1
|
Krishna CK, Schmidt N, Tippler BG, Schliebs W, Jung M, Winklhofer KF, Erdmann R, Kalel VC. Molecular basis of the glycosomal targeting of PEX11 and its mislocalization to mitochondrion in trypanosomes. Front Cell Dev Biol 2023; 11:1213761. [PMID: 37664461 PMCID: PMC10469627 DOI: 10.3389/fcell.2023.1213761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
PEX19 binding sites are essential parts of the targeting signals of peroxisomal membrane proteins (mPTS). In this study, we characterized PEX19 binding sites of PEX11, the most abundant peroxisomal and glycosomal membrane protein from Trypanosoma brucei and Saccharomyces cerevisiae. TbPEX11 contains two PEX19 binding sites, one close to the N-terminus (BS1) and a second in proximity to the first transmembrane domain (BS2). The N-terminal BS1 is highly conserved across different organisms and is required for maintenance of the steady-state concentration and efficient targeting to peroxisomes and glycosomes in both baker's yeast and Trypanosoma brucei. The second PEX19 binding site in TbPEX11 is essential for its glycosomal localization. Deletion or mutations of the PEX19 binding sites in TbPEX11 or ScPEX11 results in mislocalization of the proteins to mitochondria. Bioinformatic analysis indicates that the N-terminal region of TbPEX11 contains an amphiphilic helix and several putative TOM20 recognition motifs. We show that the extreme N-terminal region of TbPEX11 contains a cryptic N-terminal signal that directs PEX11 to the mitochondrion if its glycosomal transport is blocked.
Collapse
Affiliation(s)
- Chethan K. Krishna
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Nadine Schmidt
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Bettina G. Tippler
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Wolfgang Schliebs
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Martin Jung
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Konstanze F. Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Ralf Erdmann
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Vishal C. Kalel
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Andrade-Alviárez D, Bonive-Boscan AD, Cáceres AJ, Quiñones W, Gualdrón-López M, Ginger ML, Michels PAM. Delineating transitions during the evolution of specialised peroxisomes: Glycosome formation in kinetoplastid and diplonemid protists. Front Cell Dev Biol 2022; 10:979269. [PMID: 36172271 PMCID: PMC9512073 DOI: 10.3389/fcell.2022.979269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
One peculiarity of protists belonging to classes Kinetoplastea and Diplonemea within the phylum Euglenozoa is compartmentalisation of most glycolytic enzymes within peroxisomes that are hence called glycosomes. This pathway is not sequestered in peroxisomes of the third Euglenozoan class, Euglenida. Previous analysis of well-studied kinetoplastids, the ‘TriTryps’ parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp., identified within glycosomes other metabolic processes usually not present in peroxisomes. In addition, trypanosomatid peroxins, i.e. proteins involved in biogenesis of these organelles, are divergent from human and yeast orthologues. In recent years, genomes, transcriptomes and proteomes for a variety of euglenozoans have become available. Here, we track the possible evolution of glycosomes by querying these databases, as well as the genome of Naegleria gruberi, a non-euglenozoan, which belongs to the same protist supergroup Discoba. We searched for orthologues of TriTryps proteins involved in glycosomal metabolism and biogenesis. Predicted cellular location(s) of each metabolic enzyme identified was inferred from presence or absence of peroxisomal-targeting signals. Combined with a survey of relevant literature, we refine extensively our previously postulated hypothesis about glycosome evolution. The data agree glycolysis was compartmentalised in a common ancestor of the kinetoplastids and diplonemids, yet additionally indicates most other processes found in glycosomes of extant trypanosomatids, but not in peroxisomes of other eukaryotes were either sequestered in this ancestor or shortly after separation of the two lineages. In contrast, peroxin divergence is evident in all euglenozoans. Following their gain of pathway complexity, subsequent evolution of peroxisome/glycosome function is complex. We hypothesize compartmentalisation in glycosomes of glycolytic enzymes, their cofactors and subsequently other metabolic enzymes provided selective advantage to kinetoplastids and diplonemids during their evolution in changing marine environments. We contend two specific properties derived from the ancestral peroxisomes were key: existence of nonselective pores for small solutes and the possibility of high turnover by pexophagy. Critically, such pores and pexophagy are characterised in extant trypanosomatids. Increasing amenability of free-living kinetoplastids and recently isolated diplonemids to experimental study means our hypothesis and interpretation of bioinformatic data are suited to experimental interrogation.
Collapse
Affiliation(s)
- Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Alejandro D. Bonive-Boscan
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Ana J. Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | | | - Michael L. Ginger
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Paul A. M. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Paul A. M. Michels,
| |
Collapse
|
3
|
Michels PAM, Gualdrón-López M. Biogenesis and metabolic homeostasis of trypanosomatid glycosomes: new insights and new questions. J Eukaryot Microbiol 2022; 69:e12897. [PMID: 35175680 DOI: 10.1111/jeu.12897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Kinetoplastea and Diplonemea possess peroxisome-related organelles that, uniquely, contain most of the enzymes of the glycolytic pathway and are hence called glycosomes. Enzymes of several other core metabolic pathways have also been located in glycosomes, in addition to some characteristic peroxisomal systems such as pathways of lipid metabolism. A considerable amount of research has been performed on glycosomes of trypanosomes since their discovery four decades ago. Not only the role of the glycosomal enzyme systems in the overall cell metabolism appeared to be unique, but the organelles display also remarkable features regarding their biogenesis and structural properties. These features are similar to those of the well-studied peroxisomes of mammalian and plant cells and yeasts yet exhibit also differences reflecting the large evolutionary distance between these protists and the representatives of other major eukaryotic lineages. Despite all research performed, many questions remain about various properties and the biological roles of glycosomes and peroxisomes. Here we review the current knowledge about glycosomes, often comparing it with information about peroxisomes. Furthermore, we highlight particularly many questions that remain about the biogenesis, and the heterogeneity in structure and content of these enigmatic organelles, and the properties of their boundary membrane.
