spatial transcriptomics in APP/PS1 mice intranasally exposed to Staphylococcus aureus to determine how low-grade peripheral infection affects brain transcriptomics and AD-like pathology. Chronic exposure led to increased amyloid plaque burden and plaque-associated microglia, significantly affecting the transcription of brain barrier-associated cells, which resulted in barrier leakage. We reveal cell-type- and spatial-specific transcriptional changes related to brain barrier function and neuroinflammation during the acute infection. Both acute and chronic exposure led to brain macrophage-associated responses and detrimental effects in neuronal transcriptomics. Finally, we identify unique transcriptional responses at the amyloid plaque niches following acute infection characterized by higher disease-associated microglia gene expression and a larger effect on astrocytic or macrophage-associated genes, which could facilitate amyloid and related pathologies. Our findings provide important insights into the mechanisms linking peripheral inflammation to AD pathology.
Collapse
Affiliation(s)
- Yi Lu
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Carolina Saibro-Girardi
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nicholas Francis Fitz
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mikayla Ranae McGuire
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mary Ann Ostach
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - A N M Mamun-Or-Rashid
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Iliya Lefterov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Radosveta Koldamova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
2
|
Ding W, Kaur D, Horvath S, Zhou W. Comparative epigenome analysis using Infinium DNA methylation BeadChips. Brief Bioinform 2023; 24:6974838. [PMID: 36617464 PMCID: PMC10147478 DOI: 10.1093/bib/bbac617] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
The arrival of the Infinium DNA methylation BeadChips for mice and other nonhuman mammalian species has outpaced the development of the informatics that supports their use for epigenetics study in model organisms. Here, we present informatics infrastructure and methods to allow easy DNA methylation analysis on multiple species, including domesticated animals and inbred laboratory mice (in SeSAMe version 1.16.0+). First, we developed a data-driven analysis pipeline covering species inference, genome-specific data preprocessing and regression modeling. We targeted genomes of 310 species and 37 inbred mouse strains and showed that genome-specific preprocessing prevents artifacts and yields more accurate measurements than generic pipelines. Second, we uncovered the dynamics of the epigenome evolution in different genomic territories and tissue types through comparative analysis. We identified a catalog of inbred mouse strain-specific methylation differences, some of which are linked to the strains' immune, metabolic and neurological phenotypes. By streamlining DNA methylation array analysis for undesigned genomes, our methods extend epigenome research to broad species contexts.
Collapse
Affiliation(s)
- Wubin Ding
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
| | - Diljeet Kaur
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
| | - Steve Horvath
- Dept. of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.,Altos Labs, San Diego, CA, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Wyss P, Song C, Bina M. Along the Bos taurus genome, uncover candidate imprinting control regions. BMC Genomics 2022; 23:478. [PMID: 35764919 PMCID: PMC9241299 DOI: 10.1186/s12864-022-08694-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In mammals, Imprinting Control Regions (ICRs) regulate a subset of genes in a parent-of-origin-specific manner. In both human and mouse, previous studies identified a set of CpG-rich motifs occurring as clusters in ICRs and germline Differentially Methylated Regions (gDMRs). These motifs consist of the ZFP57 binding site (ZFBS) overlapping a subset of MLL binding units known as MLL morphemes. MLL or MLL1 (Mixed Lineage Leukemia 1) is a relatively large multidomain protein that plays a central role in the regulation of transcription. The structures of both MLL1 and MLL2 include a domain (MT) that binds CpG-rich DNA and a conserved domain (SET) that methylates lysine 4 in histone H3 producing H3K4me3 marks in chromatin. RESULTS Since genomic imprinting impacts many developmental and key physiological processes, we followed a previous bioinformatics strategy to pinpoint ICR positions in the Bos taurus genome. Initial genome-wide analyses involved finding the positions of ZFP57 binding sites, and the CpG-rich motifs (ZFBS-morph overlaps) along cattle chromosomal DNA. By creating plots displaying the density of ZFBS-morph overlaps, we removed background noise and thus improved signal detection. With the density-plots, we could view the positions of peaks locating known and candidate ICRs in cattle DNA. Our evaluations revealed the correspondence of peaks in plots to reported known and inferred ICRs/DMRs in cattle. Beside peaks pinpointing such ICRs, the density-plots also revealed additional peaks. Since evaluations validated the robustness of our approach, we inferred that the additional peaks may correspond to candidate ICRs for imprinted gene expression. CONCLUSION Our bioinformatics strategy offers the first genome-wide approach for systematically localizing candidate ICRs. Furthermore, we have tailored our datasets for upload onto the UCSC genome browser so that researchers could find known and candidate ICRs with respect to a wide variety of annotations at all scales: from the positions of Single Nucleotide Polymorphisms (SNPs), to positions of genes, transcripts, and repeated DNA elements. Furthermore, the UCSC genome browser offers tools to produce enlarged views: to uncover the genes in the vicinity of candidate ICRs and thus discover potential imprinted genes for experimental validations.
