1
|
Zheng S, Tang X, Yang Q, Zhou X, Li Y, Wu Z. Aeromonas veronii tolC modulates its virulence and the immune response of freshwater pearl mussels, Hyriopsis cumingii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105137. [PMID: 38224762 DOI: 10.1016/j.dci.2024.105137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/17/2024]
Abstract
Aeromonas veronii is an opportunistic pathogen that causes diseases in aquatic animals, but its key virulence factors remain unclear. We screened the gene tolC with significantly different expression levels in the two isolates, A. veronii GL2 (higher virulence) and A. veronii FO1 (lower virulence). Therefore, we constructed mutant strain ΔtolC and analyzed its immunological properties. ΔtolC exhibited the reduced ability of biofilms formation, inhibited envelope stress response mediated by several antibiotics except cefuroxime, implying the ability to evade host immunity might be restrained. Challenge tests showed that the LD50 of ΔtolC was 10.89-fold than that of GL2. Enzymatic activities of ΔtolC group were significantly lower and peak time was delayed to 12 h, as demonstrated by qRT-PCR results. Histopathological examination displayed that the degree of tissue damage in ΔtolC group was alleviated. The results show that tolC is an important virulence factor of A. veronii, which provides references for live-attenuated vaccine.
Collapse
Affiliation(s)
- Sichun Zheng
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Xiaoqi Tang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Qinglin Yang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Xicheng Zhou
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Yanhong Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Status Quo and Future Perspectives of Molecular and Genomic Studies on the Genus Biomphalaria-The Intermediate Snail Host of Schistosoma mansoni. Int J Mol Sci 2023; 24:ijms24054895. [PMID: 36902324 PMCID: PMC10003693 DOI: 10.3390/ijms24054895] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/06/2023] Open
Abstract
Schistosomiasis, or also generally known as bilharzia or snail fever, is a parasitic disease that is caused by trematode flatworms of the genus Schistosoma. It is considered by the World Health Organisation as the second most prevalent parasitic disease after malaria and affects more than 230 million people in over 70 countries. People are infected via a variety of activities ranging from agricultural, domestic, occupational to recreational activities, where the freshwater snails Biomphalaria release Schistosoma cercariae larvae that penetrate the skin of humans when exposed in water. Understanding the biology of the intermediate host snail Biomphalaria is thus important to reveal the potential spread of schistosomiasis. In this article, we present an overview of the latest molecular studies focused on the snail Biomphalaria, including its ecology, evolution, and immune response; and propose using genomics as a foundation to further understand and control this disease vector and thus the transmission of schistosomiasis.
Collapse
|
3
|
Lynch AE, Noble LR, Jones CS, Routledge EJ. Common aquatic pollutants modify hemocyte immune responses in Biomphalaria glabrata. Front Immunol 2022; 13:839746. [PMID: 36159819 PMCID: PMC9493456 DOI: 10.3389/fimmu.2022.839746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Disruptions to reproductive health in wildlife species inhabiting polluted environments is often found to occur alongside compromised immunity. However, research on impacts of aquatic pollution on freshwater mollusc immune responses is limited despite their importance as vectors of disease (Schistosomiasis) in humans, cattle and wild mammals. We developed an in vitro 'tool-kit' of well-characterized quantitative immune tests using Biomphalaria glabrata hemocytes. We exposed hemocytes to environmentally-relevant concentrations of common aquatic pollutants (17β-estradiol, Bisphenol-A and p,p'-DDE) and measured key innate immune responses including motility, phagocytosis and encapsulation. Additionally, we tested an extract of a typical domestic tertiary treated effluent as representative of a 'real-world' mixture of chemicals. Encapsulation responses were stimulated by p,p'-DDE at low doses but were suppressed at higher doses. Concentrations of BPA (above 200 ng/L) and p,p'-DDE (above 500 ng/L) significantly inhibited phagocytosis compared to controls, whilst hemocyte motility was reduced by all test chemicals and the effluent extract in a dose-dependent manner. All responses occurred at chemical concentrations considered to be below the cytotoxic thresholds of hemocytes. This is the first time a suite of in vitro tests has been developed specifically in B. glabrata with the purpose of investigating the impacts of chemical pollutants and an effluent extract on immunity. Our findings indicate that common aquatic pollutants alter innate immune responses in B. glabrata, suggesting that pollutants may be a critical, yet overlooked, factor impacting disease by modulating the dynamics of parasite transmission between molluscs and humans.
Collapse
Affiliation(s)
- Adam E. Lynch
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Leslie R. Noble
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- School of Biological Sciences, Aberdeen University, Aberdeen, United Kingdom
| | - Catherine S. Jones
- School of Biological Sciences, Aberdeen University, Aberdeen, United Kingdom
| | - Edwin J. Routledge
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
4
|
Marquez J, Dinguirard N, Gonzalez A, Kane A, Joffe N, Yoshino T, Castillo M. Molecular characterization of thioester-containing proteins in Biomphalaria glabrata and their differential gene expression upon Schistosoma mansoni exposure. Front Immunol 2022; 13:903158. [PMID: 35967434 PMCID: PMC9363628 DOI: 10.3389/fimmu.2022.903158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Schistosomiasis is a disease caused by trematode parasites of the genus Schistosoma that affects approximately 200 million people worldwide. Schistosomiasis has been a persistent problem in endemic areas as there is no vaccine available, currently used anti-helmintic medications do not prevent reinfection, and most concerning, drug resistance has been documented in laboratory and field isolates. Thus, alternative approaches to curtail this human disease are warranted. Understanding the immunobiology of the obligate intermediate host of these parasites, which include the freshwater snail Biomphalaria glabrata, may facilitate the development of novel methods to stop or reduce transmission to humans. Molecules from the thioester-containing protein (TEP) superfamily have been shown to be involved in immunological functions in many animals including corals and humans. In this study we identified, characterized, and compared TEP transcripts and their expression upon S. mansoni exposure in resistant and susceptible strains of B. glabrata snails. Results showed the expression of 11 unique TEPs in B. glabrata snails. These transcripts present high sequence identity at the nucleotide and putative amino acid levels between susceptible and resistant strains. Further analysis revealed differences in several TEPs’ constitutive expression levels between resistant and susceptible snail strains, with C3-1, C3-3, and CD109 having higher constitutive expression levels in the resistant (BS90) strain, whereas C3-2 and TEP-1 showed higher constitutive expression levels in the susceptible (NMRI) strain. Furthermore, TEP-specific response to S. mansoni miracidia exposure reiterated their differential expression, with resistant snails upregulating the expression of both TEP-4 and TEP-3 at 2 h and 48 h post-exposure, respectively. Further understanding the diverse TEP genes and their functions in invertebrate animal vectors will not only expand our knowledge in regard to this ancient family of immune proteins, but also offer the opportunity to identify novel molecular targets that could aid in the efforts to develop control methods to reduce schistosomiasis transmission.
Collapse
Affiliation(s)
- J. Marquez
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - N. Dinguirard
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - A. Gonzalez
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - A.E. Kane
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - N.R. Joffe
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - T.P. Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - M.G. Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
- *Correspondence: M.G. Castillo,
| |
Collapse
|
5
|
Lu L, Bu L, Zhang SM, Buddenborg SK, Loker ES. An Overview of Transcriptional Responses of Schistosome-Susceptible (M line) or -Resistant (BS-90) Biomphalaria glabrata Exposed or Not to Schistosoma mansoni Infection. Front Immunol 2022; 12:805882. [PMID: 35095891 PMCID: PMC8791074 DOI: 10.3389/fimmu.2021.805882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Background We seek to provide a comprehensive overview of transcriptomics responses of immune-related features of the gastropod Biomphalaria glabrata (Bg) following exposure to Schistosoma mansoni (Sm), a trematode causing human schistosomiasis. Responses of schistosome-susceptible (M line, or SUS) and -resistant (BS-90, or RES) Bg strains were characterized following exposure to Sm for 0.5, 2, 8 or 40 days post-exposure (dpe). Methods RNA-Seq and differential expression analysis were undertaken on 56 snails from 14 groups. We considered 7 response categories: 1) constitutive resistance factors; 2) constitutive susceptibility factors; 3) generalized stress responses; 4) induced resistance factors; 5) resistance factors suppressed in SUS snails; 6) suppressed/manipulated factors in SUS snails; and 7) tolerance responses in SUS snails. We also undertook a gene co-expression network analysis. Results from prior studies identifying schistosome resistance/susceptibility factors were examined relative to our findings. Results A total of 792 million paired-end reads representing 91.2% of the estimated 31,985 genes in the Bg genome were detected and results for the 7 categories compiled and highlighted. For both RES and SUS snails, a single most supported network of genes with highly correlated expression was found. Conclusions 1) Several constitutive differences in gene expression between SUS and RES snails were noted, the majority over-represented in RES; 2) There was little indication of a generalized stress response shared by SUS and RES snails at 0.5 or 2 dpe; 3) RES snails mounted a strong, multi-faceted response by 0.5 dpe that carried over to 2 dpe; 4) The most notable SUS responses were at 40 dpe, in snails shedding cercariae, when numerous features were either strongly down-regulated indicative of physiological distress or parasite manipulation, or up-regulated, suggestive of tolerance or survival-promoting effects; 5) Of 55 genes previously identified in genome wide mapping studies, 29 (52.7%) were responsive to Sm, as were many familiar resistance-associated genes (41.0%) identified by other means; 6) Both network analysis and remarkably specific patterns of expression of lectins and G protein-coupled receptors in categories 4, 6 and 7 were indicative of orchestrated responses of different suites of genes in SUS or RES snails following exposure to Sm.