Collapse
Affiliation(s)
- Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| |
Collapse
|
4
|
Li M, Gaussmann S, Tippler B, Ott J, Popowicz GM, Schliebs W, Sattler M, Erdmann R, Kalel VC. Novel Trypanocidal Inhibitors that Block Glycosome Biogenesis by Targeting PEX3-PEX19 Interaction. Front Cell Dev Biol 2022; 9:737159. [PMID: 34988071 PMCID: PMC8721105 DOI: 10.3389/fcell.2021.737159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
Human pathogenic trypanosomatid parasites harbor a unique form of peroxisomes termed glycosomes that are essential for parasite viability. We and others previously identified and characterized the essential Trypanosoma brucei ortholog TbPEX3, which is the membrane-docking factor for the cytosolic receptor PEX19 bound to the glycosomal membrane proteins. Knockdown of TbPEX3 expression leads to mislocalization of glycosomal membrane and matrix proteins, and subsequent cell death. As an early step in glycosome biogenesis, the PEX3–PEX19 interaction is an attractive drug target. We established a high-throughput assay for TbPEX3–TbPEX19 interaction and screened a compound library for small-molecule inhibitors. Hits from the screen were further validated using an in vitro ELISA assay. We identified three compounds, which exhibit significant trypanocidal activity but show no apparent toxicity to human cells. Furthermore, we show that these compounds lead to mislocalization of glycosomal proteins, which is toxic to the trypanosomes. Moreover, NMR-based experiments indicate that the inhibitors bind to PEX3. The inhibitors interfering with glycosomal biogenesis by targeting the TbPEX3–TbPEX19 interaction serve as starting points for further optimization and anti-trypanosomal drug development.
Collapse
Affiliation(s)
- Mengqiao Li
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Stefan Gaussmann
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Chemistry, Bavarian NMR Center, Technical University of Munich, Garching, Germany
| | - Bettina Tippler
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Julia Ott
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Chemistry, Bavarian NMR Center, Technical University of Munich, Garching, Germany
| | - Wolfgang Schliebs
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Chemistry, Bavarian NMR Center, Technical University of Munich, Garching, Germany
| | - Ralf Erdmann
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Vishal C Kalel
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Zuma AA, Dos Santos Barrias E, de Souza W. Basic Biology of Trypanosoma cruzi. Curr Pharm Des 2021; 27:1671-1732. [PMID: 33272165 DOI: 10.2174/1381612826999201203213527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information of Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; glycosome and its role in the metabolism of the cell; acidocalcisome, describing its morphology, biochemistry, and functional role; cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.
Collapse
Affiliation(s)
- Aline A Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emile Dos Santos Barrias
- Laboratorio de Metrologia Aplicada a Ciencias da Vida, Diretoria de Metrologia Aplicada a Ciencias da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Glycosome heterogeneity in kinetoplastids. Biochem Soc Trans 2021; 49:29-39. [PMID: 33439256 PMCID: PMC7925000 DOI: 10.1042/bst20190517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023]
Abstract
Kinetoplastid parasites have essential organelles called glycosomes that are analogous to peroxisomes present in other eukaryotes. While many of the processes that regulate glycosomes are conserved, there are several unique aspects of their biology that are divergent from other systems and may be leveraged as therapeutic targets for the treatment of kinetoplastid diseases. Glycosomes are heterogeneous organelles that likely exist as sub-populations with different protein composition and function in a given cell, between individual cells, and between species. However, the limitations posed by the small size of these organelles makes the study of this heterogeneity difficult. Recent advances in the analysis of small vesicles by flow-cytometry provide an opportunity to overcome these limitations. In this review, we describe studies that document the diverse nature of glycosomes and propose an approach to using flow cytometry and organelle sorting to study the diverse composition and function of these organelles. Because the cellular machinery that regulates glycosome protein import and biogenesis is likely to contribute, at least in part, to glycosome heterogeneity we highlight some ways in which the glycosome protein import machinery differs from that of peroxisomes in other eukaryotes.
Collapse
|
7
|
Le T, Žárský V, Nývltová E, Rada P, Harant K, Vancová M, Verner Z, Hrdý I, Tachezy J. Anaerobic peroxisomes in Mastigamoeba balamuthi. Proc Natl Acad Sci U S A 2020; 117:2065-2075. [PMID: 31932444 PMCID: PMC6994998 DOI: 10.1073/pnas.1909755117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The adaptation of eukaryotic cells to anaerobic conditions is reflected by substantial changes to mitochondrial metabolism and functional reduction. Hydrogenosomes belong among the most modified mitochondrial derivative and generate molecular hydrogen concomitant with ATP synthesis. The reduction of mitochondria is frequently associated with loss of peroxisomes, which compartmentalize pathways that generate reactive oxygen species (ROS) and thus protect against cellular damage. The biogenesis and function of peroxisomes are tightly coupled with mitochondria. These organelles share fission machinery components, oxidative metabolism pathways, ROS scavenging activities, and some metabolites. The loss of peroxisomes in eukaryotes with reduced mitochondria is thus not unexpected. Surprisingly, we identified peroxisomes in the anaerobic, hydrogenosome-bearing protist Mastigamoeba balamuthi We found a conserved set of peroxin (Pex) proteins that are required for protein import, peroxisomal growth, and division. Key membrane-associated Pexs (MbPex3, MbPex11, and MbPex14) were visualized in numerous vesicles distinct from hydrogenosomes, the endoplasmic reticulum (ER), and Golgi complex. Proteomic analysis of cellular fractions and prediction of peroxisomal targeting signals (PTS1/PTS2) identified 51 putative peroxisomal matrix proteins. Expression of selected proteins in Saccharomyces cerevisiae revealed specific targeting to peroxisomes. The matrix proteins identified included components of acyl-CoA and carbohydrate metabolism and pyrimidine and CoA biosynthesis, whereas no components related to either β-oxidation or catalase were present. In conclusion, we identified a subclass of peroxisomes, named "anaerobic" peroxisomes that shift the current paradigm and turn attention to the reductive evolution of peroxisomes in anaerobic organisms.
