1
|
Curtiss ML, Rosenberg AF, Scharer CD, Mousseau B, Benavides NAB, Bradley JE, León B, Steele C, Randall TD, Lund FE. Chitinase-3-like 1 regulates T H2 cells, T FH cells and IgE responses to helminth infection. Front Immunol 2023; 14:1158493. [PMID: 37575256 PMCID: PMC10415220 DOI: 10.3389/fimmu.2023.1158493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Data from patient cohorts and mouse models of atopic dermatitis, food allergy and asthma strongly support a role for chitinase-3-like-1 protein (CHI3L1) in allergic disease. Methods To address whether Chi3l1 also contributes to TH2 responses following nematode infection, we infected Chi3l1 -/- mice with Heligmosomoides polygyrus (Hp) and analyzed T cell responses. Results As anticipated, we observed impaired TH2 responses in Hp-infected Chi3l1 -/- mice. However, we also found that T cell intrinsic expression of Chi3l1 was required for ICOS upregulation following activation of naïve CD4 T cells and was necessary for the development of the IL-4+ TFH subset, which supports germinal center B cell reactions and IgE responses. We also observed roles for Chi3l1 in TFH, germinal center B cell, and IgE responses to alum-adjuvanted vaccination. While Chi3l1 was critical for IgE humoral responses it was not required for vaccine or infection-induced IgG1 responses. Discussion These results suggest that Chi3l1 modulates IgE responses, which are known to be highly dependent on IL-4-producing TFH cells.
Collapse
Affiliation(s)
- Miranda L. Curtiss
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Department of Medicine, Section of Allergy and Immunology, Birmingham VA Medical Center, Birmingham, AL, United States
| | - Alexander F. Rosenberg
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Betty Mousseau
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Natalia A. Ballesteros Benavides
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - John E. Bradley
- Department of Medicine, Division of Rheumatology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Beatriz León
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Chad Steele
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, United States
| | - Troy D. Randall
- Department of Medicine, Division of Rheumatology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Frances E. Lund
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
2
|
Han Q, Wu N, Li HL, Zhang JY, Li X, Deng MF, Zhu K, Wang JE, Duan HX, Yang Q. A Piperine-Based Scaffold as a Novel Starting Point to Develop Inhibitors against the Potent Molecular Target OfChtI. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7534-7544. [PMID: 34185539 DOI: 10.1021/acs.jafc.0c08119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The insect chitinase OfChtI from the agricultural pest Ostrinia furnacalis (Asian corn borer) is a promising target for green insecticide design. OfChtI is a critical chitinolytic enzyme for the cuticular chitin degradation at the stage of molting. In this study, piperine, a natural amide compound isolated from black pepper, Piper nigrum L., was discovered for the first time to have inhibitory activity toward OfChtI. The compound-enzyme interaction was presumed to take place between the piperine benzo[d][1,3] dioxole skeleton and subsite -1 of the substrate-binding pocket of OfChtI. Hence, on the basis of the deduced inhibitory mechanism and crystal structure of the substrate-binding cavity of OfChtI, compounds 5a-f were designed and synthesized by introducing a butenolide scaffold into the lead compound piperine. The enzymatic activity assay indicated that compounds 5a-f (Ki = 1.03-2.04 μM) exhibited approximately 40-80-fold higher inhibitory activity than the lead compound piperine (I) (Ki = 81.45 μM) toward OfChtI. The inhibitory mechanism of the piperonyl butenolide compounds was elucidated by molecular dynamics, which demonstrated that the introduced butenolide skeleton improved the binding affinity to OfChtI. Moreover, the in vivo activity assay indicated that these compounds also displayed moderate insecticidal activity toward O. furnacalis. This work introduces the natural product piperine as a starting point for the development of novel insecticides targeting OfChtI.