Collapse
Affiliation(s)
- Lijun Lu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Sarah K Buddenborg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Eric S Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
6
|
Alba A, Vázquez AA, Sánchez J, Gourbal B. Immunological Resistance of Pseudosuccinea columella Snails From Cuba to Fasciola hepatica (Trematoda) Infection: What We Know and Where We Go on Comparative Molecular and Mechanistic Immunobiology, Ecology and Evolution. Front Immunol 2022; 13:794186. [PMID: 35140717 PMCID: PMC8818719 DOI: 10.3389/fimmu.2022.794186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most interesting biological models is that of snail-trematode interactions, many of which ultimately result in the transmission of several important diseases, particularly in the tropics. Herein, we review the scientific advances on a trematode-snail system in which certain populations of Pseudosuccinea columella (a common host species for trematodes) have been demonstrated naturally-resistant to Fasciola hepatica, in association with an effective encapsulation of the parasite by innate immune cells of the host, the hemocytes. Emphasis is made on the molecular and immunological features characterizing each P. columella phenotype in relation to their anti-parasitic competence, their distinctive ecological patterns and the existence of a significant cost of resistance. An integrative overview of the resistance to F. hepatica through comparative immunobiology, genetics and ecology is presented to hypothesize on the possible origins and evolution of this phenomenon and to postulate significant roles for parasite mediated-selection and environmental factors in shaping and maintaining the resistant phenotype in the field. Lastly, clues into future experimental perspectives to deeply characterize the interplay between P. columella and F. hepatica and the immunobiology of the resistance are also included. The advances revised in the present paper are only beginning to unravel mechanisms of anti-parasite innate defense responses and their evolutionary bases, and can facilitate the development of prospective approaches towards practical applications of P. columella resistance.
Collapse
Affiliation(s)
- Annia Alba
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto “Pedro Kourí” de Medicina Tropical, La Habana, Cuba
| | - Antonio A. Vázquez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto “Pedro Kourí” de Medicina Tropical, La Habana, Cuba
| | - Jorge Sánchez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto “Pedro Kourí” de Medicina Tropical, La Habana, Cuba
| | - Benjamin Gourbal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
7
|
Resistance of Biomphalaria alexandrina to Schistosoma mansoni and Bulinus truncatus to Schistosoma haematobium Correlates with Unsaturated Fatty Acid Levels in the Snail Soft Tissue. J Parasitol Res 2020; 2020:8852243. [PMID: 33204522 PMCID: PMC7652611 DOI: 10.1155/2020/8852243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Only a fraction of the Biomphalaria and Bulinus snail community shows patent infection with schistosomes despite continuous exposure to the parasite, indicating that a substantial proportion of snails may resist infection. Accordingly, exterminating the schistosome intermediate snail hosts in transmission foci in habitats that may extend to kilometres is cost-prohibitive and damaging to the ecological equilibrium and quality of water and may be superfluous. It may be more cost effective with risk less ecological damage to focus on discovering the parameters governing snail susceptibility and resistance to schistosome infection. Therefore, laboratory bred Biomphalaria alexandrina and Bulinus truncatus snails were exposed to miracidia of laboratory-maintained Schistosoma mansoni and S. haematobium, respectively. Snails were examined for presence or lack of infection association with soft tissue and hemolymph content of proteins, cholesterol, and triglycerides, evaluated using standard biochemical techniques and palmitic, oleic, linoleic, and arachidonic acid, assayed by ultraperformance liquid chromatography-tandem mass spectrometry. Successful schistosome infection of B. alexandrina and B. truncatus consistently and reproducibly correlated with snails showing highly significant (up to P < 0.0001) decrease in soft tissue and hemolymph content of the monounsaturated fatty acid, oleic acid, and the polyunsaturated fatty acids, linoleic, and arachidonic acids as compared to naïve snails. Snails that resisted twice infection had soft tissue content of oleic, linoleic, and arachidonic acid similar to naïve counterparts. High levels of soft tissue and hemolymph oleic, linoleic, and arachidonic acid content appear to interfere with schistosome development in snails. Diet manipulation directed to eliciting excessive increase of polyunsaturated fatty acids in snails may protect them from infection and interrupt disease transmission in a simple and effective manner.
Collapse
|
8
|
Castillo MG, Humphries JE, Mourão MM, Marquez J, Gonzalez A, Montelongo CE. Biomphalaria glabrata immunity: Post-genome advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103557. [PMID: 31759924 PMCID: PMC8995041 DOI: 10.1016/j.dci.2019.103557] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The freshwater snail, Biomphalaria glabrata, is an important intermediate host in the life cycle for the human parasite Schistosoma mansoni, the causative agent of schistosomiasis. Current treatment and prevention strategies have not led to a significant decrease in disease transmission. However, the genome of B. glabrata was recently sequenced to provide additional resources to further our understanding of snail biology. This review presents an overview of recently published, post-genome studies related to the topic of snail immunity. Many of these reports expand on findings originated from the genome characterization. These novel studies include a complementary gene linkage map, analysis of the genome of the B. glabrata embryonic (Bge) cell line, as well as transcriptomic and proteomic studies looking at snail-parasite interactions and innate immune memory responses towards schistosomes. Also included are biochemical investigations on snail pheromones, neuropeptides, and attractants, as well as studies investigating the frontiers of molluscan epigenetics and cell signaling were also included. Findings support the current hypotheses on snail-parasite strain compatibility, and that snail host resistance to schistosome infection is dependent not only on genetics and expression, but on the ability to form multimeric molecular complexes in a timely and tissue-specific manner. The relevance of cell immunity is reinforced, while the importance of humoral factors, especially for secondary infections, is supported. Overall, these studies reflect an improved understanding on the diversity, specificity, and complexity of molluscan immune systems.
Collapse
Affiliation(s)
- Maria G Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | - Marina M Mourão
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Brazil
| | - Joshua Marquez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Adrian Gonzalez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Cesar E Montelongo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
9
|
Li H, Hambrook JR, Pila EA, Gharamah AA, Fang J, Wu X, Hanington P. Coordination of humoral immune factors dictates compatibility between Schistosoma mansoni and Biomphalaria glabrata. eLife 2020; 9:e51708. [PMID: 31916937 PMCID: PMC6970513 DOI: 10.7554/elife.51708] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
Immune factors in snails of the genus Biomphalaria are critical for combating Schistosoma mansoni, the predominant cause of human intestinal schistosomiasis. Independently, many of these factors play an important role in, but do not fully define, the compatibility between the model snail B. glabrata, and S. mansoni. Here, we demonstrate association between four previously characterized humoral immune molecules; BgFREP3, BgTEP1, BgFREP2 and Biomphalysin. We also identify unique immune determinants in the plasma of S. mansoni-resistant B. glabrata that associate with the incompatible phenotype. These factors coordinate to initiate haemocyte-mediated destruction of S. mansoni sporocysts via production of reactive oxygen species. The inclusion of BgFREP2 in a BgFREP3-initiated complex that also includes BgTEP1 almost completely explains resistance to S. mansoni in this model. Our study unifies many independent lines of investigation to provide a more comprehensive understanding of the snail immune system in the context of infection by this important human parasite.
Collapse
Affiliation(s)
- Hongyu Li
- Ocean CollegeBeibu Gulf UniversityQinzhouChina
- School of Public HealthUniversity of AlbertaEdmontonCanada
| | | | | | | | - Jing Fang
- Ocean CollegeBeibu Gulf UniversityQinzhouChina
- School of Public HealthUniversity of AlbertaEdmontonCanada
| | - Xinzhong Wu
- Ocean CollegeBeibu Gulf UniversityQinzhouChina
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | | |
Collapse
|
10
|
Buddenborg SK, Kamel B, Bu L, Zhang SM, Mkoji GM, Loker ES. Transcriptional responses of Biomphalaria pfeifferi and Schistosoma mansoni following exposure to niclosamide, with evidence for a synergistic effect on snails following exposure to both stressors. PLoS Negl Trop Dis 2019; 13:e0006927. [PMID: 31841501 PMCID: PMC6936870 DOI: 10.1371/journal.pntd.0006927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/30/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Schistosomiasis is one of the world's most common NTDs. Successful control operations often target snail vectors with the molluscicide niclosamide. Little is known about how niclosamide affects snails, including for Biomphalaria pfeifferi, the most important vector for Schistosoma mansoni in Africa. We used Illumina technology to explore how field-derived B. pfeifferi, either uninfected or harboring cercariae-producing S. mansoni sporocysts, respond to a sublethal treatment of niclosamide. This study afforded the opportunity to determine if snails respond differently to biotic or abiotic stressors, and if they reserve unique responses for when presented with both stressors in combination. We also examined how sporocysts respond when their snail host is treated with niclosamide. PRINCIPAL FINDINGS Cercariae-producing sporocysts within snails treated with niclosamide express ~68% of the genes in the S. mansoni genome, as compared to 66% expressed by intramolluscan stages of S. mansoni in snails not treated with niclosamide. Niclosamide does not disable sporocysts nor does it seem to provoke from them distinctive responses associated with detoxifying a xenobiotic. For uninfected B. pfeifferi, niclosamide treatment alone increases expression of several features not up-regulated in infected snails including particular cytochrome p450s and heat shock proteins, glutathione-S-transferases, antimicrobial factors like LBP/BPI and protease inhibitors, and also provokes strong down regulation of proteases. Exposure of infected snails to niclosamide resulted in numerous up-regulated responses associated with apoptosis along with down-regulated ribosomal and defense functions, indicative of a distinctive, compromised state not achieved with either stimulus alone. CONCLUSIONS/SIGNIFICANCE This study helps define the transcriptomic responses of an important and under-studied schistosome vector to S. mansoni sporocysts, to niclosamide, and to both in combination. It suggests the response of S. mansoni sporocysts to niclosamide is minimal and not reflective of a distinct repertoire of genes to handle xenobiotics while in the snail host. It also offers new insights for how niclosamide affects snails.
