1
|
Jhingan GD, Manich M, Olivo-Marin JC, Guillen N. Live Cells Imaging and Comparative Phosphoproteomics Uncover Proteins from the Mechanobiome in Entamoeba histolytica. Int J Mol Sci 2023; 24:ijms24108726. [PMID: 37240072 DOI: 10.3390/ijms24108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Entamoeba histolytica is a protozoan parasite and the causative agent of amoebiasis in humans. This amoeba invades human tissues by taking advantage of its actin-rich cytoskeleton to move, enter the tissue matrix, kill and phagocyte the human cells. During tissue invasion, E. histolytica moves from the intestinal lumen across the mucus layer and enters the epithelial parenchyma. Faced with the chemical and physical constraints of these diverse environments, E. histolytica has developed sophisticated systems to integrate internal and external signals and to coordinate cell shape changes and motility. Cell signalling circuits are driven by interactions between the parasite and extracellular matrix, combined with rapid responses from the mechanobiome in which protein phosphorylation plays an important role. To understand the role of phosphorylation events and related signalling mechanisms, we targeted phosphatidylinositol 3-kinases followed by live cell imaging and phosphoproteomics. The results highlight 1150 proteins, out of the 7966 proteins within the amoebic proteome, as members of the phosphoproteome, including signalling and structural molecules involved in cytoskeletal activities. Inhibition of phosphatidylinositol 3-kinases alters phosphorylation in important members of these categories; a finding that correlates with changes in amoeba motility and morphology, as well as a decrease in actin-rich adhesive structures.
Collapse
Affiliation(s)
| | - Maria Manich
- Institut Pasteur, Cell Biology of Parasitism Unit, 75015 Paris, France
- Institut Pasteur, Biological Image Analysis Unit, 75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, 75015 Paris, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Biological Image Analysis Unit, 75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, 75015 Paris, France
| | - Nancy Guillen
- Institut Pasteur, Cell Biology of Parasitism Unit, 75015 Paris, France
- Institut Pasteur, Biological Image Analysis Unit, 75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS-ERL9195, 75015 Paris, France
| |
Collapse
|
2
|
Apte A, Manich M, Labruyère E, Datta S. PI Kinase-EhGEF2-EhRho5 axis contributes to LPA stimulated macropinocytosis in Entamoeba histolytica. PLoS Pathog 2022; 18:e1010550. [PMID: 35594320 PMCID: PMC9173640 DOI: 10.1371/journal.ppat.1010550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/07/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Entamoeba histolytica is a protozoan responsible for several pathologies in humans. Trophozoites breach the intestinal site to enter the bloodstream and thus traverse to a secondary site. Macropinocytosis and phagocytosis, collectively accounting for heterophagy, are the two major processes responsible for sustenance of Entamoeba histolytica within the host. Both of these processes require significant rearrangements in the structure to entrap the target. Rho GTPases play an indispensable role in mustering proteins that regulate cytoskeletal remodelling. Unlike phagocytosis which has been studied in extensive detail, information on machinery of macropinocytosis in E. histolytica is still limited. In the current study, using site directed mutagenesis and RNAi based silencing, coupled with functional studies, we have demonstrated the involvement of EhRho5 in constitutive and LPA stimulated macropinocytosis. We also report that LPA, a bioactive phospholipid present in the bloodstream of the host, activates EhRho5 and translocates it from cytosol to plasma membrane and endomembrane compartments. Using biochemical and FRAP studies, we established that a PI Kinase acts upstream of EhRho5 in LPA mediated signalling. We further identified EhGEF2 as a guanine nucleotide exchange factor of EhRho5. In the amoebic trophozoites, EhGEF2 depletion leads to reduced macropinocytic efficiency of trophozoites, thus phenocopying its substrate. Upon LPA stimulation, EhGEF2 is found to sequester near the plasma membrane in a wortmannin sensitive fashion, explaining a possible mode for activation of EhRho5 in the amoebic trophozoites. Collectively, we propose that LPA stimulated macropinocytosis in E. histolytica is driven by the PI Kinase-EhGEF2-EhRho5 axis.