Collapse
Affiliation(s)
- Tien Le
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Eva Nývltová
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Petr Rada
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Karel Harant
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Zdeněk Verner
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic;
| |
Collapse
|
8
|
Evolutionary divergent PEX3 is essential for glycosome biogenesis and survival of trypanosomatid parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118520. [PMID: 31369765 DOI: 10.1016/j.bbamcr.2019.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/13/2023]
Abstract
Trypanosomatid parasites cause devastating African sleeping sickness, Chagas disease, and Leishmaniasis that affect about 18 million people worldwide. Recently, we showed that the biogenesis of glycosomes could be the "Achilles' heel" of trypanosomatids suitable for the development of new therapies against trypanosomiases. This was shown for inhibitors of the import machinery of matrix proteins, while the distinct machinery for the topogenesis of glycosomal membrane proteins evaded investigation due to the lack of a druggable interface. Here we report on the identification of the highly divergent trypanosomal PEX3, a central component of the transport machinery of peroxisomal membrane proteins and the master regulator of peroxisome biogenesis. The trypanosomatid PEX3 shows very low degree of conservation and its identification was made possible by a combinatory approach identifying of PEX19-interacting proteins and secondary structure homology screening. The trypanosomal PEX3 localizes to glycosomes and directly interacts with the membrane protein import receptor PEX19. RNAi-studies revealed that the PEX3 is essential and that its depletion results in mislocalization of glycosomal proteins to the cytosol and a severe growth defect. Comparison of the parasites and human PEX3-PEX19 interface disclosed differences that might be accessible for drug development. The absolute requirement for biogenesis of glycosomes and its structural distinction from its human counterpart make PEX3 a prime drug target for the development of novel therapies against trypanosomiases. The identification paves the way for future drug development targeting PEX3, and for the analysis of additional partners involved in this crucial step of glycosome biogenesis.
Collapse
|
9
|
Banerjee H, Knoblach B, Rachubinski RA. The early-acting glycosome biogenic protein Pex3 is essential for trypanosome viability. Life Sci Alliance 2019; 2:2/4/e201900421. [PMID: 31341002 PMCID: PMC6658674 DOI: 10.26508/lsa.201900421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/24/2022] Open
Abstract
This study reports the identification of trypanosome Pex3, the master regulator of glycosome biogenesis. Trypanosome Pex3 is essential for glycosome assembly and trypanosome viability and is distinct from human Pex3. Trypanosomatid parasites are infectious agents for diseases such as African sleeping sickness, Chagas disease, and leishmaniasis that threaten millions of people, mostly in the emerging world. Trypanosomes compartmentalize glycolytic enzymes to an organelle called the glycosome, a specialized peroxisome. Functionally intact glycosomes are essential for trypanosomatid viability, making glycosomal proteins as potential drug targets against trypanosomatid diseases. Peroxins (Pex), of which Pex3 is the master regulator, control glycosome biogenesis. Although Pex3 has been found throughout the eukaryota, its identity has remained stubbornly elusive in trypanosomes. We used bioinformatics predictive of protein secondary structure to identify trypanosomal Pex3. Microscopic and biochemical analyses showed trypanosomal Pex3 to be glycosomal. Interaction of Pex3 with the peroxisomal membrane protein receptor Pex19 observed for other eukaryotes is replicated by trypanosomal Pex3 and Pex19. Depletion of Pex3 leads to mislocalization of glycosomal proteins to the cytosol, reduced glycosome numbers, and trypanosomatid death. Our findings are consistent with Pex3 being an essential gene in trypanosomes.
Collapse
Affiliation(s)
- Hiren Banerjee
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Barbara Knoblach
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
10
|
Kalel VC, Mäser P, Sattler M, Erdmann R, Popowicz GM. Come, sweet death: targeting glycosomal protein import for antitrypanosomal drug development. Curr Opin Microbiol 2018; 46:116-122. [PMID: 30481613 DOI: 10.1016/j.mib.2018.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/09/2018] [Indexed: 01/18/2023]
Abstract
Glycosomes evolved as specialized system for glycolysis in trypanosomatids. These organelle rely on protein import to maintain function. A machinery of peroxin (PEX) proteins is responsible for recognition and transport of glycosomal proteins to the organelle. Disruption of PEX-based import system was expected to be a strategy against trypanosomatids. Recently, a proof of this hypothesis has been presented. Here, we review current information about trypanosomatids' glycosomal transport components as targets for new trypanocidal therapies.
Collapse
Affiliation(s)
- Vishal C Kalel
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany.
| |
Collapse
|
11
|
Banerjee H, Rachubinski RA. Involvement of SNARE protein Ykt6 in glycosome biogenesis in Trypanosoma brucei. Mol Biochem Parasitol 2017; 218:28-37. [PMID: 29107734 DOI: 10.1016/j.molbiopara.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/02/2017] [Accepted: 10/21/2017] [Indexed: 11/30/2022]
Abstract
The kinetoplastid parasites Trypanosoma and Leishmania are etiologic agents of diseases like African sleeping sickness, Chagas and leishmaniasis that inflict many tropical and subtropical parts of the world. These parasites are distinctive in that they compartmentalize most of the usually cytosolic enzymes of the glycolytic pathway within a peroxisome-like organelle called the glycosome. Functional glycosomes are essential in both the procyclic and bloodstream forms of trypanosomatid parasites, and mislocalization of glycosomal enzymes to the cytosol is fatal for the parasite. The life cycle of these parasites is intimately linked to their efficient protein and vesicular trafficking machinery that helps them in immune evasion, host-pathogen interaction and organelle biogenesis and integrity. Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins play important roles in vesicular trafficking and mediate a wide range of protein-protein interactions in eukaryotes. We show here that the SNARE protein Ykt6 is necessary for glycosome biogenesis and function in Trypanosoma brucei. RNAi-mediated depletion of Ykt6 in both the procyclic and bloodstream forms of T. brucei leads to mislocalization of glycosomal matrix proteins to the cytosol, pronounced reduction in glycosome number, and cell death. GFP-tagged Ykt6 appears as punctate structures in the T. brucei cell and colocalizes in part to glycosomes. Our results constitute the first demonstration of a role for SNARE proteins in the biogenesis of peroxisomal organelles.