Collapse
Affiliation(s)
- Phillip Wyss
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Carol Song
- Information Technology, Purdue University, West Lafayette, IN, 47907, USA
| | - Minou Bina
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Gao H, Zhang Y, Xue H, Zhang Q, Zhang Y, Shen Y, Bing X. Long Non-coding RNA Peg13 Alleviates Hypoxic-Ischemic Brain Damage in Neonatal Mice via miR-20a-5p/XIAP Axis. Neurochem Res 2022; 47:656-666. [PMID: 35043374 DOI: 10.1007/s11064-021-03474-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023]
Abstract
Long noncoding RNA (LncRNA) Peg13 has been demonstrated to protect against neurological diseases. However, its underlying mechanism in the progression of hypoxic-ischemic brain damage (HIBD) has not been well investigated. The expression of target genes was determined in neonatal mice with HIBD and in mouse hippocampal neurons during oxygen-glucose deprivation (OGD) using quantitative real-time PCR (qRT-PCR) and immunoblotting. Functional assays, including CCK-8 cell viability and apoptotic cell detection using TdT mediated dUTP nick ending labeling (TUNEL) assay were used to examine the neuroprotective role of Peg13 in mouse hippocampal neurons. Luciferase assays were performed to determine the regulatory mechanism of Peg13 in OGD-induced neuronal apoptosis. Peg13 was reduced in HIBD mice and OGD-treated mouse hippocampal neurons. Altered Peg13 expression relieved OGD-induced neuronal apoptosis. Mechanistically, Peg13 may serve as a sponge for miR-20a-5p to increase the expression of X chromosome-linked inhibitor of apoptosis (XIAP), a downstream target of miR-20a-5p. Our study showed that Peg13 fulfilled its anti-apoptotic function in neurons through suppressing XIAP expression by sponging miR-20a-5p. Together, Peg13 binds to miR-20a-5p to upregulate XIAP and alleviate HIBD in neonatal mice. The Peg13/miR-20a-5p/XIAP competing endogenous RNA (ceRNA) axis could be a potential therapeutic target for HIBD.
Collapse
Affiliation(s)
- Huan Gao
- Department of Children's Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yue Zhang
- Department of Ophthalmonogy, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Huijing Xue
- Department of Children's Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qifei Zhang
- Department of Children's Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yan Zhang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yusi Shen
- Second Department of Orthopedic Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiaosan Bing
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441000, Hubei, China.
| |
Collapse
|
5
|
Keshavarz M, Tautz D. The imprinted lncRNA Peg13 regulates sexual preference and the sex-specific brain transcriptome in mice. Proc Natl Acad Sci U S A 2021; 118:e2022172118. [PMID: 33658376 PMCID: PMC7958240 DOI: 10.1073/pnas.2022172118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mammalian genomes include many maternally and paternally imprinted genes. Most of these are also expressed in the brain, and several have been implicated in regulating specific behavioral traits. Here, we have used a knockout approach to study the function of Peg13, a gene that codes for a fast-evolving lncRNA (long noncoding RNA) and is part of a complex of imprinted genes on chromosome 15 in mice and chromosome 8 in humans. Mice lacking the 3' half of the transcript look morphologically wild-type but show distinct behavioral differences. They lose interest in the opposite sex, instead displaying a preference for wild-type animals of the same sex. Further, they show a higher level of anxiety, lowered activity and curiosity, and a deficiency in pup retrieval behavior. Brain RNA expression analysis reveals that genes involved in the serotonergic system, formation of glutamatergic synapses, olfactory processing, and estrogen signaling-as well as more than half of the other known imprinted genes-show significant expression changes in Peg13-deficient mice. Intriguingly, these pathways are differentially affected in the sexes, resulting in male and female brains of Peg13-deficient mice differing more from each other than those of wild-type mice. We conclude that Peg13 is part of a developmental pathway that regulates the neurobiology of social and sexual interactions.