Collapse
Affiliation(s)
- Achala Apte
- Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Maria Manich
- Bioimage Analysis Unit, Institut Pasteur, Paris, France
| | | | - Sunando Datta
- Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| |
Collapse
|
3
|
Umarao P, Rath PP, Gourinath S. Cdc42/Rac Interactive Binding Containing Effector Proteins in Unicellular Protozoans With Reference to Human Host: Locks of the Rho Signaling. Front Genet 2022; 13:781885. [PMID: 35186026 PMCID: PMC8847673 DOI: 10.3389/fgene.2022.781885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Small GTPases are the key to actin cytoskeleton signaling, which opens the lock of effector proteins to forward the signal downstream in several cellular pathways. Actin cytoskeleton assembly is associated with cell polarity, adhesion, movement and other functions in eukaryotic cells. Rho proteins, specifically Cdc42 and Rac, are the primary regulators of actin cytoskeleton dynamics in higher and lower eukaryotes. Effector proteins, present in an inactive state gets activated after binding to the GTP bound Cdc42/Rac to relay a signal downstream. Cdc42/Rac interactive binding (CRIB) motif is an essential conserved sequence found in effector proteins to interact with Cdc42 or Rac. A diverse range of Cdc42/Rac and their effector proteins have evolved from lower to higher eukaryotes. The present study has identified and further classified CRIB containing effector proteins in lower eukaryotes, focusing on parasitic protozoans causing neglected tropical diseases and taking human proteins as a reference point to the highest evolved organism in the evolutionary trait. Lower eukaryotes’ CRIB containing proteins fall into conventional effector molecules, PAKs (p21 activated kinase), Wiskoit-Aldrich Syndrome proteins family, and some have unique domain combinations unlike any known proteins. We also highlight the correlation between the effector protein isoforms and their selective specificity for Cdc42 or Rac proteins during evolution. Here, we report CRIB containing effector proteins; ten in Dictyostelium and Entamoeba, fourteen in Acanthamoeba, one in Trypanosoma and Giardia. CRIB containing effector proteins that have been studied so far in humans are potential candidates for drug targets in cancer, neurological disorders, and others. Conventional CRIB containing proteins from protozoan parasites remain largely elusive and our data provides their identification and classification for further in-depth functional validations. The tropical diseases caused by protozoan parasites lack combinatorial drug targets as effective paradigms. Targeting signaling mechanisms operative in these pathogens can provide greater molecules in combatting their infections.
Collapse
Affiliation(s)
- Preeti Umarao
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pragyan Parimita Rath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Hammarton TC. Who Needs a Contractile Actomyosin Ring? The Plethora of Alternative Ways to Divide a Protozoan Parasite. Front Cell Infect Microbiol 2019; 9:397. [PMID: 31824870 PMCID: PMC6881465 DOI: 10.3389/fcimb.2019.00397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
Cytokinesis, or the division of the cytoplasm, following the end of mitosis or meiosis, is accomplished in animal cells, fungi, and amoebae, by the constriction of an actomyosin contractile ring, comprising filamentous actin, myosin II, and associated proteins. However, despite this being the best-studied mode of cytokinesis, it is restricted to the Opisthokonta and Amoebozoa, since members of other evolutionary supergroups lack myosin II and must, therefore, employ different mechanisms. In particular, parasitic protozoa, many of which cause significant morbidity and mortality in humans and animals as well as considerable economic losses, employ a wide diversity of mechanisms to divide, few, if any, of which involve myosin II. In some cases, cell division is not only myosin II-independent, but actin-independent too. Mechanisms employed range from primitive mechanical cell rupture (cytofission), to motility- and/or microtubule remodeling-dependent mechanisms, to budding involving the constriction of divergent contractile rings, to hijacking host cell division machinery, with some species able to utilize multiple mechanisms. Here, I review current knowledge of cytokinesis mechanisms and their molecular control in mammalian-infective parasitic protozoa from the Excavata, Alveolata, and Amoebozoa supergroups, highlighting their often-underappreciated diversity and complexity. Billions of people and animals across the world are at risk from these pathogens, for which vaccines and/or optimal treatments are often not available. Exploiting the divergent cell division machinery in these parasites may provide new avenues for the treatment of protozoal disease.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
5
|
The motility of Entamoeba histolytica: finding ways to understand intestinal amoebiasis. Curr Opin Microbiol 2016; 34:24-30. [PMID: 27497052 DOI: 10.1016/j.mib.2016.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/16/2022]
Abstract
The pathogenic amoeba Entamoeba histolytica is able to migrate within various compartments of the human body. The present article reviews progress in understanding the mechanisms of cell motility in E. histolytica during human intestinal invasion and, in particular, how the three-dimensional characteristics of the environment regulate the parasite's behaviour. The amoeboid mode of migration that applies to E. histolytica's displacements on two-dimensional surfaces is also expected to apply to the three-dimensional environment in the human intestine although several unknown, distinct modalities may be involved. Recent advances in the field of tissue engineering have provided clues on how the construction of a human colon model could help us to understand the host's intestinal physiology and its changes following amoebic infection.
Collapse
|
6
|
Cruz OHDL, Marchat LA, Guillén N, Weber C, Rosas IL, Díaz-Chávez J, Herrera L, Rojo-Domínguez A, Orozco E, López-Camarillo C. Multinucleation and Polykaryon Formation is Promoted by the EhPC4 Transcription Factor in Entamoeba histolytica. Sci Rep 2016; 6:19611. [PMID: 26792358 PMCID: PMC4726151 DOI: 10.1038/srep19611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 12/14/2015] [Indexed: 02/01/2023] Open
Abstract
Entamoeba histolytica is the intestinal parasite responsible for human amoebiasis that is a leading cause of death in developing countries. In this protozoan, heterogeneity in DNA content, polyploidy and genome plasticity have been associated to alterations in mechanisms controlling DNA replication and cell division. Studying the function of the transcription factor EhPC4, we unexpectedly found that it is functionally related to DNA replication, and multinucleation. Site-directed mutagenesis on the FRFPKG motif revealed that the K127 residue is required for efficient EhPC4 DNA-binding activity. Remarkably, overexpression of EhPC4 significantly increased cell proliferation, DNA replication and DNA content of trophozoites. A dramatically increase in cell size resulting in the formation of giant multinucleated trophozoites (polykaryon) was also found. Multinucleation event was associated to cytokinesis failure leading to abortion of ongoing cell division. Consistently, genome-wide profiling of EhPC4 overexpressing trophozoites revealed the up-regulation of genes involved in carbohydrates and nucleic acids metabolism, chromosome segregation and cytokinesis. Forced overexpression of one of these genes, EhNUDC (nuclear movement protein), led to alterations in cytokinesis and partially recapitulated the multinucleation phenotype. These data indicate for the first time that EhPC4 is associated with events related to polyploidy and genome stability in E. histolytica.