Collapse
Affiliation(s)
- Hiren Banerjee
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Richard A Rachubinski
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
12
|
Abstract
Trypanosomatid parasites, including Trypanosoma and Leishmania, are the causative agents of lethal diseases threatening millions of people around the world. These organisms compartmentalize glycolysis in essential, specialized peroxisomes called glycosomes. Peroxisome proliferation can occur through growth and division of existing organelles and de novo biogenesis from the endoplasmic reticulum. The level that each pathway contributes is debated. Current evidence supports the concerted contribution of both mechanisms in an equilibrium that can vary depending on environmental conditions and metabolic requirements of the cell. Homologs of a number of peroxins, the proteins involved in peroxisome biogenesis and matrix protein import, have been identified in T. brucei. Based on these findings, it is widely accepted that glycosomes proliferate through growth and division of existing organelles; however, to our knowledge, a de novo mechanism of biogenesis has not been directly demonstrated. Here, we review recent findings that provide support for the existence of an endoplasmic reticulum (ER)-derived de novo pathway of glycosome biogenesis in T. brucei. Two studies recently identified PEX13.1, a peroxin involved in matrix protein import, in the ER of procyclic form T. brucei. In other eukaryotes, peroxins including PEX13 have been found in the ER of cells undergoing de novo biogenesis of peroxisomes. In addition, PEX16 and PEX19 have been characterized in T. brucei, both of which are important for de novo biogenesis in other eukaryotes. Because glycosomes are rapidly remodeled via autophagy during life cycle differentiation, de novo biogenesis could provide a method of restoring glycosome populations following turnover. Together, the findings we summarize provide support for the hypothesis that glycosome proliferation occurs through growth and division of pre-existing organelles and de novo biogenesis of new organelles from the ER and that the level each mechanism contributes is influenced by glucose availability.
Collapse
Affiliation(s)
- Sarah Bauer
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Meredith T. Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
13
|
Allosteric modulation of peroxisomal membrane protein recognition by farnesylation of the peroxisomal import receptor PEX19. Nat Commun 2017; 8:14635. [PMID: 28281558 PMCID: PMC5353646 DOI: 10.1038/ncomms14635] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 01/19/2017] [Indexed: 01/13/2023] Open
Abstract
The transport of peroxisomal membrane proteins (PMPs) requires the soluble PEX19 protein as chaperone and import receptor. Recognition of cargo PMPs by the C-terminal domain (CTD) of PEX19 is required for peroxisome biogenesis in vivo. Farnesylation at a C-terminal CaaX motif in PEX19 enhances the PMP interaction, but the underlying molecular mechanisms are unknown. Here, we report the NMR-derived structure of the farnesylated human PEX19 CTD, which reveals that the farnesyl moiety is buried in an internal hydrophobic cavity. This induces substantial conformational changes that allosterically reshape the PEX19 surface to form two hydrophobic pockets for the recognition of conserved aromatic/aliphatic side chains in PMPs. Mutations of PEX19 residues that either mediate farnesyl contacts or are directly involved in PMP recognition abolish cargo binding and cannot complement a ΔPEX19 phenotype in human Zellweger patient fibroblasts. Our results demonstrate an allosteric mechanism for the modulation of protein function by farnesylation. PEX19 is a chaperone and import receptor for peroxisomal membrane proteins (PMPs). Here the authors present the structure of the farnesylated C-terminal domain of PEX19, and its interaction with PMPs reveals how the farnesyl moiety allosterically reshapes the PMP binding surface and modulates PEX19 function.
Collapse
|
14
|
Bauer ST, McQueeney KE, Patel T, Morris MT. Localization of a Trypanosome Peroxin to the Endoplasmic Reticulum. J Eukaryot Microbiol 2016; 64:97-105. [PMID: 27339640 PMCID: PMC5215699 DOI: 10.1111/jeu.12343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022]
Abstract
Trypanosoma brucei is the causative agent of diseases that affect 30,000–50,000 people annually. Trypanosoma brucei harbors unique organelles named glycosomes that are essential to parasite survival, which requires growth under fluctuating environmental conditions. The mechanisms that govern the biogenesis of these organelles are poorly understood. Glycosomes are evolutionarily related to peroxisomes, which can proliferate de novo from the endoplasmic reticulum or through the growth and division of existing organelles depending on the organism and environmental conditions. The effect of environment on glycosome biogenesis is unknown. Here, we demonstrate that the glycosome membrane protein, TbPex13.1, is localized to glycosomes when cells are cultured under high glucose conditions and to the endoplasmic reticulum in low glucose conditions. This localization in low glucose was dependent on the presence of a C‐terminal tripeptide sequence. Our findings suggest that glycosome biogenesis is influenced by extracellular glucose levels and adds to the growing body of evidence that de novo glycosome biogenesis occurs in trypanosomes. Because the movement of peroxisomal membrane proteins is a hallmark of ER‐dependent peroxisome biogenesis, TbPex13.1 may be a useful marker for the study such processes in trypanosomes.