Collapse
Affiliation(s)
- Sarah K. Buddenborg
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque NM United States of America
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton United Kingdom
| | - Bishoy Kamel
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque NM United States of America
| | - Lijing Bu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque NM United States of America
| | - Si-Ming Zhang
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque NM United States of America
| | - Gerald M. Mkoji
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi KEN
| | - Eric S. Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque NM United States of America
| |
Collapse
|
11
|
Alba A, Tetreau G, Chaparro C, Sánchez J, Vázquez AA, Gourbal B. Natural resistance to Fasciola hepatica (Trematoda) in Pseudosuccinea columella snails: A review from literature and insights from comparative "omic" analyses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103463. [PMID: 31381929 DOI: 10.1016/j.dci.2019.103463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
The snail Pseudosuccinea columella is one of the main vectors of the medically-important trematode Fasciola hepatica. In Cuba, the existence of natural P. columella populations that are either susceptible or resistant to F. hepatica infection offers a unique snail-parasite for study of parasite-host compatibility and immune function in gastropods. Here, we review all previous literature on this system and present new "omic" data that provide a molecular baseline of both P. columella phenotypes from naïve snails. Comparison of whole snail transcriptomes (RNAseq) and the proteomes of the albumen gland (2D-electrophoresis, MS) revealed that resistant and susceptible strains differed mainly in an enrichment of particular biological processes/functions and a greater abundance of proteins/transcripts associated with immune defense/stress response in resistant snails. These results indicate a differential allocation of molecular resources to self-maintenance and survival in resistant P. columella that may cause enhanced responsiveness to stressors (i.e. F. hepatica infection or tolerance to variations in environmental pH/total water hardness), possibly as trade-off against reproduction and the ecological cost of resistance previously suggested in resistant populations of P. columella.
Collapse
Affiliation(s)
- Annia Alba
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba; University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Guillaume Tetreau
- University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Cristian Chaparro
- University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Jorge Sánchez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba
| | - Antonio A Vázquez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Benjamin Gourbal
- University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| |
Collapse
|
12
|
Wheeler NJ, Dinguirard N, Marquez J, Gonzalez A, Zamanian M, Yoshino TP, Castillo MG. Sequence and structural variation in the genome of the Biomphalaria glabrata embryonic (Bge) cell line. Parasit Vectors 2018; 11:496. [PMID: 30180879 PMCID: PMC6122571 DOI: 10.1186/s13071-018-3059-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022] Open
Abstract
Background The aquatic pulmonate snail Biomphalaria glabrata is a significant vector and laboratory host for the parasitic flatworm Schistosoma mansoni, an etiological agent for the neglected tropical disease schistosomiasis. Much is known regarding the host-parasite interactions of these two organisms, and the B. glabrata embryonic (Bge) cell line has been an invaluable resource in these studies. The B. glabrata BB02 genome sequence was recently released, but nothing is known of the sequence variation between this reference and the Bge cell genome, which has likely accumulated substantial genetic variation in the ~50 years since its isolation. Results Here, we report the genome sequence of our laboratory subculture of the Bge cell line (designated Bge3), which we mapped to the B. glabrata BB02 reference genome. Single nucleotide variants (SNVs) were predicted and focus was given to those SNVs that are most likely to affect the structure or expression of protein-coding genes. Furthermore, we have highlighted and validated high-impact SNVs in genes that have often been studied using Bge cells as an in vitro model, and other genes that may have contributed to the immortalization of this cell line. We also resolved representative karyotypes for the Bge3 subculture, which revealed a mixed population exhibiting substantial aneuploidy, in line with previous reports from other Bge subcultures. Conclusions The Bge3 genome differs from the B. glabrata BB02 reference genome in both sequence and structure, and these are likely to have significant biological effects. The availability of the Bge3 genome sequence, and an awareness of genomic differences with B. glabrata, will inform the design of experiments to understand gene function in this unique in vitro snail cell model. Additionally, this resource will aid in the development of new technologies and molecular approaches that promise to reveal more about this schistosomiasis-transmitting snail vector. Electronic supplementary material The online version of this article (10.1186/s13071-018-3059-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolas J Wheeler
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Nathalie Dinguirard
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Joshua Marquez
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Adrian Gonzalez
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Timothy P Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Maria G Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM, USA.
| |
Collapse
|
13
|
Tennessen JA. Gene buddies: linked balanced polymorphisms reinforce each other even in the absence of epistasis. PeerJ 2018; 6:e5110. [PMID: 29967750 PMCID: PMC6026533 DOI: 10.7717/peerj.5110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023] Open
Abstract
The fates of genetic polymorphisms maintained by balancing selection depend on evolutionary dynamics at linked sites. While coevolution across linked, epigenetically-interacting loci has been extensively explored, such supergenes may be relatively rare. However, genes harboring adaptive variation can occur in close physical proximity while generating independent effects on fitness. Here, I present a model in which two linked loci without epistasis are both under balancing selection for unrelated reasons. Using forward-time simulations, I show that recombination rate strongly influences the retention of adaptive polymorphism, especially for intermediate selection coefficients. A locus is more likely to retain adaptive variation if it is closely linked to another locus under balancing selection, even if the two loci have no interaction. Thus, two linked polymorphisms can both be retained indefinitely even when they would both be lost to drift if unlinked. While these results may be intuitive, they have important implications for genetic architecture: clusters of mutually reinforcing genes may underlie phenotypic variation in natural populations, and such genes cannot be assumed to be functionally associated. Future studies that measure selection coefficients and recombination rates among closely linked genes will be fruitful for characterizing the extent of this phenomenon.
Collapse
Affiliation(s)
- Jacob A. Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
14
|
de la Ballina NR, Villalba A, Cao A. Proteomic profile of Ostrea edulis haemolymph in response to bonamiosis and identification of candidate proteins as resistance markers. DISEASES OF AQUATIC ORGANISMS 2018; 128:127-145. [PMID: 29733027 DOI: 10.3354/dao03220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
European flat oyster Ostrea edulis populations have suffered extensive mortalities caused by bonamiosis. The protozoan parasite Bonamia ostreae is largely responsible for this disease in Europe, while its congener B. exitiosa has been detected more recently in various European countries. Both of these intracellular parasites are able to survive and proliferate within haemocytes, the main cellular effectors of the immune system in molluscs. Two-dimensional electrophoresis was used to compare the haemolymph protein profile between Bonamia spp.-infected and non-infected oysters within 3 different stocks, a Galician stock of oysters selected for resistance against bonamiosis, a non-selected Galician stock and a selected Irish stock. Thirty-four proteins with a presumably relevant role in the oyster-Bonamia spp. interaction were identified; they were involved in major metabolic pathways, such as energy production, respiratory chain, oxidative stress, signal transduction, transcription, translation, protein degradation and cell defence. Furthermore, the haemolymph proteomic profiles of the non-infected oysters of the 2 Galician stocks were compared. As a result, 7 proteins representative of the non-infected Galician oysters selected for resistance against bonamiosis were identified; these 7 proteins could be considered as candidate markers of resistance to bonamiosis, which should be further assessed.
Collapse
Affiliation(s)
- Nuria R de la Ballina
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain
| | | | | |
Collapse
|
15
|
Buddenborg SK, Bu L, Zhang SM, Schilkey FD, Mkoji GM, Loker ES. Transcriptomic responses of Biomphalaria pfeifferi to Schistosoma mansoni: Investigation of a neglected African snail that supports more S. mansoni transmission than any other snail species. PLoS Negl Trop Dis 2017; 11:e0005984. [PMID: 29045404 PMCID: PMC5685644 DOI: 10.1371/journal.pntd.0005984] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/14/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Biomphalaria pfeifferi is highly compatible with the widespread human-infecting blood fluke Schistosoma mansoni and transmits more cases of this parasite to people than any other snail species. For these reasons, B. pfeifferi is the world's most important vector snail for S. mansoni, yet we know relatively little at the molecular level regarding the interactions between B. pfeifferi and S. mansoni from early-stage sporocyst transformation to the development of cercariae. METHODOLOGY/PRINCIPAL FINDINGS We sought to capture a portrait of the response of B. pfeifferi to S. mansoni as it occurs in nature by undertaking Illumina dual RNA-Seq on uninfected control B. pfeifferi and three intramolluscan developmental stages (1- and 3-days post infection and patent, cercariae-producing infections) using field-derived west Kenyan specimens. A high-quality, well-annotated de novo B. pfeifferi transcriptome was assembled from over a half billion non-S. mansoni paired-end reads. Reads associated with potential symbionts were noted. Some infected snails yielded fewer normalized S. mansoni reads and showed different patterns of transcriptional response than others, an indication that the ability of field-derived snails to support and respond to infection is variable. Alterations in transcripts associated with reproduction were noted, including for the oviposition-related hormone ovipostatin and enzymes involved in metabolism of bioactive amines like dopamine or serotonin. Shedding snails exhibited responses consistent with the need for tissue repair. Both generalized stress and immune factors immune factors (VIgLs, PGRPs, BGBPs, complement C1q-like, chitinases) exhibited complex transcriptional responses in this compatible host-parasite system. SIGNIFICANCE This study provides for the first time a large sequence data set to help in interpreting the important vector role of the neglected snail B. pfeifferi in transmission of S. mansoni, including with an emphasis on more natural, field-derived specimens. We have identified B. pfeifferi targets particularly responsive during infection that enable further dissection of the functional role of these candidate molecules.