Collapse
Affiliation(s)
- Qing Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Nan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Hui-Lin Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jing-Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xiang Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Ming-Fei Deng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Kai Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jin-E Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hong-Xia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
3
|
Hellman S, Tydén E, Hjertner B, Nilsfors F, Hu K, Morein B, Fossum C. Cytokine responses to various larval stages of equine strongyles and modulatory effects of the adjuvant G3 in vitro. Parasite Immunol 2020; 43:e12794. [PMID: 32969532 PMCID: PMC7757165 DOI: 10.1111/pim.12794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
AIMS To generate different larval stages of Strongylus vulgaris and to study cytokine responses in cultures of eqPBMC exposed to defined larval stages of S. vulgaris and cyathostomins with the aim to understand the early immune reaction to these parasites. METHODS AND RESULTS EqPBMC were exposed to S. vulgaris larvae (L3, exsheated L3 and L4) and cyathostomin L3 and analysed for cytokine gene expression. Procedures for decontamination, culturing and attenuation of larvae were established. Transcription of IL-4, IL-5 and IL-13 was induced by both S. vulgaris and cyathostomin L3. Moulting of S. vulgaris from L3 to L4 stage was accompanied by a shift to high expression of IL-5 and IL-9 (exsheated L3 and L4) and IFN-γ (L4 only). In parallel, the adjuvant G3 modified the cytokine profile induced by both parasites by reducing the expression of IL-4, IL-5 and IL-10 while concomitantly enhancing the expression of IFN-γ. CONCLUSION The L4 stage of S. vulgaris generated a cytokine profile different from that induced by the earlier L3 stage of S. vulgaris and cyathostomins. This diversity depending on the life cycle stage will have implications for the choice of antigen and adjuvant in future vaccine design.
Collapse
Affiliation(s)
- Stina Hellman
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| | - Eva Tydén
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| | - Bernt Hjertner
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| | - Frida Nilsfors
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| | - Kefei Hu
- Kefei Hu; R&D Unit, CRODA Denmark A/S, Frederikssund, Denmark
| | - Bror Morein
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| | - Caroline Fossum
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| |
Collapse
|
4
|
Strock CF, Schneider HM, Galindo-Castañeda T, Hall BT, Van Gansbeke B, Mather DE, Roth MG, Chilvers MI, Guo X, Brown K, Lynch JP. Laser ablation tomography for visualization of root colonization by edaphic organisms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5327-5342. [PMID: 31199461 PMCID: PMC6793448 DOI: 10.1093/jxb/erz271] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/05/2019] [Indexed: 05/03/2023]
Abstract
Soil biota have important effects on crop productivity, but can be difficult to study in situ. Laser ablation tomography (LAT) is a novel method that allows for rapid, three-dimensional quantitative and qualitative analysis of root anatomy, providing new opportunities to investigate interactions between roots and edaphic organisms. LAT was used for analysis of maize roots colonized by arbuscular mycorrhizal fungi, maize roots herbivorized by western corn rootworm, barley roots parasitized by cereal cyst nematode, and common bean roots damaged by Fusarium. UV excitation of root tissues affected by edaphic organisms resulted in differential autofluorescence emission, facilitating the classification of tissues and anatomical features. Samples were spatially resolved in three dimensions, enabling quantification of the volume and distribution of fungal colonization, western corn rootworm damage, nematode feeding sites, tissue compromised by Fusarium, and as well as root anatomical phenotypes. Owing to its capability for high-throughput sample imaging, LAT serves as an excellent tool to conduct large, quantitative screens to characterize genetic control of root anatomy and interactions with edaphic organisms. Additionally, this technology improves interpretation of root-organism interactions in relatively large, opaque root segments, providing opportunities for novel research investigating the effects of root anatomical phenes on associations with edaphic organisms.