Collapse
Affiliation(s)
- Sarah T Bauer
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, 29634
| | - Kelley E McQueeney
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, 29634.,Department of Pharmacology, University of Virginia, 409 Lane Road, Charlottesville, Virginia, 22908
| | - Terral Patel
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, 29634
| | - Meredith T Morris
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
15
|
Giannopoulou EA, Emmanouilidis L, Sattler M, Dodt G, Wilmanns M. Towards the molecular mechanism of the integration of peroxisomal membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:863-9. [PMID: 26434995 PMCID: PMC4819957 DOI: 10.1016/j.bbamcr.2015.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022]
Abstract
The correct topogenesis of peroxisomal membrane proteins is a crucial step for the formation of functioning peroxisomes. Although this process has been widely studied, the exact mechanism with which it occurs has not yet been fully characterized. Nevertheless, it is generally accepted that peroxisomes employ three proteins – Pex3, Pex19 and Pex16 in mammals – for the insertion of peroxisomal membrane proteins into the peroxisomal membrane. Structural biology approaches have been utilized for the elucidation of the mechanistic questions of peroxisome biogenesis, mainly by providing information on the architecture of the proteins significant for this process. This review aims to summarize, compare and put into perspective the structural knowledge that has been generated mainly for Pex3 and Pex19 and their interaction partners in recent years. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. Structures of the PMP insertion factors Pex3 and Pex19 and their interactions with other protein ligands Structural insights provide a mechanistic understanding of the PMP functional network. Functional implications of structural order/disorder transitions
Collapse
Affiliation(s)
| | - Leonidas Emmanouilidis
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Center for Integrated Protein Science Munich (CIPSM) at Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Center for Integrated Protein Science Munich (CIPSM) at Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Gabriele Dodt
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Matthias Wilmanns
- EMBL Hamburg, c/o DESY, Building 25A, Notkestraße 85, 22603 Hamburg, Germany; University of Hamburg Clinical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| |
Collapse
|
16
|
Kalel VC, Schliebs W, Erdmann R. Identification and functional characterization of Trypanosoma brucei peroxin 16. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2326-37. [PMID: 26025675 DOI: 10.1016/j.bbamcr.2015.05.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/22/2015] [Accepted: 05/24/2015] [Indexed: 12/01/2022]
Abstract
Protozoan parasites of the family Trypanosomatidae infect humans as well as livestock causing devastating diseases like sleeping sickness, Chagas disease, and Leishmaniasis. These parasites compartmentalize glycolytic enzymes within unique organelles, the glycosomes. Glycosomes represent a subclass of peroxisomes and they are essential for the parasite survival. Hence, disruption of glycosome biogenesis is an attractive drug target for these Neglected Tropical Diseases (NTDs). Peroxin 16 (PEX16) plays an essential role in peroxisomal membrane protein targeting and de novo biogenesis of peroxisomes from endoplasmic reticulum (ER). We identified trypanosomal PEX16 based on specific sequence characteristics and demonstrate that it is an integral glycosomal membrane protein of procyclic and bloodstream form trypanosomes. RNAi mediated partial knockdown of Trypanosoma brucei PEX16 in bloodstream form trypanosomes led to severe ATP depletion, motility defects and cell death. Microscopic and biochemical analysis revealed drastic reduction in glycosome number and mislocalization of the glycosomal matrix enzymes to the cytosol. Asymmetry of the localization of the remaining glycosomes was observed with a severe depletion in the posterior part. The results demonstrate that trypanosomal PEX16 is essential for glycosome biogenesis and thereby, provides a potential drug target for sleeping sickness and related diseases.
Collapse
Affiliation(s)
- Vishal C Kalel
- Department of Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr-University Bochum, Germany
| | - Wolfgang Schliebs
- Department of Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr-University Bochum, Germany
| | - Ralf Erdmann
- Department of Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr-University Bochum, Germany.
| |
Collapse
|
17
|
Bauer S, Conlon M, Morris M. Using fluorescent proteins to monitor glycosome dynamics in the African trypanosome. J Vis Exp 2014:e51647. [PMID: 25177828 DOI: 10.3791/51647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Trypanosoma brucei is a kinetoplastid parasite that causes human African trypanosomiasis (HAT), or sleeping sickness, and a wasting disease, nagana, in cattle. The parasite alternates between the bloodstream of the mammalian host and the tsetse fly vector. The composition of many cellular organelles changes in response to these different extracellular conditions. Glycosomes are highly specialized peroxisomes in which many of the enzymes involved in glycolysis are compartmentalized. Glycosome composition changes in a developmental and environmentally regulated manner. Currently, the most common techniques used to study glycosome dynamics are electron and fluorescence microscopy; techniques that are expensive, time and labor intensive, and not easily adapted to high throughput analyses. To overcome these limitations, a fluorescent-glycosome reporter system in which enhanced yellow fluorescent protein (eYFP) is fused to a peroxisome targeting sequence (PTS2), which directs the fusion protein to glycosomes, has been established. Upon import of the PTS2eYFP fusion protein, glycosomes become fluorescent. Organelle degradation and recycling results in the loss of fluorescence that can be measured by flow cytometry. Large numbers of cells (5,000 cells/sec) can be analyzed in real-time without extensive sample preparation such as fixation and mounting. This method offers a rapid way of detecting changes in organelle composition in response to fluctuating environmental conditions.
Collapse
Affiliation(s)
- Sarah Bauer
- Department of Genetics and Biochemistry, Clemson University Eukaryotic Pathogens Innovation Center
| | - Meghan Conlon
- Department of Genetics and Biochemistry, Clemson University Eukaryotic Pathogens Innovation Center
| | - Meredith Morris
- Department of Genetics and Biochemistry, Clemson University Eukaryotic Pathogens Innovation Center;
| |
Collapse
|
18
|
Van Veldhoven PP, Baes M. Peroxisome deficient invertebrate and vertebrate animal models. Front Physiol 2013; 4:335. [PMID: 24319432 PMCID: PMC3837297 DOI: 10.3389/fphys.2013.00335] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/01/2013] [Indexed: 11/29/2022] Open
Abstract
Although peroxisomes are ubiquitous organelles in all animal species, their importance for the functioning of tissues and organs remains largely unresolved. Because peroxins are essential for the biogenesis of peroxisomes, an obvious approach to investigate their physiological role is to inactivate a Pex gene or to suppress its translation. This has been performed in mice but also in more primitive organisms including D. melanogaster, C. elegans, and D. rerio, and the major findings and abnormalities in these models will be highlighted. Although peroxisomes are generally not essential for embryonic development and organogenesis, a generalized inactivity of peroxisomes affects lifespan and posthatching/postnatal growth, proving that peroxisomal metabolism is necessary for the normal maturation of these organisms. Strikingly, despite the wide variety of model organisms, corresponding tissues are affected including the central nervous system and the testis. By inactivating peroxisomes in a cell type selective way in the brain of mice, it was also demonstrated that peroxisomes are necessary to prevent neurodegeneration. As these peroxisome deficient model organisms recapitulate pathologies of patients affected with peroxisomal diseases, their further analysis will contribute to the elucidation of still elusive pathogenic mechanisms.