Collapse
Affiliation(s)
- Sarah K. Buddenborg
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lijing Bu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Si-Ming Zhang
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Faye D. Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Gerald M. Mkoji
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, KEN
| | - Eric S. Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
16
|
Mitta G, Gourbal B, Grunau C, Knight M, Bridger J, Théron A. The Compatibility Between Biomphalaria glabrata Snails and Schistosoma mansoni: An Increasingly Complex Puzzle. ADVANCES IN PARASITOLOGY 2017; 97:111-145. [PMID: 28325369 DOI: 10.1016/bs.apar.2016.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This review reexamines the results obtained in recent decades regarding the compatibility polymorphism between the snail, Biomphalaria glabrata, and the pathogen, Schistosoma mansoni, which is one of the agents responsible for human schistosomiasis. Some results point to the snail's resistance as explaining the incompatibility, while others support a "matching hypothesis" between the snail's immune receptors and the schistosome's antigens. We propose here that the two hypotheses are not exclusive, and that the compatible/incompatible status of a particular host/parasite couple probably reflects the balance of multiple molecular determinants that support one hypothesis or the other. Because these genes are involved in a coevolutionary arms race, we also propose that the underlying mechanisms can vary. Finally, some recent results show that environmental factors could influence compatibility. Together, these results make the compatibility between B. glabrata and S. mansoni an increasingly complex puzzle. We need to develop more integrative approaches in order to find targets that could potentially be manipulated to control the transmission of schistosomiasis.
Collapse
|
17
|
Pila EA, Sullivan JT, Wu XZ, Fang J, Rudko SP, Gordy MA, Hanington PC. Haematopoiesis in molluscs: A review of haemocyte development and function in gastropods, cephalopods and bivalves. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:119-28. [PMID: 26592965 PMCID: PMC4775334 DOI: 10.1016/j.dci.2015.11.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/05/2015] [Accepted: 11/18/2015] [Indexed: 05/23/2023]
Abstract
Haematopoiesis is a process that is responsible for generating sufficient numbers of blood cells in the circulation and in tissues. It is central to maintenance of homeostasis within an animal, and is critical for defense against infection. While haematopoiesis is common to all animals possessing a circulatory system, the specific mechanisms and ultimate products of haematopoietic events vary greatly. Our understanding of this process in non-vertebrate organisms is primarily derived from those species that serve as developmental and immunological models, with sparse investigations having been carried out in other organisms spanning the metazoa. As research into the regulation of immune and blood cell development advances, we have begun to gain insight into haematopoietic events in a wider array of animals, including the molluscs. What began in the early 1900's as observational studies on the morphological characteristics of circulating immune cells has now advanced to mechanistic investigations of the cytokines, growth factors, receptors, signalling pathways, and patterns of gene expression that regulate molluscan haemocyte development. Emerging is a picture of an incredible diversity of developmental processes and outcomes that parallels the biological diversity observed within the different classes of the phylum Mollusca. However, our understanding of haematopoiesis in molluscs stems primarily from the three most-studied classes, the Gastropoda, Cephalopoda and Bivalvia. While these represent perhaps the molluscs of greatest economic and medical importance, the fact that our information is limited to only 3 of the 9 extant classes in the phylum highlights the need for further investigation in this area. In this review, we summarize the existing literature that defines haematopoiesis and its products in gastropods, cephalopods and bivalves.
Collapse
Affiliation(s)
- E A Pila
- School of Public Health, University of Alberta, Edmonton, Alberta, T6G2G7, Canada
| | - J T Sullivan
- Department of Biology, University of San Francisco, 2130 Fulton Street, San Francisco, CA, 94117, USA
| | - X Z Wu
- Ocean College, Qinzhou University, Qinzhou, 535099, Guangxi, PR China
| | - J Fang
- Ocean College, Qinzhou University, Qinzhou, 535099, Guangxi, PR China
| | - S P Rudko
- School of Public Health, University of Alberta, Edmonton, Alberta, T6G2G7, Canada
| | - M A Gordy
- School of Public Health, University of Alberta, Edmonton, Alberta, T6G2G7, Canada
| | - P C Hanington
- School of Public Health, University of Alberta, Edmonton, Alberta, T6G2G7, Canada.
| |
Collapse
|
18
|
A Novel Toll-Like Receptor (TLR) Influences Compatibility between the Gastropod Biomphalaria glabrata, and the Digenean Trematode Schistosoma mansoni. PLoS Pathog 2016; 12:e1005513. [PMID: 27015424 PMCID: PMC4807771 DOI: 10.1371/journal.ppat.1005513] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/29/2016] [Indexed: 02/01/2023] Open
Abstract
Schistosomiasis, a devastating disease caused by parasitic flatworms of the genus Schistosoma, affects over 260 million people worldwide especially in tropical and sub-tropical regions. Schistosomes must undergo their larval development within specific species of snail intermediate hosts, a trait that is shared among almost all digenean trematodes. This unique and long-standing host-parasite relationship presents an opportunity to study both the importance of conserved immunological features in novel immunological roles, as well as new immunological adaptations that have arisen to combat a very specific type of immunological challenge. While it is well supported that the snail immune response is important for protecting against schistosome infection, very few specific snail immune factors have been identified and even fewer have been functionally characterized. Here, we provide the first functional report of a snail Toll-like receptor, which we demonstrate as playing an important role in the cellular immune response of the snail Biomphalaria glabrata following challenge with Schistosoma mansoni. This TLR (BgTLR) was identified as part of a peptide screen of snail immune cell surface proteins that differed in abundance between B. glabrata snails that differ in their compatibility phenotype to challenge by S. mansoni. The S. mansoni-resistant strain of B. glabrata (BS-90) displayed higher levels of BgTLR compared to the susceptible (M-line) strain. Transcript expression of BgTLR was found to be very responsive in BS-90 snails when challenged with S. mansoni, increasing 27 fold relative to β-actin (non-immune control gene); whereas expression in susceptible M-line snails was not significantly increased. Knockdown of BgTLR in BS-90 snails via targeted siRNA oligonucleotides was confirmed using a specific anti-BgTLR antibody and resulted in a significant alteration of the resistant phenotype, yielding patent infections in 43% of the normally resistant snails, which shed S. mansoni cercariae 1-week before the susceptible controls. Our results represent the first functional characterization of a gastropod TLR, and demonstrate that BgTLR is an important snail immune receptor that is capable of influencing infection outcome following S. mansoni challenge.
Collapse
|
19
|
Humphries J, Harter B. Identification of nuclear factor kappaB (NF-κB) binding motifs in Biomphalaria glabrata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:366-70. [PMID: 26277107 DOI: 10.1016/j.dci.2015.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 05/16/2023]
Abstract
Biomphalaria glabrata acts as the intermediate host to the parasite, Schistosoma mansoni, and for this reason, the immune system of B. glabrata has been researched extensively. Several studies have demonstrated that the transcriptome profile of B. glabrata changes following exposure to a variety of pathogens, yet very little is known regarding the regulation of gene expression in this species. Nuclear factor kappaB (NF-κB) homologues have recently been identified in B. glabrata but few functional studies have been carried out on this family of transcription factors. The aims of this study therefore were to identify NF-κB binding sites (κB motifs) in B. glabrata and examine them via functional assays. Two different κB motifs were predicted. Furthermore, the Rel homology domain (RHD) of a B. glabrata NF-κB was able to bind these κB motifs in EMSAs, as well as a vertebrate κB motif.
Collapse
|
20
|
Tennessen JA, Bonner KM, Bollmann SR, Johnstun JA, Yeh JY, Marine M, Tavalire HF, Bayne CJ, Blouin MS. Genome-Wide Scan and Test of Candidate Genes in the Snail Biomphalaria glabrata Reveal New Locus Influencing Resistance to Schistosoma mansoni. PLoS Negl Trop Dis 2015; 9:e0004077. [PMID: 26372103 PMCID: PMC4570800 DOI: 10.1371/journal.pntd.0004077] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/21/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND New strategies to combat the global scourge of schistosomiasis may be revealed by increased understanding of the mechanisms by which the obligate snail host can resist the schistosome parasite. However, few molecular markers linked to resistance have been identified and characterized in snails. METHODOLOGY/PRINCIPAL FINDINGS Here we test six independent genetic loci for their influence on resistance to Schistosoma mansoni strain PR1 in the 13-16-R1 strain of the snail Biomphalaria glabrata. We first identify a genomic region, RADres, showing the highest differentiation between susceptible and resistant inbred lines among 1611 informative restriction-site associated DNA (RAD) markers, and show that it significantly influences resistance in an independent set of 439 outbred snails. The additive effect of each RADres resistance allele is 2-fold, similar to that of the previously identified resistance gene sod1. The data fit a model in which both loci contribute independently and additively to resistance, such that the odds of infection in homozygotes for the resistance alleles at both loci (13% infected) is 16-fold lower than the odds of infection in snails without any resistance alleles (70% infected). Genome-wide linkage disequilibrium is high, with both sod1 and RADres residing on haplotype blocks >2 Mb, and with other markers in each block also showing significant effects on resistance; thus the causal genes within these blocks remain to be demonstrated. Other candidate loci had no effect on resistance, including the Guadeloupe Resistance Complex and three genes (aif, infPhox, and prx1) with immunological roles and expression patterns tied to resistance, which must therefore be trans-regulated. CONCLUSIONS/SIGNIFICANCE The loci RADres and sod1 both have strong effects on resistance to S. mansoni. Future approaches to control schistosomiasis may benefit from further efforts to characterize and harness this natural genetic variation.