Collapse
Affiliation(s)
- Maryam Keshavarz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
6
|
Desai A, Sequeira JM, Quadros EV. The metabolic basis for developmental disorders due to defective folate transport. Biochimie 2016; 126:31-42. [DOI: 10.1016/j.biochi.2016.02.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
|
7
|
Sánchez-Tena S, Cubillos-Rojas M, Schneider T, Rosa JL. Functional and pathological relevance of HERC family proteins: a decade later. Cell Mol Life Sci 2016; 73:1955-68. [PMID: 26801221 PMCID: PMC11108380 DOI: 10.1007/s00018-016-2139-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/22/2022]
Abstract
The HERC gene family encodes proteins with two characteristic domains in their sequence: the HECT domain and the RCC1-like domain (RLD). In humans, the HERC family comprises six members that can be divided into two groups based on their molecular mass and domain structure. Whereas large HERCs (HERC1 and HERC2) contain one HECT and more than one RLD, small HERCs (HERC3-6) possess single HECT and RLD domains. Accumulating evidence shows the HERC family proteins to be key components of a wide range of cellular functions, including neurodevelopment, DNA damage repair, cell growth and immune response. Considering the significant recent advances made regarding HERC functionality, an updated review summarizing the progress is greatly needed at 10 years since the last HERC review. We provide an integrated view of HERC function and go into detail about its implications for several human diseases such as cancer and neurological disorders.
Collapse
Affiliation(s)
- Susana Sánchez-Tena
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Monica Cubillos-Rojas
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Taiane Schneider
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
8
|
Jeong Y, Son JW, Kim BN, Yoo HJ. Evolutionary Perspective on Autism. Soa Chongsonyon Chongsin Uihak 2015. [DOI: 10.5765/jkacap.2015.26.2.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
9
|
Attia M, Rachez C, Avner P, Rogner UC. Nucleosome assembly proteins and their interacting proteins in neuronal differentiation. Arch Biochem Biophys 2013; 534:20-6. [DOI: 10.1016/j.abb.2012.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/21/2012] [Accepted: 09/22/2012] [Indexed: 12/21/2022]
|
10
|
Tunster SJ, Jensen AB, John RM. Imprinted genes in mouse placental development and the regulation of fetal energy stores. Reproduction 2013; 145:R117-37. [PMID: 23445556 DOI: 10.1530/rep-12-0511] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imprinted genes, which are preferentially expressed from one or other parental chromosome as a consequence of epigenetic events in the germline, are known to functionally converge on biological processes that enable in utero development in mammals. Over 100 imprinted genes have been identified in the mouse, the majority of which are both expressed and imprinted in the placenta. The purpose of this review is to provide a summary of the current knowledge regarding imprinted gene function in the mouse placenta. Few imprinted genes have been assessed with respect to their dosage-related action in the placenta. Nonetheless, current data indicate that imprinted genes converge on two key functions of the placenta, nutrient transport and placental signalling. Murine studies may provide a greater understanding of certain human pathologies, including low birth weight and the programming of metabolic diseases in the adult, and complications of pregnancy, such as pre-eclampsia and gestational diabetes, resulting from fetuses carrying abnormal imprints.