Collapse
Affiliation(s)
- Christopher F Strock
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Hannah M Schneider
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | | | - Benjamin T Hall
- Lasers for Innovative Solutions, LLC, State College, PA, USA
| | - Bart Van Gansbeke
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB, Glen Osmond, SA, Australia
| | - Diane E Mather
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB, Glen Osmond, SA, Australia
| | - Mitchell G Roth
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Martin I Chilvers
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Xiangrong Guo
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Kathleen Brown
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Jonathan P Lynch
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Melesse M, Bembenek JN. Cracking the eggshell: A novel link to intracellular signaling. Dev Biol 2019; 453:107-109. [PMID: 31181194 DOI: 10.1016/j.ydbio.2019.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/28/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Michael Melesse
- Department of Biochemistry and Cellular and Molecular Biology, UT Knoxville, 414 Mossman Building, 1311 Cumberland Ave, Knoxville, TN, 37996, USA
| | - Joshua N Bembenek
- Department of Biochemistry and Cellular and Molecular Biology, UT Knoxville, 414 Mossman Building, 1311 Cumberland Ave, Knoxville, TN, 37996, USA.
| |
Collapse
|
6
|
Kumar A, Zhang KYJ. Human Chitinases: Structure, Function, and Inhibitor Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:221-251. [PMID: 31102249 DOI: 10.1007/978-981-13-7318-3_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chitinases are glycosyl hydrolases that hydrolyze the β-(1-4)-linkage of N-acetyl-D-glucosamine units present in chitin polymers. Chitinases are widely distributed enzymes and are present in a wide range of organisms including insects, plants, bacteria, fungi, and mammals. These enzymes play key roles in immunity, nutrition, pathogenicity, and arthropod molting. Humans express two chitinases, chitotriosidase 1 (CHIT1) and acid mammalian chitinase (AMCase) along with several chitinase-like proteins (CLPs). Human chitinases are reported to play a protective role against chitin-containing pathogens through their capability to degrade chitin present in the cell wall of pathogens. Now, human chitinases are gaining attention as the key players in innate immune response. Although the exact mechanism of their role in immune response is not known, studies in recent years begin to relate chitin recognition and degradation with the activation of signaling pathways involved in inflammation. The roles of both CHIT1 and AMCase in the development of various diseases have been revealed and several classes of inhibitors have been developed. However, a clear understanding could not be established due to complexities in the design of the right experiment for studying the role of human chitinase in various diseases. In this chapter, we will first outline the structural features of CHIT1 and AMcase. We will then review the progress in understanding the role of human chitinases in the development of various diseases. Finally, we will summarize the inhibitor discovery efforts targeting both CHIT1 and AMCase.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
7
|
Chen Q, Peng D. Nematode Chitin and Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:209-219. [PMID: 31102248 DOI: 10.1007/978-981-13-7318-3_10] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant-parasitic nematode infection is a global problem for agriculture and forestry. There is clearly a need for novel nematicides, because of the pitifully small repertoire of nematicides available and the effectiveness of losing or environmental prohibition of these nematicides. Chitin is the essential component of nematode eggshell and pharynx. The disturbance of chitin synthesis or hydrolysis led to nematode embryonic lethal, laying defective eggs or moulting failure. Thus, the key components in the chitin metabolic process are promising targets for anti-nematode agent's development. In this chapter, we focus on chitin and chitin synthase of nematodes, chitinases and their roles in nematode survival and application of chitin in nematode control.
Collapse
Affiliation(s)
- Qi Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Deliang Peng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Cotton JA, Bennuru S, Grote A, Harsha B, Tracey A, Beech R, Doyle SR, Dunn M, Dunning Hotopp JC, Holroyd N, Kikuchi T, Lambert O, Mhashilkar A, Mutowo P, Nursimulu N, Ribeiro JMC, Rogers MB, Stanley E, Swapna LS, Tsai IJ, Unnasch TR, Voronin D, Parkinson J, Nutman TB, Ghedin E, Berriman M, Lustigman S. The genome of Onchocerca volvulus, agent of river blindness. Nat Microbiol 2016; 2:16216. [PMID: 27869790 PMCID: PMC5310847 DOI: 10.1038/nmicrobiol.2016.216] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/26/2016] [Indexed: 01/08/2023]
Abstract
Human onchocerciasis is a serious neglected tropical disease caused by the filarial nematode Onchocerca volvulus that can lead to blindness and chronic disability. Control of the disease relies largely on mass administration of a single drug, and the development of new drugs and vaccines depends on a better knowledge of parasite biology. Here, we describe the chromosomes of O. volvulus and its Wolbachia endosymbiont. We provide the highest-quality sequence assembly for any parasitic nematode to date, giving a glimpse into the evolution of filarial parasite chromosomes and proteomes. This resource was used to investigate gene families with key functions that could be potentially exploited as targets for future drugs. Using metabolic reconstruction of the nematode and its endosymbiont, we identified enzymes that are likely to be essential for O. volvulus viability. In addition, we have generated a list of proteins that could be targeted by Federal-Drug-Agency-approved but repurposed drugs, providing starting points for anti-onchocerciasis drug development.