Collapse
Affiliation(s)
- Jacob A. Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Kaitlin M. Bonner
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Stephanie R. Bollmann
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Joel A. Johnstun
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Jan-Ying Yeh
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Melanie Marine
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Hannah F. Tavalire
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Christopher J. Bayne
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Michael S. Blouin
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
21
|
Castillo MG, Salazar KA, Joffe NR. The immune response of cephalopods from head to foot. FISH & SHELLFISH IMMUNOLOGY 2015; 46:145-160. [PMID: 26117729 DOI: 10.1016/j.fsi.2015.05.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 05/24/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Cephalopods are a diverse group of marine molluscs that have proven their worth in a vast array of ways, ranging from their importance within ecological settings and increasing commercial value, to their recent use as model organisms in biological research. However, despite their acknowledged importance, our understanding of basic cephalopod biology does not equate their ecological, societal, and scientific significance. Among these undeveloped research areas, cephalopod immunology stands out because it encompasses a wide variety of scientific fields including many within the biological and chemical sciences, and because of its potential biomedical and commercial relevance. This review aims to address the current knowledge on the topic of cephalopod immunity, focusing on components and functions already established as part of the animals' internal defense mechanisms, as well as identifying gaps that would benefit from future research. More specifically, the present review details both cellular and humoral defenses, and organizes them into sensor, signaling, and effector components. Molluscan, and particularly cephalopod immunology has lagged behind many other areas of study, but thanks to the efforts of many dedicated researchers and the assistance of modern technology, this gap is steadily decreasing. A better understanding of cephalopod immunity will have a positive impact on the health and survival of one of the most intriguing and unique animal groups on the planet, and will certainly influence many other areas of human interest such as ecology, evolution, physiology, symbiosis, and aquaculture.
Collapse
Affiliation(s)
| | | | - Nina R Joffe
- New Mexico State University, Las Cruces, NM, USA
| |
Collapse
|
22
|
Coustau C, Gourbal B, Duval D, Yoshino TP, Adema CM, Mitta G. Advances in gastropod immunity from the study of the interaction between the snail Biomphalaria glabrata and its parasites: A review of research progress over the last decade. FISH & SHELLFISH IMMUNOLOGY 2015; 46:5-16. [PMID: 25662712 DOI: 10.1016/j.fsi.2015.01.036] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/23/2015] [Accepted: 01/28/2015] [Indexed: 05/16/2023]
Abstract
This review summarizes the research progress made over the past decade in the field of gastropod immunity resulting from investigations of the interaction between the snail Biomphalaria glabrata and its trematode parasites. A combination of integrated approaches, including cellular, genetic and comparative molecular and proteomic approaches have revealed novel molecular components involved in mediating Biomphalaria immune responses that provide insights into the nature of host-parasite compatibility and the mechanisms involved in parasite recognition and killing. The current overview emphasizes that the interaction between B. glabrata and its trematode parasites involves a complex molecular crosstalk between numerous antigens, immune receptors, effectors and anti-effector systems that are highly diverse structurally and extremely variable in expression between and within host and parasite populations. Ultimately, integration of these molecular signals will determine the outcome of a specific interaction between a B. glabrata individual and its interacting trematodes. Understanding these complex molecular interactions and identifying key factors that may be targeted to impairment of schistosome development in the snail host is crucial to generating new alternative schistosomiasis control strategies.
Collapse
Affiliation(s)
- C Coustau
- Sophia Agrobiotech Institute, INRA-CNRS-UNS, Sophia Antipolis, France
| | - B Gourbal
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - D Duval
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - T P Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - C M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - G Mitta
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France.
| |
Collapse
|
23
|
Abou-El-Naga IF, Sadaka HAEM, Amer EI, Diab IH, Khedr SIAEH. Impact of the age of Biomphalaria alexandrina snails on Schistosoma mansoni transmission: modulation of the genetic outcome and the internal defence system of the snail. Mem Inst Oswaldo Cruz 2015; 110:585-95. [PMID: 26061235 PMCID: PMC4569820 DOI: 10.1590/0074-02760150016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/11/2015] [Indexed: 11/11/2022] Open
Abstract
Of the approximately 34 identified Biomphalaria
species,Biomphalaria alexandrina represents the
intermediate host of Schistosoma mansoni in Egypt. Using
parasitological and SOD1 enzyme assay, this study aimed to elucidate the impact of
the age of B. alexandrina snails on their genetic variability and
internal defence against S. mansoni infection. Susceptible and
resistant snails were reared individually for self-reproduction; four subgroups of
their progeny were used in experiment. The young susceptible subgroup showed the
highest infection rate, the shortest pre-patent period, the highest total cercarial
production, the highest mortality rate and the lowest SOD1 activity. Among the young
and adult susceptible subgroups, 8% and 26% were found to be resistant, indicating
the inheritance of resistance alleles from parents. The adult resistant subgroup,
however, contained only resistant snails and showed the highest enzyme activity. The
complex interaction between snail age, genetic background and internal defence
resulted in great variability in compatibility patterns, with the highest significant
difference between young susceptible and adult resistant snails. The results
demonstrate that resistance alleles function to a greater degree in adults, with
higher SOD1 activity and provide potential implications for Biomphalaria
control. The identification of the most susceptible snail age enables
determination of the best timing for applying molluscicides. Moreover, adult
resistant snails could be beneficial in biological snail control.
Collapse
Affiliation(s)
| | | | - Eglal Ibrahim Amer
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, EG
| | - Iman Hassan Diab
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Alexandria University, Alexandria, EG
| | | |
Collapse
|
24
|
Biomphalysin, a new β pore-forming toxin involved in Biomphalaria glabrata immune defense against Schistosoma mansoni. PLoS Pathog 2013; 9:e1003216. [PMID: 23555242 PMCID: PMC3605176 DOI: 10.1371/journal.ppat.1003216] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/09/2013] [Indexed: 11/24/2022] Open
Abstract
Aerolysins are virulence factors belonging to the β pore-forming toxin (β-PFT) superfamily that are abundantly distributed in bacteria. More rarely, β-PFTs have been described in eukaryotic organisms. Recently, we identified a putative cytolytic protein in the snail, Biomphalaria glabrata, whose primary structural features suggest that it could belong to this β-PFT superfamily. In the present paper, we report the molecular cloning and functional characterization of this protein, which we call Biomphalysin, and demonstrate that it is indeed a new eukaryotic β-PFT. We show that, despite weak sequence similarities with aerolysins, Biomphalysin shares a common architecture with proteins belonging to this superfamily. A phylogenetic approach revealed that the gene encoding Biomphalysin could have resulted from horizontal transfer. Its expression is restricted to immune-competent cells and is not induced by parasite challenge. Recombinant Biomphalysin showed hemolytic activity that was greatly enhanced by the plasma compartment of B. glabrata. We further demonstrated that Biomphalysin with plasma is highly toxic toward Schistosoma mansoni sporocysts. Using in vitro binding assays in conjunction with Western blot and immunocytochemistry analyses, we also showed that Biomphalysin binds to parasite membranes. Finally, we showed that, in contrast to what has been reported for most other members of the family, lytic activity of Biomphalysin is not dependent on proteolytic processing. These results provide the first functional description of a mollusk immune effector protein involved in killing S. mansoni. Schistosomiasis is the second most widespread tropical parasitic disease after malaria. It is caused by flatworms of the genus Schistosoma. Its life cycle is complex and requires certain freshwater snail species as intermediate host. Given the limited options for treating S. mansoni infections, much research has focused on a better understanding of the immunobiological interactions between the invertebrate host Biomphalaria glabrata and its parasite S. mansoni. A number of studies published over the last two decades have contributed greatly to our understanding of B. glabrata innate immune mechanisms involved in the defense against parasite. However, most studies have focused on the identification of recognition molecules or immune receptors involved in the host/parasite interplay. In the present study, we report the first functional description of a mollusk immune effector protein involved in killing S. mansoni, a protein related to the β pore forming toxin that we named Biomphalysin.
Collapse
|
25
|
Three genes involved in the oxidative burst are closely linked in the genome of the snail, Biomphalaria glabrata. Int J Parasitol 2012. [PMID: 23207063 DOI: 10.1016/j.ijpara.2012.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Allelic variation at the Cu-Zn superoxide dismutase (SOD1) locus has been shown to be associated with resistance of the snail, Biomphalaria glabrata, to infection by the trematode parasite, Schistosoma mansoni. SOD1 catalyses the production of hydrogen peroxide, a known cytotoxic component of the oxidative burst used in defence against pathogens. In our laboratory population of B. glabrata, the most resistant allele at SOD1 is over-expressed relative to the other two alleles. Because hydrogen peroxide also causes oxidative stress on host tissues, we hypothesised that over-expression of SOD1 might be compensated by epistatic interactions with other loci involved in oxidation-reduction (redox) pathways. Catalase, peroxiredoxins and glutathione peroxidases all degrade hydrogen peroxide. We tested whether alleles at each of these loci were in linkage disequilibrium with SOD1 in our population, as might be expected given strong epistatic selection. We found that SOD1, catalase (CAT) and a peroxiredoxin locus (PRX4) are in strong linkage disequilibrium in our population. We also found that these loci are tightly linked, within 1-2cM of each other, which explains the high linkage disequilibrium. This result raises the possibility that there is a linked cluster of redox genes, and perhaps other defence-relevant genes, in the B. glabrata genome. Whether epistatic interactions for fitness actually exist among these loci still needs to be tested. However the close physical linkage among SOD1, PRX4 and CAT, and subsequent high disequilibrium, makes such interactions a plausible hypothesis.