Collapse
Affiliation(s)
- S J Tunster
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | | | | |
Collapse
|
11
|
Singh M. Dysregulated A to I RNA editing and non-coding RNAs in neurodegeneration. Front Genet 2013; 3:326. [PMID: 23346095 PMCID: PMC3551214 DOI: 10.3389/fgene.2012.00326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/28/2012] [Indexed: 12/14/2022] Open
Abstract
RNA editing is an alteration in the primary nucleotide sequences resulting from a chemical change in the base. RNA editing is observed in eukaryotic mRNA, transfer RNA, ribosomal RNA, and non-coding RNAs (ncRNA). The most common RNA editing in the mammalian central nervous system is a base modification, where the adenosine residue is base-modified to inosine (A to I). Studies from ADAR (adenosine deaminase that act on RNA) mutants in Caenorhabditis elegans, Drosophila, and mice clearly show that the RNA editing process is an absolute requirement for nervous system homeostasis and normal physiology of the animal. Understanding the mechanisms of editing and findings of edited substrates has provided a better knowledge of the phenotype due to defective and hyperactive RNA editing. A to I RNA editing is catalyzed by a family of enzymes knows as ADARs. ADARs modify duplex RNAs and editing of duplex RNAs formed by ncRNAs can impact RNA functions, leading to an altered regulatory gene network. Such altered functions by A to I editing is observed in mRNAs, microRNAs (miRNA) but other editing of small and long ncRNAs (lncRNAs) has yet to be identified. Thus, ncRNA and RNA editing may provide key links between neural development, nervous system function, and neurological diseases. This review includes a summary of seminal findings regarding the impact of ncRNAs on biological and pathological processes, which may be further modified by RNA editing. NcRNAs are non-translated RNAs classified by size and function. Known ncRNAs like miRNAs, smallRNAs (smRNAs), PIWI-interacting RNAs (piRNAs), and lncRNAs play important roles in splicing, DNA methylation, imprinting, and RNA interference. Of note, miRNAs are involved in development and function of the nervous system that is heavily dependent on both RNA editing and the intricate spatiotemporal expression of ncRNAs. This review focuses on the impact of dysregulated A to I editing and ncRNAs in neurodegeneration.
Collapse
Affiliation(s)
- Minati Singh
- Department of Internal Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
12
|
Cowley M, Wood AJ, Böhm S, Schulz R, Oakey RJ. Epigenetic control of alternative mRNA processing at the imprinted Herc3/Nap1l5 locus. Nucleic Acids Res 2012; 40:8917-26. [PMID: 22790983 PMCID: PMC3467052 DOI: 10.1093/nar/gks654] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alternative polyadenylation increases transcriptome diversity by generating multiple transcript isoforms from a single gene. It is thought that this process can be subject to epigenetic regulation, but few specific examples of this have been reported. We previously showed that the Mcts2/H13 locus is subject to genomic imprinting and that alternative polyadenylation of H13 transcripts occurs in an allele-specific manner, regulated by epigenetic mechanisms. Here, we demonstrate that allele-specific polyadenylation occurs at another imprinted locus with similar features. Nap1l5 is a retrogene expressed from the paternally inherited allele, is situated within an intron of a 'host' gene Herc3, and overlaps a CpG island that is differentially methylated between the parental alleles. In mouse brain, internal Herc3 polyadenylation sites upstream of Nap1l5 are used on the paternally derived chromosome, from which Nap1l5 is expressed, whereas a downstream site is used more frequently on the maternally derived chromosome. Ablating DNA methylation on the maternal allele at the Nap1l5 promoter increases the use of an internal Herc3 polyadenylation site and alters exon splicing. These changes demonstrate the influence of epigenetic mechanisms in regulating Herc3 alternative mRNA processing. Internal Herc3 polyadenylation correlates with expression levels of Nap1l5, suggesting a possible role for transcriptional interference. Similar mechanisms may regulate alternative polyadenylation elsewhere in the genome.
Collapse
Affiliation(s)
- Michael Cowley
- Department of Medical & Molecular Genetics, King's College London, 8th Floor Tower Wing, Guy's Hospital, London SE1 9RT, UK
| | | | | | | | | |
Collapse
|
13
|
Golbabapour S, Abdulla MA, Hajrezaei M. A concise review on epigenetic regulation: insight into molecular mechanisms. Int J Mol Sci 2011; 12:8661-94. [PMID: 22272098 PMCID: PMC3257095 DOI: 10.3390/ijms12128661] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/07/2011] [Accepted: 11/10/2011] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms are responsible for the regulation of transcription of imprinted genes and those that induce a totipotent state. Starting just after fertilization, DNA methylation pattern undergoes establishment, reestablishment and maintenance. These modifications are important for normal embryo and placental developments. Throughout life and passing to the next generation, epigenetic events establish, maintain, erase and reestablish. In the context of differentiated cell reprogramming, demethylation and activation of genes whose expressions contribute to the pluripotent state is the crux of the matter. In this review, firstly, regulatory epigenetic mechanisms related to somatic cell nuclear transfer (SCNT) reprogramming are discussed, followed by embryonic development, and placental epigenetic issues.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (M.A.A.); (M.H.)
| | - Mahmood Ameen Abdulla
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (M.A.A.); (M.H.)
| | - Maryam Hajrezaei
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (M.A.A.); (M.H.)