Collapse
Affiliation(s)
- James A. Cotton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, USA
| | - Alexandra Grote
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, USA
| | - Bhavana Harsha
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Alan Tracey
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Robin Beech
- Institute of Parasitology, McGill University, Montreal, Quebec H9X 3V9, Canada
| | - Stephen R. Doyle
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Matthew Dunn
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Taisei Kikuchi
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Olivia Lambert
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Amruta Mhashilkar
- Global Health Infectious Disease Research Program, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida 33612, USA
| | - Prudence Mutowo
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Nirvana Nursimulu
- Department of Computer Science, University of Toronto, Toronto M5S 3G4, Canada
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Jose M. C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, USA
| | - Matthew B. Rogers
- Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA
| | - Eleanor Stanley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Lakshmipuram S. Swapna
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Isheng J. Tsai
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Thomas R. Unnasch
- Global Health Infectious Disease Research Program, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida 33612, USA
| | - Denis Voronin
- New York Blood Center, New York, New York 10065, USA
| | - John Parkinson
- Department of Computer Science, University of Toronto, Toronto M5S 3G4, Canada
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Departments of Biochemistry and Molecular Genetics, University of Toronto, M5S 1A8, Canada
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, USA
- College of Global Public Health, New York University, New York, New York 10003, USA
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | | |
Collapse
|
9
|
Vannella KM, Ramalingam TR, Hart KM, de Queiroz Prado R, Sciurba J, Barron L, Borthwick LA, Smith AD, Mentink-Kane M, White S, Thompson RW, Cheever AW, Bock K, Moore I, Fitz LJ, Urban JF, Wynn TA. Acidic chitinase primes the protective immune response to gastrointestinal nematodes. Nat Immunol 2016; 17:538-44. [PMID: 27043413 DOI: 10.1038/ni.3417] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/18/2016] [Indexed: 12/15/2022]
Abstract
Acidic mammalian chitinase (AMCase) is known to be induced by allergens and helminths, yet its role in immunity is unclear. Using AMCase-deficient mice, we show that AMCase deficiency reduced the number of group 2 innate lymphoid cells during allergen challenge but was not required for establishment of type 2 inflammation in the lung in response to allergens or helminths. In contrast, AMCase-deficient mice showed a profound defect in type 2 immunity following infection with the chitin-containing gastrointestinal nematodes Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. The impaired immunity was associated with reduced mucus production and decreased intestinal expression of the signature type 2 response genes Il13, Chil3, Retnlb, and Clca1. CD103(+) dendritic cells, which regulate T cell homing, were also reduced in mesenteric lymph nodes of infected AMCase-deficient mice. Thus, AMCase functions as a critical initiator of protective type 2 responses to intestinal nematodes but is largely dispensable for allergic responses in the lung.