Collapse
|
26
|
Bonner KM, Bayne CJ, Larson MK, Blouin MS. Effects of Cu/Zn superoxide dismutase (sod1) genotype and genetic background on growth, reproduction and defense in Biomphalaria glabrata. PLoS Negl Trop Dis 2012; 6:e1701. [PMID: 22724037 PMCID: PMC3378597 DOI: 10.1371/journal.pntd.0001701] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 05/03/2012] [Indexed: 01/09/2023] Open
Abstract
Resistance of the snail Biomphalaria glabrata to the trematode Schistosoma mansoni is correlated with allelic variation at copper-zinc superoxide dismutase (sod1). We tested whether there is a fitness cost associated with carrying the most resistant allele in three outbred laboratory populations of snails. These three populations were derived from the same base population, but differed in average resistance. Under controlled laboratory conditions we found no cost of carrying the most resistant allele in terms of fecundity, and a possible advantage in terms of growth and mortality. These results suggest that it might be possible to drive resistant alleles of sod1 into natural populations of the snail vector for the purpose of controlling transmission of S. mansoni. However, we did observe a strong effect of genetic background on the association between sod1 genotype and resistance. sod1 genotype explained substantial variance in resistance among individuals in the most resistant genetic background, but had little effect in the least resistant genetic background. Thus, epistatic interactions with other loci may be as important a consideration as costs of resistance in the use of sod1 for vector manipulation. Driving resistance genes into vector populations remains a promising but underused method for reducing transmission of vector-borne diseases. Understanding the genetic mechanisms governing resistance and how resistance is maintained in vector populations is essential for the development of resistant vectors as a means of eradicating vector-borne diseases. We investigated the utility of one gene (cytosolic copper-zinc superoxide dismutase - sod1) for driving resistance associated alleles into populations of the snail Biomphalaria glabrata, a vector of the trematode parasite of humans, Schistosoma mansoni. Under controlled laboratory conditions we found no evidence for costs of resistance associated with carrying the most resistant allele at sod1 (in terms of growth, fecundity, or mortality). However, we did find a strong effect of genetic background on how strongly sod1 genotype influences resistance. Thus, epistatic interactions with other loci may be as important a consideration as costs of resistance in the use of sod1 for vector manipulation in the field.
Collapse
Affiliation(s)
- Kaitlin M Bonner
- Department of Zoology, Oregon State University, Corvallis, Oregon, USA.
| | | | | | | |
Collapse
|
27
|
Fleury E, Huvet A. Microarray analysis highlights immune response of pacific oysters as a determinant of resistance to summer mortality. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:203-17. [PMID: 21845383 DOI: 10.1007/s10126-011-9403-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/27/2011] [Indexed: 05/20/2023]
Abstract
Summer mortality of Crassostrea gigas is the result of a complex interaction between oysters, their environment, and pathogens. A high heritability was estimated for resistance to summer mortality, which provided an opportunity to develop lines of oysters that were resistant (R) or susceptible (S) to summer mortality. Previous genome-wide expression profiling study of R and S oyster gonads highlighted reproduction and antioxidant defense as constitutive pathways that operate differentially between these two lines. Here, we show that signaling in innate immunity also operates differentially between these lines, and we hypothesize that this is at the main determinant of their difference in survival in the field. A reanalysis of our published microarray data using separate ANOVAs at each sampling date revealed a specific "immune" profile at the date preceding the mortality. In addition, we conducted additional microarray profiling of two other tissues, gills, and muscle, and both showed an overrepresentation of immune genes (46%) among those that are differentially expressed between the two lines. Eleven genes were pinpointed to be simultaneously differentially expressed between R and S lines in the three tissues. Among them, ten are related to "Immune Response." For these genes, the kinetics of R mRNA levels between sampling dates appeared different just before the morality peak and suggests that under field conditions, R oysters had the capacity to modulate signaling in innate immunity whereas S oysters did not. This study enhances our understanding of the complex summer mortality syndrome and provides candidates of interest for further functional and genetics studies.
Collapse
Affiliation(s)
- Elodie Fleury
- Ifremer, UMR 100 Physiologie et Ecophysiologie des Mollusques Marins, Centre de Brest, BP 70, 29280 Plouzané, France
| | | |
Collapse
|
28
|
Wang H, Zhao QP, Nie P, Jiang MS, Song J. Identification of differentially expressed genes in Oncomelania hupensis chronically infected with Schistosoma japonicum. Exp Parasitol 2012; 130:374-83. [PMID: 22343044 DOI: 10.1016/j.exppara.2012.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/27/2012] [Accepted: 02/02/2012] [Indexed: 11/17/2022]
Abstract
Oncomelania hupensis is the unique intermediate host of Schistosoma japonicum. The schistosome-snail interaction is biomedically important. To identify differentially expressed transcripts in O. hupensis chronically infected with S. japonicum, suppression subtractive hybridization (SSH) was used to construct a cDNA library in each direction for transcripts that are more abundantly enriched in head-foot part of the infected O. hupensis and for those that are more abundantly enriched in the uninfected, as head-foot part contains hemocytes and hemolymph which are associated with the snail internal defense system. After differential screening, 39 transcripts were identified, including nine and 30 transcripts enriched in infected and uninfected snails, respectively. Some of the transcripts have similar homology to available sequences in current databases, including transposase, caveolin-like protein, pancreatic trypsin inhibitor-like protein, prosaposin, glutathione s-transferase (GST), and several hypothetical proteins, while most of the transcripts do not match with any sequences in available databases. The identified transcripts were involved functionally in cell growth, metabolism, signal transduction, and immune responses. Two forward library transcripts and 11 reverse library transcripts were selected for real-time PCR, and 10 of them were confirmed to be consistent with the SSH results. It is intriguing to continue functional studies for some genes such as pancreatic trypsin inhibitor; a hypothetical protein (HS576367) related to calcium ion binding; GST; and several unknown proteins (HS576353 and HS576355). These identified differentially expressed genes may be key targets for understanding the molecular mechanism of co-existence during which the snail is unable to rid itself of the schistosome in chronic infection stage.
Collapse
Affiliation(s)
- Hao Wang
- School of Basic Medical Science, Wuhan University, Wuhan, Hubei Province 430071, China
| | | | | | | | | |
Collapse
|
29
|
Moné Y, Ribou AC, Cosseau C, Duval D, Théron A, Mitta G, Gourbal B. An example of molecular co-evolution: Reactive oxygen species (ROS) and ROS scavenger levels in Schistosoma mansoni/Biomphalaria glabrata interactions. Int J Parasitol 2011; 41:721-30. [DOI: 10.1016/j.ijpara.2011.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/24/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|
30
|
Vorontsova YA, Yurlova NI, Vodyanitskaya SN, Glupov VV. Activity of detoxifying and antioxidant enzymes in the pond snail Lymnaea stagnalis (Gastropoda: Pulmonata) during invasion by trematode cercariae. J EVOL BIOCHEM PHYS+ 2010. [DOI: 10.1134/s0022093010010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Li H, Sun X, Cai Z, Cai G, Xing K. Identification and analysis of a Cu/Zn superoxide dismutase from Haliotis diversicolor supertexta with abalone juvenile detached syndrome. J Invertebr Pathol 2010; 103:116-23. [DOI: 10.1016/j.jip.2009.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 11/14/2009] [Accepted: 11/25/2009] [Indexed: 12/19/2022]
|
32
|
Hanington PC, Lun CM, Adema CM, Loker ES. Time series analysis of the transcriptional responses of Biomphalaria glabrata throughout the course of intramolluscan development of Schistosoma mansoni and Echinostoma paraensei. Int J Parasitol 2010; 40:819-31. [PMID: 20083115 DOI: 10.1016/j.ijpara.2009.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/08/2009] [Accepted: 12/14/2009] [Indexed: 01/09/2023]
Abstract
Successful colonization of a compatible snail host by a digenetic trematode miracidium initiates a complex, proliferative development program requiring weeks to reach culmination in the form of production of cercariae which, once started, may persist for the remainder of the life span of the infected snail. How are such proliferative and invasive parasites able to circumvent host defenses and establish chronic infections? Using a microarray designed to monitor the internal defense and stress-related responses of the freshwater snail Biomphalaria glabrata, we have undertaken a time course study to monitor snail responses following exposure to two different trematode species to which the snail is susceptible: the medically important Schistosoma mansoni, exemplifying sporocyst production in its larval development, or Echinostoma paraensei, representing an emphasis on rediae production in its larval development. We sampled eight time points (0.5, 1, 2, 4, 8, 16 and 32 days p.i.) that cover the period required for cercariae to be produced. Following exposure to S. mansoni, there was a preponderance of up-regulated over down-regulated array features through 2 days p.i. but by 4 days p.i. and thereafter, this pattern was strongly reversed. For E. paraensei, there was a preponderance of down-regulated array features over up-regulated features at even 0.5 days p.i., a pattern that persists throughout the course of infection except for 1 day p.i., when up-regulated array features slightly outnumbered down-regulated features. Examination of particular array features revealed several that were up-regulated by both parasites early in the course of infection and one, fibrinogen related protein 4 (FREP 4), that remained significantly elevated throughout the course of infection with either parasite, effectively serving as a marker of infection. Many defense-related transcripts were persistently down-regulated, including several fibrinogen-containing lectins and homologs of molecules best known from vertebrate phagocytic cells. Our results are consistent with earlier studies suggesting that both parasites are able to interfere with host defense responses, including a tendency for E. paraensei to do so more rapidly and strongly than S. mansoni. They further suggest mechanisms for how trematodes are able to establish the chronic infections necessary for their continued success.