| |
Collapse
|
14
|
Foldi CJ, Eyles DW, Flatscher-Bader T, McGrath JJ, Burne THJ. New perspectives on rodent models of advanced paternal age: relevance to autism. Front Behav Neurosci 2011; 5:32. [PMID: 21734873 PMCID: PMC3124931 DOI: 10.3389/fnbeh.2011.00032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/14/2011] [Indexed: 12/29/2022] Open
Abstract
Offspring of older fathers have an increased risk of various adverse health outcomes, including autism and schizophrenia. With respect to biological mechanisms for this association, there are many more germline cell divisions in the life history of a sperm relative to that of an oocyte. This leads to more opportunities for copy error mutations in germ cells from older fathers. Evidence also suggests that epigenetic patterning in the sperm from older men is altered. Rodent models provide an experimental platform to examine the association between paternal age and brain development. Several rodent models of advanced paternal age (APA) have been published with relevance to intermediate phenotypes related to autism. All four published APA models vary in key features creating a lack of consistency with respect to behavioral phenotypes. A consideration of common phenotypes that emerge from these APA-related mouse models may be informative in the exploration of the molecular and neurobiological correlates of APA.
Collapse
Affiliation(s)
- Claire J Foldi
- Queensland Brain Institute, The University of Queensland St Lucia, QLD, Australia
| | | | | | | | | |
Collapse
|
15
|
|
16
|
John RM, Lefebvre L. Developmental regulation of somatic imprints. Differentiation 2011; 81:270-80. [DOI: 10.1016/j.diff.2011.01.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/16/2010] [Accepted: 01/11/2011] [Indexed: 12/21/2022]
|
17
|
Jiang CD, Li S, Deng CY. Assessment of genomic imprinting of PPP1R9A, NAP1L5 and PEG3 in pigs. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411040053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefèvre A, Coullin P, Moore GE, Cavaillé J. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet 2010; 19:3566-82. [PMID: 20610438 DOI: 10.1093/hmg/ddq272] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Imprinted genes play crucial roles in mammalian development and disruption of their expression is associated with many human disorders including tumourigenesis; yet, the actual number of imprinted genes in the human genome remains a matter of debate. Here, we report on the unexpected finding that the chromosome 19 microRNA cluster (C19MC), the largest human microRNA gene cluster discovered so far, is regulated by genomic imprinting with only the paternally inherited allele being expressed in the placenta. DNA methylation profiling identified a differentially methylated region (C19MC-DMR1) that overlaps an upstream CpG-rich promoter region associated with short tandem repeats. It displays a maternal-specific methylation imprint acquired in oocytes and generates a complex population of large, compartimentalized non-coding RNA (ncRNA) species retained in close proximity to the C19MC transcription site. This occurs adjacent to, but not within, a poorly characterized nuclear Alu-rich domain. Interestingly, C19MC maps near another imprinted gene, the maternally expressed ZNF331 gene, and therefore may define a novel, previously unrecognized large imprinted primate-specific chromosomal domain. Altogether, our study adds C19MC to the growing list of imprinted repeated small RNA gene clusters and further strengthens the potential involvement of small ncRNAs in the function and/or the evolution of imprinted gene networks.
Collapse
Affiliation(s)
- Marie Noguer-Dance
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Kernohan KD, Jiang Y, Tremblay DC, Bonvissuto AC, Eubanks JH, Mann MRW, Bérubé NG. ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain. Epigenomics 2010; 2:743-63. [PMID: 20159591 DOI: 10.2217/epi.10.61] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human developmental disorders caused by chromatin dysfunction often display overlapping clinical manifestations, such as cognitive deficits, but the underlying molecular links are poorly defined. Here, we show that ATRX, MeCP2, and cohesin, chromatin regulators implicated in ATR-X, RTT, and CdLS syndromes, respectively, interact in the brain and colocalize at the H19 imprinting control region (ICR) with preferential binding on the maternal allele. Importantly, we show that ATRX loss of function alters enrichment of cohesin, CTCF, and histone modifications at the H19 ICR, without affecting DNA methylation on the paternal allele. ATRX also affects cohesin, CTCF, and MeCP2 occupancy within the Gtl2/Dlk1 imprinted domain. Finally, we show that loss of ATRX interferes with the postnatal silencing of the maternal H19 gene along with a larger network of imprinted genes. We propose that ATRX, cohesin, and MeCP2 cooperate to silence a subset of imprinted genes in the postnatal mouse brain.