Collapse
Affiliation(s)
- Kevin M Vannella
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thirumalai R Ramalingam
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin M Hart
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rafael de Queiroz Prado
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua Sciurba
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Luke Barron
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lee A Borthwick
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,Tissue Fibrosis and Repair Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Allen D Smith
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Center, Beltsville, Maryland, USA
| | - Margaret Mentink-Kane
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandra White
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert W Thompson
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Allen W Cheever
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin Bock
- Infectious Disease Pathology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ian Moore
- Infectious Disease Pathology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Lori J Fitz
- Inflammation and Immunity, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | - Joseph F Urban
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Center, Beltsville, Maryland, USA
| | - Thomas A Wynn
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
White RR, Artavanis-Tsakonas K. How helminths use excretory secretory fractions to modulate dendritic cells. Virulence 2012; 3:668-77. [PMID: 23221477 PMCID: PMC3545949 DOI: 10.4161/viru.22832] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It is well known that helminth parasites have immunomodulatory effects on their hosts. They characteristically cause a skew toward TH2 immunity, stimulate Treg cells while simultaneously inhibiting TH1 and TH17 responses. Additionally, they induce eosinophilia and extensive IgE release. The exact mechanism of how the worms achieve this effect have yet to be fully elucidated; however, parasite-derived secretions and their interaction with antigen presenting cells have been centrally implicated. Herein, we will review the effects of helminth excretory-secretory fractions on dendritic cells and discuss how this interaction is crucial in shaping the host response.
Collapse
Affiliation(s)
- Rhiannon R White
- Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College London, London, UK
| | | |
Collapse
|
11
|
Tundup S, Srivastava L, Harn Jr. DA. Polarization of host immune responses by helminth-expressed glycans. Ann N Y Acad Sci 2012; 1253:E1-E13. [DOI: 10.1111/j.1749-6632.2012.06618.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Repositioning of an existing drug for the neglected tropical disease Onchocerciasis. Proc Natl Acad Sci U S A 2010; 107:3424-9. [PMID: 20142509 DOI: 10.1073/pnas.0915125107] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Onchocerciasis, or river blindness, is a neglected tropical disease caused by the filarial nematode Onchocerca volvulus that affects more than 37 million people, mainly in third world countries. Currently, the only approved drug available for mass treatment is ivermectin, however, drug resistance is beginning to emerge, thus, new therapeutic targets and agents are desperately needed to treat and cure this devastating disease. Chitin metabolism plays a central role in invertebrate biology due to the critical structural function of chitin for the organism. Taken together with its absence in mammals, targeting chitin is an appealing therapeutic avenue. Importantly, the chitinase OvCHT1 from O. volvulus was recently discovered, however, its exact role in the worm's metabolism remains unknown. A screening effort against OvCHT1 was conducted using the Johns Hopkins Clinical Compound Library that contains over 1,500 existing drugs. Closantel, a veterinary anthelmintic with known proton ionophore activities, was identified as a potent and specific inhibitor of filarial chitinases, an activity not previously reported for this compound. Notably, closantel was found also to completely inhibit molting of O. volvulus infective L3 stage larvae. Closantel appears to target two important biochemical processes essential to filarial parasites. To begin to unravel closantel's effects, a retro-fragment-based study was used to define structural elements critical for closantel's chitinase inhibitor function. As resources towards the development of new agents that target neglected tropical diseases are scant, the finding of an existing drug with impact against O. volvulus provides promise in the hunt for new therapies against river blindness.
Collapse
|
13
|
Abstract
Filariasis is caused by thread-like nematode worms, classified according to their presence in the vertebrate host. The cutaneous group includes Onchocerca volvulus, Loa loa and Mansonella streptocerca; the lymphatic group includes Wuchereria bancrofti, Brugia malayi and Brugia timori and the body cavity group includes Mansonella perstans and Mansonella ozzardi. Lymphatic filariasis, a mosquito-borne disease, is one of the most prevalent diseases in tropical and subtropical countries and is accompanied by a number of pathological conditions. In recent years, there has been rapid progress in filariasis research, which has provided new insights into the pathogenesis of filarial disease, diagnosis, chemotherapy, the host–parasite relationship and the genomics of the parasite. Together, these insights are assisting the identification of novel drug targets and the discovery of antifilarial agents and candidate vaccine molecules. This review discusses the antifilarial activity of various chemical entities, the merits and demerits of antifilarial drugs currently in use, their mechanisms of action, in addition to antifilarial drug targets and their validation.