Collapse
Affiliation(s)
| | - Myriam Baes
- Laboratory of Cellular Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU LeuvenLeuven, Belgium
| |
Collapse
|
19
|
Environmentally regulated glycosome protein composition in the African trypanosome. EUKARYOTIC CELL 2013; 12:1072-9. [PMID: 23709182 DOI: 10.1128/ec.00086-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypanosomes compartmentalize many metabolic enzymes in glycosomes, peroxisome-related microbodies that are essential to parasite survival. While it is understood that these dynamic organelles undergo profound changes in protein composition throughout life cycle differentiation, the adaptations that occur in response to changes in environmental conditions are less appreciated. We have adopted a fluorescent-organelle reporter system in procyclic Trypanosoma brucei by expressing a fluorescent protein (FP) fused to a glycosomal targeting sequence (peroxisome-targeting sequence 2 [PTS2]). In these cell lines, PTS2-FP is localized within import-competent glycosomes, and organelle composition can be analyzed by microscopy and flow cytometry. Using this reporter system, we have characterized parasite populations that differ in their glycosome composition. In glucose-rich medium, two parasite populations are observed; one population harbors glycosomes bearing the full repertoire of glycosome proteins, while the other parasite population contains glycosomes that lack the usual glycosome-resident proteins but do contain the glycosome membrane protein TbPEX11. Interestingly, these cells lack TbPEX13, a protein essential for the import of proteins into the glycosome. This bimodal distribution is lost in low-glucose medium. Furthermore, we have demonstrated that changes in environmental conditions trigger changes in glycosome protein composition. These findings demonstrate a level of procyclic glycosome diversity heretofore unappreciated and offer a system by which glycosome dynamics can be studied in live cells. This work adds to our growing understanding of how the regulation of glycosome composition relates to environmental sensing.
Collapse
|
20
|
Abstract
Peroxisomes are remarkably versatile cell organelles whose size, shape, number, and protein content can vary greatly depending on the organism, the developmental stage of the organism’s life cycle, and the environment in which the organism lives. The main functions usually associated with peroxisomes include the metabolism of lipids and reactive oxygen species. However, in recent years, it has become clear that these organelles may also act as intracellular signaling platforms that mediate developmental decisions by modulating extraperoxisomal concentrations of several second messengers. To fulfill their functions, peroxisomes physically and functionally interact with other cell organelles, including mitochondria and the endoplasmic reticulum. Defects in peroxisome dynamics can lead to organelle dysfunction and have been associated with various human disorders. The purpose of this paper is to thoroughly summarize and discuss the current concepts underlying peroxisome formation, multiplication, and degradation. In addition, this paper will briefly highlight what is known about the interplay between peroxisomes and other cell organelles and explore the physiological and pathological implications of this interorganellar crosstalk.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, P.O. Box 601, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Pieuchot L, Jedd G. Peroxisome Assembly and Functional Diversity in Eukaryotic Microorganisms. Annu Rev Microbiol 2012; 66:237-63. [DOI: 10.1146/annurev-micro-092611-150126] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laurent Pieuchot
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 117604 Singapore; ,
| | - Gregory Jedd
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 117604 Singapore; ,
| |
Collapse
|
22
|
Coley AF, Dodson HC, Morris MT, Morris JC. Glycolysis in the african trypanosome: targeting enzymes and their subcellular compartments for therapeutic development. Mol Biol Int 2011; 2011:123702. [PMID: 22091393 PMCID: PMC3195984 DOI: 10.4061/2011/123702] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/16/2011] [Indexed: 12/16/2022] Open
Abstract
Subspecies of the African trypanosome, Trypanosoma brucei, which cause human African trypanosomiasis, are transmitted by the tsetse fly, with transmission-essential lifecycle stages occurring in both the insect vector and human host. During infection of the human host, the parasite is limited to using glycolysis of host sugar for ATP production. This dependence on glucose breakdown presents a series of targets for potential therapeutic development, many of which have been explored and validated as therapeutic targets experimentally. These include enzymes directly involved in glucose metabolism (e.g., the trypanosome hexokinases), as well as cellular components required for development and maintenance of the essential subcellular compartments that house the major part of the pathway, the glycosomes.
Collapse
Affiliation(s)
- April F Coley
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
23
|
Sienkiewicz N, Ong HB, Fairlamb AH. Trypanosoma brucei pteridine reductase 1 is essential for survival in vitro and for virulence in mice. Mol Microbiol 2010; 77:658-71. [PMID: 20545846 PMCID: PMC2916222 DOI: 10.1111/j.1365-2958.2010.07236.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gene knockout and knockdown methods were used to examine essentiality of pteridine reductase (PTR1) in pterin metabolism in the African trypanosome. Attempts to generate PTR1 null mutants in bloodstream form Trypanosoma brucei proved unsuccessful; despite integration of drug selectable markers at the target locus, the gene for PTR1 was either retained at the same locus or elsewhere in the genome. However, RNA interference (RNAi) resulted in complete knockdown of endogenous protein after 48 h, followed by cell death after 4 days. This lethal phenotype was reversed by expression of enzymatically active Leishmania major PTR1 in RNAi lines ((oe)RNAi) or by addition of tetrahydrobiopterin to cultures. Loss of PTR1 was associated with gross morphological changes due to a defect in cytokinesis, resulting in cells with multiple nuclei and kinetoplasts, as well as multiple detached flagella. Electron microscopy also revealed increased numbers of glycosomes, while immunofluorescence microscopy showed increased and more diffuse staining for glycosomal matrix enzymes, indicative of mis-localisation to the cytosol. Mis-localisation was confirmed by digitonin fractionation experiments. RNAi cell lines were markedly less virulent than wild-type parasites in mice and virulence was restored in the (oe)RNAi line. Thus, PTR1 may be a drug target for human African trypanosomiasis.