Collapse
Affiliation(s)
- Kristin D Kernohan
- Department of Paediatrics, 800 Commissioners Road East, London, ON N6C 2V5, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Miri K, Varmuza S. Chapter 5 Imprinting and Extraembryonic Tissues—Mom Takes Control. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:215-62. [DOI: 10.1016/s1937-6448(09)76005-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Wang X, Sun Q, McGrath SD, Mardis ER, Soloway PD, Clark AG. Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. PLoS One 2008; 3:e3839. [PMID: 19052635 PMCID: PMC2585789 DOI: 10.1371/journal.pone.0003839] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 11/05/2008] [Indexed: 11/19/2022] Open
Abstract
Imprinted genes display differential allelic expression in a manner that depends on the sex of the transmitting parent. The degree of imprinting is often tissue-specific and/or developmental stage-specific, and may be altered in some diseases including cancer. Here we applied Illumina/Solexa sequencing of the transcriptomes of reciprocal F1 mouse neonatal brains and identified 26 genes with parent-of-origin dependent differential allelic expression. Allele-specific Pyrosequencing verified 17 of them, including three novel imprinted genes. The known and novel imprinted genes all are found in proximity to previously reported differentially methylated regions (DMRs). Ten genes known to be imprinted in placenta had sufficient expression levels to attain a read depth that provided statistical power to detect imprinting, and yet all were consistent with non-imprinting in our transcript count data for neonatal brain. Three closely linked and reciprocally imprinted gene pairs were also discovered, and their pattern of expression suggests transcriptional interference. Despite the coverage of more than 5000 genes, this scan only identified three novel imprinted refseq genes in neonatal brain, suggesting that this tissue is nearly exhaustively characterized. This approach has the potential to yield an complete catalog of imprinted genes after application to multiple tissues and developmental stages, shedding light on the mechanism, bioinformatic prediction, and evolution of imprinted genes and diseases associated with genomic imprinting.
Collapse
Affiliation(s)
- Xu Wang
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York, United States of America
| | - Qi Sun
- Computational Biology Service Unit, Life Sciences Core Laboratories Center, Cornell University, Ithaca, New York, United States of America
| | - Sean D. McGrath
- The Genome Center at Washington University, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Elaine R. Mardis
- The Genome Center at Washington University, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul D. Soloway
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Andrew G. Clark
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Assis R, Kondrashov AS, Koonin EV, Kondrashov FA. Nested genes and increasing organizational complexity of metazoan genomes. Trends Genet 2008; 24:475-8. [PMID: 18774620 PMCID: PMC3380635 DOI: 10.1016/j.tig.2008.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 07/24/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
Abstract
The most common form of protein-coding gene overlap in eukaryotes is a simple nested structure, whereby one gene is embedded in an intron of another. Analysis of nested protein-coding genes in vertebrates, fruit flies and nematodes revealed substantially higher rates of evolutionary gains than losses. The accumulation of nested gene structures could not be attributed to any obvious functional relationships between the genes involved and represents an increase of the organizational complexity of animal genomes via a neutral process.
Collapse
Affiliation(s)
- Raquel Assis
- Center for Computational Medicine and Biology and the Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
23
|
Hadjebi O, Casas-Terradellas E, Garcia-Gonzalo FR, Rosa JL. The RCC1 superfamily: From genes, to function, to disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1467-79. [DOI: 10.1016/j.bbamcr.2008.03.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 02/07/2023]
|
24
|
Maternally inherited Birk Barel mental retardation dysmorphism syndrome caused by a mutation in the genomically imprinted potassium channel KCNK9. Am J Hum Genet 2008; 83:193-9. [PMID: 18678320 DOI: 10.1016/j.ajhg.2008.07.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 06/18/2008] [Accepted: 07/02/2008] [Indexed: 12/24/2022] Open
Abstract
We describe a maternally transmitted genomic-imprinting syndrome of mental retardation, hypotonia, and unique dysmorphism with elongated face. We mapped the disease-associated locus to approximately 7.27 Mb on chromosome 8q24 and demonstrated that the disease is caused by a missense mutation in the maternal copy of KCNK9 within this locus. KCNK9 is maternally transmitted (imprinted with paternal silencing) and encodes K(2P)9.1, a member of the two pore-domain potassium channel (K(2P)) subfamily. The mutation fully abolishes the channel's currents--both when functioning as a homodimer or as a heterodimer with K(2P)3.1.