Collapse
|
14
|
Chaston J, Goodrich-Blair H. Common trends in mutualism revealed by model associations between invertebrates and bacteria. FEMS Microbiol Rev 2010; 34:41-58. [PMID: 19909347 PMCID: PMC2794943 DOI: 10.1111/j.1574-6976.2009.00193.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mutually beneficial interactions between microorganisms and animals are a conserved and ubiquitous feature of biotic systems. In many instances animals, including humans, are dependent on their microbial associates for nutrition, defense, or development. To maintain these vital relationships, animals have evolved processes that ensure faithful transmission of specific microbial symbionts between generations. Elucidating mechanisms of transmission and symbiont specificity has been aided by the study of experimentally tractable invertebrate animals with diverse and highly evolved associations with microorganisms. Here, we review several invertebrate model systems that contribute to our current understanding of symbiont transmission, recognition, and specificity. Although the details of transmission and symbiont selection vary among associations, comparisons of diverse mutualistic associations are revealing a number of common themes, including restriction of symbiont diversity during transmission and glycan-lectin interactions during partner selection and recruitment.
Collapse
Affiliation(s)
- John Chaston
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
15
|
Kumar S, Chaudhary K, Foster JM, Novelli JF, Zhang Y, Wang S, Spiro D, Ghedin E, Carlow CKS. Mining predicted essential genes of Brugia malayi for nematode drug targets. PLoS One 2007; 2:e1189. [PMID: 18000556 PMCID: PMC2063515 DOI: 10.1371/journal.pone.0001189] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 10/25/2007] [Indexed: 12/02/2022] Open
Abstract
We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Kshitiz Chaudhary
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Jeremy M. Foster
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Jacopo F. Novelli
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Yinhua Zhang
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Shiliang Wang
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - David Spiro
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Elodie Ghedin
- The Institute for Genomic Research, Rockville, Maryland, United States of America
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Clotilde K. S. Carlow
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Nair MG, Guild KJ, Artis D. Novel effector molecules in type 2 inflammation: lessons drawn from helminth infection and allergy. THE JOURNAL OF IMMUNOLOGY 2006; 177:1393-9. [PMID: 16849442 PMCID: PMC1780267 DOI: 10.4049/jimmunol.177.3.1393] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Meera G Nair
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
17
|
Zhang Y, Foster JM, Nelson LS, Ma D, Carlow CKS. The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Dev Biol 2006; 285:330-9. [PMID: 16098962 DOI: 10.1016/j.ydbio.2005.06.037] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 06/03/2005] [Accepted: 06/17/2005] [Indexed: 11/28/2022]
Abstract
It is widely accepted that chitin is present in nematodes. However, its precise role in embryogenesis is unclear and it is unknown if chitin is necessary in other nematode tissues. Here, we determined the roles of chitin and the two predicted chitin synthase genes in Caenorhabditis elegans by chitin localization and gene disruption. Using a novel probe, we detected chitin in the eggshell and discovered elaborate chitin localization patterns in the pharyngeal lumen walls. Chitin deposition in these two sites is likely regulated by the activities of chs-1 (T25G3.2) and chs-2 (F48A11.1), respectively. Reducing chs-1 gene activity by RNAi led to eggs that were fragile and permeable to small molecules, and in the most severe case, absence of embryonic cell division. Complete loss of function in a chs-1 deletion resulted in embryos that lacked chitin in their eggshells and failed to divide. These results showed that eggshell chitin provides both mechanical support and chemical impermeability essential to developing embryos. Knocking down chs-2 by RNAi caused a defect in the pharynx and led to L1 larval arrest, indicating that chitin is involved in the development and function of the pharynx.
Collapse
Affiliation(s)
- Yinhua Zhang
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA
| | | | | | | | | |
Collapse
|