Collapse
Affiliation(s)
- Natasha Sienkiewicz
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | |
Collapse
|
24
|
Worthen C, Jensen BC, Parsons M. Diverse effects on mitochondrial and nuclear functions elicited by drugs and genetic knockdowns in bloodstream stage Trypanosoma brucei. PLoS Negl Trop Dis 2010; 4:e678. [PMID: 20454560 PMCID: PMC2864271 DOI: 10.1371/journal.pntd.0000678] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/23/2010] [Indexed: 01/01/2023] Open
Abstract
Background The options for treating the fatal disease human African trypanosomiasis are limited to a few drugs that are toxic or facing increasing resistance. New drugs that kill the causative agents, subspecies of Trypanosoma brucei, are therefore urgently needed. Little is known about the cellular mechanisms that lead to death of the pathogenic bloodstream stage. Methodology/Principal Findings We therefore conducted the first side by side comparison of the cellular effects of multiple death inducers that target different systems in bloodstream form parasites, including six drugs (pentamidine, prostaglandin D2, quercetin, etoposide, camptothecin, and a tetrahydroquinoline) and six RNAi knockdowns that target distinct cellular functions. All compounds tested were static at low concentrations and killed at high concentrations. Dead parasites were rapidly quantified by forward and side scatter during flow cytometry, as confirmed by ethidium homodimer and esterase staining, making these assays convenient for quantitating parasite death. The various treatments yielded different combinations of defects in mitochondrial potential, reactive oxygen species, cell cycle, and genome segregation. No evidence was seen for phosphatidylserine exposure, a marker of apoptosis. Reduction in ATP levels lagged behind decreases in live cell number. Even when the impact on growth was similar at 24 hours, drug-treated cells showed dramatic differences in their ability to further proliferate, demonstrating differences in the reversibility of effects induced by the diverse compounds. Conclusions/Significance Parasites showed different phenotypes depending on the treatment, but none of them were clear predictors of whether apparently live cells could go on to proliferate after drugs were removed. We therefore suggest that clonal proliferation assays may be a useful step in selecting anti-trypanosomal compounds for further development. Elucidating the genetic or biochemical events initiated by the compounds with the most profound effects on subsequent proliferation may identify new means to activate death pathways. The parasite Trypanosoma brucei causes human African trypanosomiasis, which is fatal unless treated. Currently used drugs are toxic, difficult to administer, and often are no longer effective due to drug resistance. The search for new drugs is long and expensive, and determining which compounds are worth pursuing is a key challenge in that process. In this study we sought to determine whether different compounds elicited different responses in the mammalian-infective stage of the parasite. We also examined whether genetic knockdown of parasite molecules led to similar responses. Our results show that, depending on the treatment, the replication of the parasite genomes, proper division of the cell, and mitochondrial function can be affected. Surprisingly, these different responses were not able to predict which compounds affected the long term proliferative potential of T. brucei. We found that some of the compounds had irreversible effects on the parasites within one day, so that even cells that appeared healthy could not proliferate. We suggest that determining which compounds set the parasites on a one-way journey to death may provide a means of identifying those that could lead to drugs with high efficacy.
Collapse
Affiliation(s)
- Christal Worthen
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Bryan C. Jensen
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Marilyn Parsons
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
25
|
Yernaux C, Fransen M, Brees C, Lorenzen S, Michels PAM. Trypanosoma bruceiglycosomal ABC transporters: identification and membrane targeting. Mol Membr Biol 2009; 23:157-72. [PMID: 16754359 DOI: 10.1080/09687860500460124] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trypanosomes contain unique peroxisome-like organelles designated glycosomes which sequester enzymes involved in a variety of metabolic processes including glycolysis. We identified three ABC transporters associated with the glycosomal membrane of Trypanosoma brucei. They were designated GAT1-3 for Glycosomal ABC Transporters. These polypeptides are so-called half-ABC transporters containing only one transmembrane domain and a single nucleotide-binding domain, like their homologues of mammalian and yeast peroxisomes. The glycosomal localization was shown by immunofluorescence microscopy of trypanosomes expressing fusion constructs of the transporters with Green Fluorescent Protein. By expression of fluorescent deletion constructs, the glycosome-targeting determinant of two transporters was mapped to different fragments of their respective primary structures. Interestingly, these fragments share a short sequence motif and contain adjacent to it one--but not the same--of the predicted six transmembrane segments of the transmembrane domain. We also identified the T. brucei homologue of peroxin PEX19, which is considered to act as a chaperonin and/or receptor for cytosolically synthesized proteins destined for insertion into the peroxisomal membrane. By using a bacterial two-hybrid system, it was shown that glycosomal ABC transporter fragments containing an organelle-targeting determinant can interact with both the trypanosomatid and human PEX19, despite their low overall sequence identity. Mutated forms of human PEX19 that lost interaction with human peroxisomal membrane proteins also did not bind anymore to the T. brucei glycosomal transporter. Moreover, fragments of the glycosomal transporter were targeted to the peroxisomal membrane when expressed in mammalian cells. Together these results indicate evolutionary conservation of the glycosomal/peroxisomal membrane protein import mechanism.
Collapse
Affiliation(s)
- Cédric Yernaux
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
26
|
Rucktäschel R, Thoms S, Sidorovitch V, Halbach A, Pechlivanis M, Volkmer R, Alexandrov K, Kuhlmann J, Rottensteiner H, Erdmann R. Farnesylation of pex19p is required for its structural integrity and function in peroxisome biogenesis. J Biol Chem 2009; 284:20885-96. [PMID: 19451657 DOI: 10.1074/jbc.m109.016584] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conserved CaaX box peroxin Pex19p is known to be modified by farnesylation. The possible involvement of this lipid modification in peroxisome biogenesis, the degree to which Pex19p is farnesylated, and its molecular function are unknown or controversial. We resolve these issues by first showing that the complete pool of Pex19p is processed by farnesyltransferase in vivo and that this modification is independent of peroxisome induction or the Pex19p membrane anchor Pex3p. Furthermore, genomic mutations of PEX19 prove that farnesylation is essential for proper matrix protein import into peroxisomes, which is supposed to be caused indirectly by a defect in peroxisomal membrane protein (PMP) targeting or stability. This assumption is corroborated by the observation that mutants defective in Pex19p farnesylation are characterized by a significantly reduced steady-state concentration of prominent PMPs (Pex11p, Ant1p) but also of essential components of the peroxisomal import machinery, especially the RING peroxins, which were almost depleted from the importomer. In vivo and in vitro, PMP recognition is only efficient when Pex19p is farnesylated with affinities differing by a factor of 10 between the non-modified and wild-type forms of Pex19p. Farnesylation is likely to induce a conformational change in Pex19p. Thus, isoprenylation of Pex19p contributes to substrate membrane protein recognition for the topogenesis of PMPs, and our results highlight the importance of lipid modifications in protein-protein interactions.