Collapse
|
25
|
Rodriguez CI, Stewart CL. Disruption of the ubiquitin ligase HERC4 causes defects in spermatozoon maturation and impaired fertility. Dev Biol 2007; 312:501-8. [DOI: 10.1016/j.ydbio.2007.09.053] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 09/24/2007] [Accepted: 09/25/2007] [Indexed: 12/27/2022]
|
26
|
Mehler MF, Mattick JS. Noncoding RNAs and RNA Editing in Brain Development, Functional Diversification, and Neurological Disease. Physiol Rev 2007; 87:799-823. [PMID: 17615389 DOI: 10.1152/physrev.00036.2006] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The progressive maturation and functional plasticity of the nervous system in health and disease involve a dynamic interplay between the transcriptome and the environment. There is a growing awareness that the previously unexplored molecular and functional interface mediating these complex gene-environmental interactions, particularly in brain, may encompass a sophisticated RNA regulatory network involving the twin processes of RNA editing and multifaceted actions of numerous subclasses of non-protein-coding RNAs. The mature nervous system encompasses a wide range of cell types and interconnections. Long-term changes in the strength of synaptic connections are thought to underlie memory retrieval, formation, stabilization, and effector functions. The evolving nervous system involves numerous developmental transitions, such as neurulation, neural tube patterning, neural stem cell expansion and maintenance, lineage elaboration, differentiation, axonal path finding, and synaptogenesis. Although the molecular bases for these processes are largely unknown, RNA-based epigenetic mechanisms appear to be essential for orchestrating these precise and versatile biological phenomena and in defining the etiology of a spectrum of neurological diseases. The concerted modulation of RNA editing and the selective expression of non-protein-coding RNAs during seminal as well as continuous state transitions may comprise the plastic molecular code needed to couple the intrinsic malleability of neural network connections to evolving environmental influences to establish diverse forms of short- and long-term memory, context-specific behavioral responses, and sophisticated cognitive capacities.
Collapse
Affiliation(s)
- Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
27
|
Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC Genomics 2007; 8:26. [PMID: 17244347 PMCID: PMC1796866 DOI: 10.1186/1471-2164-8-26] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 01/23/2007] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal disorder caused by the progressive degeneration of motoneurons in brain and spinal cord. Despite identification of disease-linked mutations, the diversity of processes involved and the ambiguity of their relative importance in ALS pathogenesis still represent a major impediment to disease models as a basis for effective therapies. Moreover, the human motor cortex, although critical to ALS pathology and physiologically altered in most forms of the disease, has not been screened systematically for therapeutic targets. RESULTS By whole-genome expression profiling and stringent significance tests we identify genes and gene groups de-regulated in the motor cortex of patients with sporadic ALS, and interpret the role of individual candidate genes in a framework of differentially expressed pathways. Our findings emphasize the importance of defense responses and cytoskeletal, mitochondrial and proteasomal dysfunction, reflect reduced neuronal maintenance and vesicle trafficking, and implicate impaired ion homeostasis and glycolysis in ALS pathogenesis. Additionally, we compared our dataset with publicly available data for the SALS spinal cord, and show a high correlation of changes linked to the diseased state in the SALS motor cortex. In an analogous comparison with data for the Alzheimer's disease hippocampus we demonstrate a low correlation of global changes and a moderate correlation for changes specifically linked to the SALS diseased state. CONCLUSION Gene and sample numbers investigated allow pathway- and gene-based analyses by established error-correction methods, drawing a molecular portrait of the ALS motor cortex that faithfully represents many known disease features and uncovers several novel aspects of ALS pathology. Contrary to expectations for a tissue under oxidative stress, nuclear-encoded mitochondrial genes are uniformly down-regulated. Moreover, the down-regulation of mitochondrial and glycolytic genes implies a combined reduction of mitochondrial and cytoplasmic energy supply, with a possible role in the death of ALS motoneurons. Identifying candidate genes exclusively expressed in non-neuronal cells, we also highlight the importance of these cells in disease development in the motor cortex. Notably, some pathways and candidate genes identified by this study are direct or indirect targets of medication already applied to unrelated illnesses and point the way towards the rapid development of effective symptomatic ALS therapies.