Collapse
Affiliation(s)
- Patrick C Hanington
- Center for Theoretical and Evolutionary Immunology (CETI), Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|
33
|
|
34
|
Mourão MDM, Dinguirard N, Franco GR, Yoshino TP. Role of the endogenous antioxidant system in the protection of Schistosoma mansoni primary sporocysts against exogenous oxidative stress. PLoS Negl Trop Dis 2009; 3:e550. [PMID: 19924224 PMCID: PMC2771906 DOI: 10.1371/journal.pntd.0000550] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 10/15/2009] [Indexed: 12/02/2022] Open
Abstract
Antioxidants produced by the parasite Schistosoma mansoni are believed to be involved in the maintenance of cellular redox balance, thus contributing to larval survival in their intermediate snail host, Biomphalaria glabrata. Here, we focused on specific antioxidant enzymes, including glutathione-S-transferases 26 and 28 (GST26 and 28), glutathione peroxidase (GPx), peroxiredoxin 1 and 2 (Prx1 and 2) and Cu/Zn superoxide dismutase (SOD), known to be involved in cellular redox reactions, in an attempt to evaluate their endogenous antioxidant function in the early-developing primary sporocyst stage of S. mansoni. Previously we demonstrated a specific and consistent RNA interference (RNAi)-mediated knockdown of GST26 and 28, Prx1 and 2, and GPx transcripts, and an unexpected elevation of SOD transcripts in sporocysts treated with gene-specific double-stranded (ds)RNA. In the present followup study, in vitro transforming sporocysts were exposed to dsRNAs for GST26 and 28, combined Prx1/2, GPx, SOD or green-fluorescent protein (GFP, control) for 7 days in culture, followed by assessment of the effects of specific dsRNA treatments on protein levels using semi-quantitative Western blot analysis (GST26, Prx1/2 only), and larval susceptibility to exogenous oxidative stress in in vitro killing assays. Significant decreases (80% and 50%) in immunoreactive GST26 and Prx1/2, respectively, were observed in sporocysts treated with specific dsRNA, compared to control larvae treated with GFP dsRNA. Sporocysts cultured with dsRNAs for GST26, GST28, Prx1/2 and GPx, but not SOD dsRNA, were significantly increased in their susceptibility to H2O2 oxidative stress (60–80% mortalities at 48 hr) compared to GFP dsRNA controls (∼18% mortality). H2O2-mediated killing was abrogated by bovine catalase, further supporting a protective role for endogenous sporocyst antioxidants. Finally, in vitro killing of S. mansoni sporocysts by hemocytes of susceptible NMRI B. glabrata snails was increased in larvae treated with Prx1/2, GST26 and GST28 dsRNA, compared to those treated with GFP or SOD dsRNAs. Results of these experiments strongly support the hypothesis that endogenous expression and regulation of larval antioxidant enzymes serve a direct role in protection against external oxidative stress, including immune-mediated cytotoxic reactions. Moreover, these findings illustrate the efficacy of a RNAi-type approach in investigating gene function in larval schistosomes. Species of the human blood fluke Schistosoma are estimated to infect approximately 200 million people worldwide, resulting in loss of health, vitality and productivity mainly among the world's poorest inhabitants. Since snail intermediate hosts represent an essential part of the flukes' life cycle, an understanding of the strategies used by the intramolluscan schistosome larvae to survive within this host may provide novel approaches for disrupting larval development and thus transmission to humans. Anti-oxidant enzymes produced by the parasite Schistosoma mansoni are believed to play a critical role in the maintenance of cellular redox balance, contributing to larval survival in their snail host, Biomphalaria glabrata. In this study, we have incorporated a RNA interference approach attempting to knock down specific anti-oxidant enzymes, including gluthatione-S-transferases 26 and 28 (GST26 and 28), gluthatione peroxidase (GPx), peroxiredoxins 1 and 2 (Prx1/2) and superoxide dismutase (SOD), and to evaluate their endogenous anti-oxidant function in the sporocyst stage of S. mansoni. Results clearly demonstrated a significantly higher susceptibility of antioxidant double-stranded (ds)RNA-treated larvae to in vitro H2O2 treatment or hemocytic encapsulation compared to GFP dsRNA controls. Taken together, our findings support the hypothesis that endogenous expression and regulation of larval antioxidant enzymes serve a direct role in protection against external oxidative stress, including immune-mediated cytotoxic reactions.
Collapse
Affiliation(s)
- Marina de Moraes Mourão
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Nathalie Dinguirard
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Glória R. Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Timothy P. Yoshino
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
35
|
Bayne CJ. Successful parasitism of vector snail Biomphalaria glabrata by the human blood fluke (trematode) Schistosoma mansoni: a 2009 assessment. Mol Biochem Parasitol 2009; 165:8-18. [PMID: 19393158 PMCID: PMC2765215 DOI: 10.1016/j.molbiopara.2009.01.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/08/2009] [Accepted: 01/13/2009] [Indexed: 01/13/2023]
Abstract
Schistosomiasis, caused by infections by human blood flukes (Trematoda), continues to disrupt the lives of over 200,000,000 people in over 70 countries, inflicting misery and precluding the individuals' otherwise reasonable expectations of productive lives. Infection requires contact with freshwater in which infected snails (the intermediate hosts of schistosomes) have released cercariae larvae. Habitats suitable for the host snails continue to expand as a consequence of water resource development. No vaccine is available, and resistance has emerged towards the single licensed schistosomicide drug. Since human infections would cease if parasite infections in snails were prevented, efforts are being made to discover requirements of intra-molluscan development of these parasites. Wherever blood flukes occur, naturally resistant conspecific snails are present. To understand the mechanisms used by parasites to ensure their survival in immunocompetent hosts, one must comprehend the interior defense mechanisms that are available to the host. For one intermediate host snail (Biomphalaria glabrata) and trematodes for which it serves as vector, molecular genetic and proteomic surveys for genes and proteins influencing the outcomes on infections are yielding lists of candidates. A comparative approach drawing on data from studies in divergent species provides a robust basis for hypothesis generation to drive decisions as to which candidates merit detailed further investigation. For example, reactive oxygen and nitrogen species are known mediators or effectors in battles between infectious agents and their hosts. An approach targeting genes involved in relevant pathways has been fruitful in the Schistosoma mansoni -- B. glabrata parasitism, leading to discovery of a functionally relevant gene set (encoding enzymes responsible for the leukocyte respiratory burst) that associates significantly with host resistance phenotype. This review summarizes advances in the understanding of strategies used by both this trematode parasite and its molluscan host to ensure their survival.
Collapse
|
36
|
Knight M, Raghavan N, Goodall C, Cousin C, Ittiprasert W, Sayed A, Miller A, Williams DL, Bayne CJ. Biomphalaria glabrata peroxiredoxin: effect of schistosoma mansoni infection on differential gene regulation. Mol Biochem Parasitol 2009; 167:20-31. [PMID: 19439374 DOI: 10.1016/j.molbiopara.2009.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 03/24/2009] [Accepted: 04/02/2009] [Indexed: 02/08/2023]
Abstract
To identify gene(s) that may be associated with resistance/susceptibility in the intermediate snail host Biomphalaria glabrata to Schistosoma mansoni infection, a snail albumen gland cDNA library was differentially screened and a partial cDNA encoding an antioxidant enzyme thioredoxin peroxidase (Tpx), or peroxiredoxin (Prx), was identified. The 753bp full-length, single-copy, constitutively expressed gene now referred to as BgPrx4 was later isolated. BgPrx4 is a 2-Cys peroxiredoxin containing the conserved peroxidatic cysteine (C(P)) in the N-terminus and the resolving cysteine (C(R)) in the C-terminus. Sequence analysis of BgPrx4 from both resistant and susceptible snails revealed the presence of several (at least 7) single nucleotide polymorphisms (SNPs). Phylogenetic analysis indicated BgPrx4 to resemble a homolog of human peroxiredoxin, PRDX4. Northern analysis of hepatopancreas RNA from both resistant and susceptible snails showed that upon parasite exposure there were qualitative changes in gene expression. Quantitative real-time RT-PCR analysis showed differences in the levels of BgPrx4 transcript induction following infection, with the transcript up-regulated in resistant snails during the early phase (5h) of infection compared to susceptible snails in which it was down-regulated within the early time period. While there was an increase in transcription in susceptible snails later (48h) post-infection, this never reached the levels detected in resistant snails. A similar trend - higher, earlier up-regulation in the resistant snails but lower, slower protein expression in susceptible snails - was observed by Western blot analysis. Enzymatic analysis of the purified, recombinant BgPrx4 revealed the snail sequence to function as Prx but with an unusual ability to use both thioredoxin and glutathione as substrates.
Collapse
Affiliation(s)
- Matty Knight
- Biomedical Research Institute, 12111 Parklawn Drive, Rockville, MD 20852, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cloning, characterization and TBT exposure response of CuZn superoxide dismutase from Haliotis diversicolor supertexta. Mol Biol Rep 2008; 36:583-94. [DOI: 10.1007/s11033-008-9217-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
|
38
|
Humphries JE, Yoshino TP. Regulation of hydrogen peroxide release in circulating hemocytes of the planorbid snail Biomphalaria glabrata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:554-62. [PMID: 17981329 PMCID: PMC2271030 DOI: 10.1016/j.dci.2007.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/31/2007] [Accepted: 09/16/2007] [Indexed: 05/18/2023]
Abstract
Biomphalaria spp. serve as obligate intermediate hosts for the human blood fluke Schistosoma mansoni. Following S. mansoni penetration of Biomphalaria glabrata, hemocytes of resistant snails migrate towards the parasite, encasing the larva in a multicellular capsule resulting in its destruction via a cytotoxic reaction. Recent studies have revealed the importance of hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) in parasite killing [Hahn UK, Bender RC, Bayne CJ. Killing of Schistosoma mansoni sporocysts by hemocytes from resistant Biomphalaria glabrata: role of reactive oxygen species. J Parasitol 2001;87:292-9; Hahn UK, Bender RC, Bayne CJ. Involvement of nitric oxide in killing of Schistosoma mansoni sporocysts by hemocytes from resistant Biomphalaria glabrata. J Parasitol 2001;87:778-85]. It is assumed that H(2)O(2) and NO production is tightly regulated although the specific molecules involved remain largely unknown. Consequently, the potential role of cell signaling pathways in B. glabrata hemocyte H(2)O(2) production was investigated by evaluating the effects of specific inhibitors of selected signaling proteins. Results suggest that both ERK and p38 MAPKs are involved in the regulation of B. glabrata H(2)O(2) release in response to stimulation by PMA and galactose-conjugated BSA. However, the involvement of the signaling proteins PKC, PI(3) kinase and PLA(2) differs between PMA- and BSA-gal-induced H(2)O(2) production.