Collapse
Affiliation(s)
- Robert Rucktäschel
- Department for Systems Biochemistry, Institute for Physiological Chemistry, University of Bochum, Universitätsstrasse 150, 44780 Bochum
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Saveria T, Halbach A, Erdmann R, Volkmer-Engert R, Landgraf C, Rottensteiner H, Parsons M. Conservation of PEX19-binding motifs required for protein targeting to mammalian peroxisomal and trypanosome glycosomal membranes. EUKARYOTIC CELL 2007; 6:1439-49. [PMID: 17586720 PMCID: PMC1951143 DOI: 10.1128/ec.00084-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycosomes are divergent peroxisomes found in trypanosomatid protozoa, including those that cause severe human diseases throughout much of the world. While peroxisomes are dispensable for both yeast (Saccharomyces cerevisiae and others) and mammalian cells in vitro, glycosomes are essential for trypanosomes and hence are viewed as a potential drug target. The import of proteins into the matrix of peroxisomes utilizes multiple peroxisomal membrane proteins which require the peroxin PEX19 for insertion into the peroxisomal membrane. In this report, we show that the specificity of peroxisomal membrane protein binding for Trypanosoma brucei PEX19 is very similar to those previously identified for human and yeast PEX19. Our studies show that trafficking is conserved across these distant phyla and that both a PEX19 binding site and a transmembrane domain are required for the insertion of two test proteins into the glycosomal membrane. However, in contrast to T. brucei PEX10 and PEX12, T. brucei PEX14 does not traffic to human peroxisomes, indicating that it is not recognized by the human PEX14 import mechanism.
Collapse
Affiliation(s)
- Tracy Saveria
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Saveria T, Kessler P, Jensen BC, Parsons M. Characterization of glycosomal RING finger proteins of trypanosomatids. Exp Parasitol 2006; 116:14-24. [PMID: 17188680 PMCID: PMC1976121 DOI: 10.1016/j.exppara.2006.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 10/10/2006] [Accepted: 11/07/2006] [Indexed: 11/30/2022]
Abstract
The glycosomes of trypanosomatids are essential organelles that are evolutionarily related to peroxisomes of other eukaryotes. The peroxisomal RING proteins-PEX2, PEX10 and PEX12-comprise a network of integral membrane proteins that function in the matrix protein import cycle. Here, we describe PEX10 and PEX12 in Trypanosoma brucei, Leishmania major, and Trypanosoma cruzi. We expressed GFP fusions of each T. brucei coding region in procyclic form T. brucei, where they localized to glycosomes and behaved as integral membrane proteins. Despite the weak transmembrane predictions for TbPEX12, protease protection assays demonstrated that both the N and C termini are cytosolic, similar to mammalian PEX12. GFP fusions of T. cruzi PEX10 and L. major PEX12 also localized to glycosomes in T. brucei indicating that glycosomal membrane protein targeting is conserved across trypanosomatids.
Collapse
Affiliation(s)
- Tracy Saveria
- Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
29
|
Fujiki Y, Matsuzono Y, Matsuzaki T, Fransen M. Import of peroxisomal membrane proteins: The interplay of Pex3p- and Pex19p-mediated interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1639-46. [PMID: 17069900 DOI: 10.1016/j.bbamcr.2006.09.030] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/07/2006] [Accepted: 09/20/2006] [Indexed: 02/01/2023]
Abstract
In contrast to the molecular mechanisms underlying import of peroxisomal matrix proteins, those involving the transport of membrane proteins remain rather elusive. At present, two targeting routes for peroxisomal membrane proteins (PMPs) have been depicted: class I PMPs are targeted from the cytoplasm directly to the peroxisome membrane, and class II PMPs are sorted indirectly to peroxisomes via the endoplasmic reticulum (ER). In addition, three peroxins--Pex3p, Pex16p, and Pex19p - have been identified as essential factors for PMP assembly in several species including humans: Pex19p is a predominantly cytoplasmic protein that shows a broad PMP-binding specificity; Pex3p serves as the membrane-anchoring site for Pex19p; and Pex16p - a protein absent in most yeasts--is thought to provide the initial scaffold for recruiting the protein import machinery required for peroxisome membrane biogenesis. Remarkably, the function of Pex16p does not appear to be conserved between different species. In addition, significant disagreement exists about whether Pex19p has a chaperone-like role in the cytosol or at the peroxisome membrane and/or functions as a cycling import receptor for newly synthesized PMPs. Here we review the recent progress made in our understanding of the role of two key players in PMP biogenesis, Pex3p and Pex19p.
Collapse
Affiliation(s)
- Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan.
| | | | | | | |
Collapse
|
30
|
Léon S, Goodman JM, Subramani S. Uniqueness of the mechanism of protein import into the peroxisome matrix: transport of folded, co-factor-bound and oligomeric proteins by shuttling receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1552-64. [PMID: 17011644 DOI: 10.1016/j.bbamcr.2006.08.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/18/2006] [Accepted: 08/23/2006] [Indexed: 11/30/2022]
Abstract
Based on earlier suggestions that peroxisomes may have arisen from endosymbionts that later lost their DNA, it was expected that protein transport into this organelle would have parallels to systems found in other organelles of endosymbiont origin, such as mitochondria and chloroplasts. This review highlights three features of peroxisomal matrix protein import that make it unique in comparison with these other subcellular compartments - the ability of this organelle to transport folded, co-factor-bound and oligomeric proteins, the dynamics of the import receptors during the matrix protein import cycle and the existence of a peroxisomal quality-control pathway, which insures that the peroxisome membrane is cleared of cargo-free receptors.
Collapse
Affiliation(s)
- Sébastien Léon
- Section of Molecular Biology, Division of Biological Sciences, University California, Room 3230 Bonner Hall, 9500 Gilman Drive, UC San Diego, La Jolla, CA 92093-0322, USA
| | | | | |
Collapse
|
31
|
Schliebs W. Sleeping sickness: PEX and drugs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:4-5. [PMID: 16473137 DOI: 10.1016/j.bbamcr.2005.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 12/07/2005] [Accepted: 12/07/2005] [Indexed: 11/30/2022]
Abstract
Finding new ways in the treatment of fatal parasitic diseases like the human sleeping sickness is a major challenge of biomedical research. The growing body of knowledge about the biogenesis of the glycosome, a peroxisome-related organelle of trypanosomes, might allow defining novel targets for drug development.
Collapse
Affiliation(s)
- Wolfgang Schliebs
- Institute für Physiologische Chemie, Abt. Systembiochemie, Ruhr-Universität Bochum, D-44780, Germany.
| |
Collapse
|