Collapse
|
28
|
Abstract
The epigenetic events that occur during the development of the mammalian embryo are essential for correct gene expression and cell-lineage determination. Imprinted genes are expressed from only one parental allele due to differential epigenetic marks that are established during gametogenesis. Several theories have been proposed to explain the role that genomic imprinting has played over the course of mammalian evolution, but at present it is not clear if a single hypothesis can fully account for the diversity of roles that imprinted genes play. In this review, we discuss efforts to define the extent of imprinting in the mouse genome, and suggest that different imprinted loci may have been wrought by distinct evolutionary forces. We focus on a group of small imprinted domains, which consist of paternally expressed genes embedded within introns of multiexonic transcripts, to discuss the evolution of imprinting at these loci.
Collapse
|
29
|
Abstract
Increasing evidence suggests that the development and function of the nervous system is heavily dependent on RNA editing and the intricate spatiotemporal expression of a wide repertoire of non-coding RNAs, including micro RNAs, small nucleolar RNAs and longer non-coding RNAs. Non-coding RNAs may provide the key to understanding the multi-tiered links between neural development, nervous system function, and neurological diseases.
Collapse
Affiliation(s)
- Mark F Mehler
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | | |
Collapse
|
30
|
Xiao Y, Zhou H, Qu LH. Characterization of three novel imprinted snoRNAs from mouse Irm gene. Biochem Biophys Res Commun 2006; 340:1217-23. [PMID: 16405918 DOI: 10.1016/j.bbrc.2005.12.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 12/20/2005] [Indexed: 11/29/2022]
Abstract
Most, if not all, of snoRNAs in mammals are intron-encoded, implying the expressional and functional relativeness between the snoRNA and their hosts. By computational analysis of an intron database extracted from 65 known mouse imprinted genes, three novel orphan box C/D snoRNAs were identified from Irm gene which is maternally expressed and related to human disorders. The snoRNAs were positively detected and found to express in all the mouse tissues except kidney. The imprinted snoRNAs exhibit stringent structures, but quite variable in locations at their host introns, suggesting their maturation probably through a splicing independent manner. We characterized Irm as a new kind of snoRNA host gene which has no protein-coding capacity and no 5'TOP structure in its mRNA. The newly identified snoRNAs appear mouse-specific, however, their function remains to be elucidated.
Collapse
Affiliation(s)
- Yu Xiao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Zhongshan University, Guangzhou 510275, People's Republic of China
| | | | | |
Collapse
|
31
|
Davies W, Isles AR, Wilkinson LS. Imprinted gene expression in the brain. Neurosci Biobehav Rev 2005; 29:421-30. [PMID: 15820547 DOI: 10.1016/j.neubiorev.2004.11.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 11/18/2004] [Accepted: 11/18/2004] [Indexed: 11/28/2022]
Abstract
In normal mammals, autosomal genes are present in duplicate (i.e. two alleles), one inherited from the father, and one from the mother. For the majority of genes both alleles are transcribed (or expressed) equally. However, for a small subset of genes, known as imprinted genes, only one allele is expressed in a parent-of-origin dependent manner (note that the 'imprint' here refers to the epigenetic mechanism through which one allele is silenced, and is completely unrelated to classical 'filial imprinting' manifest at the behavioural level). Thus, for some imprinted genes expression is only (or predominantly) seen from the paternally inherited allele, whilst for the remainder, expression is only observed from the maternally inherited allele. Early work on this class of genes highlighted their importance in gross developmental and growth phenotypes. Recent studies in mouse models and humans have emphasised their contribution to brain function and behaviour. In this article, we review the literature concerning the expression of imprinted genes in the brain. In particular, we attempt to define emerging organisation themes, especially in terms of the direction of imprinting (i.e. maternal or paternal expression). We also emphasise the likely role of imprinted genes in neurodevelopment. We end by pointing out that, so far as discerning the precise functions of imprinted genes in the brain is concerned, there are currently more questions than answers; ranging from the extent to which imprinted genes might contribute to common mental disorders, to wider issues related to how easily the new data on brain may be accommodated within the dominant theory regarding the origins and maintenance of imprinting, which pits the maternal and paternal genomes against each other in an evolutionary battle of the sexes.
Collapse
Affiliation(s)
- William Davies
- Neurobiology and Developmental Genetics Programmes, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK
| | | | | |
Collapse
|