Collapse
Affiliation(s)
- Judith E Humphries
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
39
|
Kim KY, Lee SY, Cho YS, Bang IC, Kim KH, Kim DS, Nam YK. Molecular characterization and mRNA expression during metal exposure and thermal stress of copper/zinc- and manganese-superoxide dismutases in disk abalone, Haliotis discus discus. FISH & SHELLFISH IMMUNOLOGY 2007; 23:1043-59. [PMID: 17574439 DOI: 10.1016/j.fsi.2007.04.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Revised: 04/15/2007] [Accepted: 04/30/2007] [Indexed: 05/15/2023]
Abstract
Complementary DNAs encoding copper/zinc superoxide dismutase (Cu/Zn-SOD; SOD1) and manganese superoxide dismutase (Mn-SOD; SOD2) were isolated from disk abalone, Haliotis discus discus. The open reading frame sequences of Cu/Zn- and Mn-SODs encoded 154 and 226 amino acids, respectively. Multiple sequence alignments using the deduced amino acid sequences revealed that both abalone SODs showed considerable sequence similarities with their orthologues from diverse aerobic organisms, in which the amino acid residues forming metal ligands were highly conserved. All phylogenetic trees for both SOD genes inferred from maximum likelihood and Bayesian inference analyses presented the monophyletic status of Teleostei and Aves/Tetrapoda clades, and recovered relatively close genetic affiliation of H. discus discus with some molluscan species. Expression of both SODs at mRNA levels were highly modulated in various tissues (gill, muscle and hepatopancreas from juveniles, and haemocytes from adults) by experimental exposures to heavy metals (copper, zinc and cadmium) and also by thermal treatments (elevation of temperature). The mRNA levels of both SODs were increased in general during the metal or thermal treatments; however, the transcriptional responses of SOD genes were quite variable depending upon isoforms and tissues based on semi-quantitative and/or real-time RT-PCR assays.
Collapse
Affiliation(s)
- Keun-Yong Kim
- Department of Aquaculture, Pukyong National University, Busan 608-737, South Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Ni D, Song L, Gao Q, Wu L, Yu Y, Zhao J, Qiu L, Zhang H, Shi F. The cDNA cloning and mRNA expression of cytoplasmic Cu, Zn superoxide dismutase (SOD) gene in scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2007; 23:1032-42. [PMID: 17574438 DOI: 10.1016/j.fsi.2007.04.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/18/2007] [Accepted: 04/26/2007] [Indexed: 05/15/2023]
Abstract
Cu, Zn superoxide dismutases (SODs) are metalloenzymes that represent one important line of defence against reactive oxygen species (ROS). A cytoplasmic Cu, Zn SOD cDNA sequence was cloned from scallop Chlamys farreri by the homology-based cloning technique. The full-length cDNA of scallop cytoplasmic Cu, Zn SOD (designated CfSOD) was 1022 bp with a 459 bp open reading frame encoding a polypeptide of 153 amino acids. The predicted amino acid sequence of CfSOD shared high identity with cytoplasmic Cu, Zn SOD in molluscs, insects, mammals and other animals, such as cytoplasmic Cu, Zn SOD in oyster Crassostrea gigas (CAD42722), mosquito Aedes aegypti (ABF18094), and cow Bos taurus (XP_584414). A quantitative reverse transcriptase real-time PCR (qRT-PCR) assay was developed to assess the mRNA expression of CfSOD in different tissues and the temporal expression of CfSOD in scallop challenged with Listonella anguillarum, Micrococcus luteus and Candida lipolytica respectively. Higher-level mRNA expression of CfSOD was detected in the tissues of haemocytes, gill filaments and kidney. The expression of CfSOD dropped in the first 8-16 h and then recovered after challenge with L. anguillarum and M. luteus, but no change was induced by the C. lipolytica challenge. The results indicated that CfSOD was a constitutive and inducible acute-phase protein, and could play an important role in the immune responses against L. anguillarum and M. luteus infection.
Collapse
Affiliation(s)
- Duojiao Ni
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd, Qingdao 266071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lockyer AE, Spinks J, Noble LR, Rollinson D, Jones CS. Identification of genes involved in interactions between Biomphalaria glabrata and Schistosoma mansoni by suppression subtractive hybridization. Mol Biochem Parasitol 2006; 151:18-27. [PMID: 17081633 PMCID: PMC1852639 DOI: 10.1016/j.molbiopara.2006.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 11/29/2022]
Abstract
Biomphalaria glabrata is an intermediate snail host for Schistosoma mansoni, a medically important schistosome. In order to identify transcripts involved in snail-schistosome interactions, subtractive cDNA libraries were prepared, using suppression subtractive hybridization (SSH) between a parasite-exposed schistosome-resistant and a susceptible strain of B. glabrata, and also between schistosome-exposed and unexposed snails from the resistant snail line. Separate libraries were made from both haemocytes and the haemopoietic organ. Subtraction was performed in both directions enriching for cDNAs differentially expressed between parasite-exposed resistant and susceptible samples and up or down-regulated in the resistant line after challenge. The resulting eight libraries were screened and eight genes, differentially expressed between the haemocytes of resistant and susceptible snail strains, were identified and confirmed with reverse transcriptase PCR, including two transcripts expected to be involved in the stress response mechanism for regulating the damaging oxidative burst pathways involved in cytotoxic killing of the parasite: the iron-storage and immunoregulatory molecule, ferritin, and HtrA2, a serine protease involved in the cellular stress response. Transcripts with elevated levels in the resistant strain, had the same expression patterns in the subtracted libraries and unsubtracted controls; higher levels in exposed resistant snails compared to susceptible ones and down-regulated in exposed compared with unexposed resistant snails. Differential expression of two of the transcripts with no known function from the susceptible strain, was independently confirmed in a repeat exposure experiment.
Collapse
Affiliation(s)
- Anne E Lockyer
- Wolfson Wellcome Biomedical Laboratory, Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | | | | | | | | |
Collapse
|
42
|
Goodall CP, Bender RC, Brooks JK, Bayne CJ. Biomphalaria glabrata cytosolic copper/zinc superoxide dismutase (SOD1) gene: Association of SOD1 alleles with resistance/susceptibility to Schistosoma mansoni. Mol Biochem Parasitol 2006; 147:207-10. [PMID: 16564582 DOI: 10.1016/j.molbiopara.2006.02.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2005] [Revised: 12/23/2005] [Accepted: 02/13/2006] [Indexed: 11/25/2022]
Abstract
Variation in susceptibility of the snail Biomphalaria glabrata to infection by the parasite Schistosoma mansoni is, at least in part, genetically determined. Functional studies have demonstrated that hemocyte-mediated killing of the parasite involves hydrogen peroxide, the enzymatic product of superoxide dismutase (SOD). The present study identifies alleles of the gene coding for cytosolic copper/zinc SOD (SOD1). The resistance/susceptibility phenotypes and SOD1 genotypes were determined for 354 snails of the predominantly resistant 13-16-R1 strain of B. glabrata. Resistance to the parasite was found to be significantly associated with one allele of the SOD1 gene. Conversely, a separate SOD1 allele was significantly associated with susceptibility.
Collapse
Affiliation(s)
- Cheri P Goodall
- Oregon State University, Department of Zoology, Corvallis, OR 97331-2914, USA.
| | | | | | | |
Collapse
|
43
|
Gonzalez M, Romestand B, Fievet J, Huvet A, Lebart MC, Gueguen Y, Bachère E. Evidence in oyster of a plasma extracellular superoxide dismutase which binds LPS. Biochem Biophys Res Commun 2005; 338:1089-97. [PMID: 16256949 DOI: 10.1016/j.bbrc.2005.10.075] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 10/11/2005] [Indexed: 11/30/2022]
Abstract
We have characterized in the oyster Crassostrea gigas an extracellular superoxide dismutase (Cg-EcSOD) which appears to bind lipopolysaccharides (LPS). The protein has been purified from the oyster plasma and identified as a Cu/ZnSOD according to its N-terminal sequencing and biological activity. Cg-EcSOD expression and synthesis are restricted to hemocytes as revealed by in situ hybridization and immunocytochemistry. Cg-EcSOD-expressing hemocytes were seen in blood circulation, in connective tissues, and closely associated to endothelium blood vessels. Cg-EcSOD presents in its amino acid sequence a LPS-binding motif found in the endotoxin receptor CD14 and we show that the protein displays an affinity to Escherichia coli bacteria and with LPS and Lipid A. Additionally, an RGD motif known to be implicated in the association to membrane integrin receptor is present in the amino acid sequence. The purified Cg-EcSOD was shown to bind to oyster hemocytes and to be immunocolocalized with a beta-integrin-like receptor.
Collapse
Affiliation(s)
- Marcelo Gonzalez
- UMR 5171, CNRS-UMII-IFREMER, Génome Population Interactions Adaptation, Université de Montpellier II, 2 Place Eugène Bataillon, CC80, 34095 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Jung Y, Nowak TS, Zhang SM, Hertel LA, Loker ES, Adema CM. Manganese superoxide dismutase from Biomphalaria glabrata. J Invertebr Pathol 2005; 90:59-63. [PMID: 16081093 DOI: 10.1016/j.jip.2005.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 05/31/2005] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
The investigation of the response of Biomphalaria glabrata snails to Echinostoma paraensei (digenea) at 2 days post-exposure by suppression subtractive hybridization yielded a partial sequence of the anti-oxidant enzyme manganese superoxide dismutase (MnSOD). Full-length MnSOD (669nt) from M line and BS-90 strains of B. glabrata differed by one synonymous nucleotide replacement. B. glabrata has 1-4 MnSOD loci (Southern hybridization). Both snail strains expressed MnSOD at equal baseline levels (quantitative PCR). Susceptible snails increased expression of MnSOD following infection with E. paraensei or Schistosoma mansoni, and expression was reduced in the incompatible combination (BS-90 B. glabrata and S. mansoni). Thus, MnSOD did not determine resistance or susceptibility for these parasites, but expression of MnSOD is consistent with its involvement in a stress response of B. glabrata.
Collapse
Affiliation(s)
- Younghun Jung
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|