Collapse
Affiliation(s)
| | - Laurence A. Marchat
- National Polytechnic Institute, National School of Medicine and Homeopathy, Institutional Program of Molecular Biomedicine, Biotechnology Program, Mexico City, Mexico
| | - Nancy Guillén
- Institut Pasteur, Cellular Biology of Parasitism Unit, Paris, France
- INSERM U786, Paris, France
| | - Christian Weber
- Institut Pasteur, Cellular Biology of Parasitism Unit, Paris, France
- INSERM U786, Paris, France
| | - Itzel López Rosas
- Universidad Autonoma de la Ciudad de Mexico, Genomics Sciences Program, Mexico City, Mexico
| | - José Díaz-Chávez
- National Institute of Cancerology, Carcinogenesis Laboratory, Mexico City, Mexico
| | - Luis Herrera
- National Institute of Cancerology, Carcinogenesis Laboratory, Mexico City, Mexico
| | - Arturo Rojo-Domínguez
- Metropolitan Autonomous University, Natural Sciences Department, Mexico City, Mexico
| | - Esther Orozco
- Center for Research and Advanced Studies of the National Polytechnic Institute, Department of Infectomics and Molecular Pathogenesis, Mexico City, Mexico
| | - César López-Camarillo
- Universidad Autonoma de la Ciudad de Mexico, Genomics Sciences Program, Mexico City, Mexico
| |
Collapse
|
7
|
Bosch D, Siderovski DP. Entamoeba histolytica RacC selectively engages p21-activated kinase effectors. Biochemistry 2015; 54:404-12. [PMID: 25529118 PMCID: PMC4303316 DOI: 10.1021/bi501226f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rho family GTPases modulate actin cytoskeleton dynamics by signaling through multiple effectors, including the p21-activated kinases (PAKs). The intestinal parasite Entamoeba histolytica expresses ∼20 Rho family GTPases and seven isoforms of PAK, two of which have been implicated in pathogenesis-related processes such as amoebic motility and invasion and host cell phagocytosis. Here, we describe two previously unstudied PAK isoforms, EhPAK4 and EhPAK5, as highly specific effectors of EhRacC. A structural model based on 2.35 Å X-ray crystallographic data of a complex between EhRacC(Q65L)·GTP and the EhPAK4 p21 binding domain (PBD) reveals a fairly well-conserved Rho/effector interface despite deviation of the PBD α-helix. A structural comparison with EhRho1 in complex with EhFormin1 suggests likely determinants of Rho family GTPase signaling specificity in E. histolytica. These findings suggest a high degree of Rho family GTPase diversity and specificity in the single-cell parasite E. histolytica. Because PAKs regulate pathogenesis-related processes in E. histolytica, they may be valid pharmacologic targets for anti-amoebiasis drugs.
Collapse
Affiliation(s)
- Dustin
E. Bosch
- Department
of Pharmacology, The University of North
Carolina, Chapel Hill, North Carolina 27514, United States
| | - David P. Siderovski
- Department
of Physiology & Pharmacology, West Virginia
University School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia 26506, United States,Address: 3051A Health Sciences
North, P.O. Box 9229, West Virginia University School of Medicine,
Morgantown, WV 26506-9229. E-mail: . Telephone: (304) 293-4991
| |
Collapse
|
8
|
Abstract
The parasite Entamoeba histolytica causes amebic colitis and systemic amebiasis. Among the known amebic factors contributing to pathogenesis are signaling pathways involving heterotrimeric and Ras superfamily G proteins. Here, we review the current knowledge of the roles of heterotrimeric G protein subunits, Ras, Rho and Rab GTPase families in E. histolytica pathogenesis, as well as of their downstream signaling effectors and nucleotide cycle regulators. Heterotrimeric G protein signaling likely modulates amebic motility and attachment to and killing of host cells, in part through activation of an RGS-RhoGEF (regulator of G protein signaling-Rho guanine nucleotide exchange factor) effector. Rho family GTPases, as well as RhoGEFs and Rho effectors (formins and p21-activated kinases) regulate the dynamic actin cytoskeleton of E. histolytica and associated pathogenesis-related cellular processes, such as migration, invasion, phagocytosis and evasion of the host immune response by surface receptor capping. A remarkably large family of 91 Rab GTPases has multiple roles in a complex amebic vesicular trafficking system required for phagocytosis and pinocytosis and secretion of known virulence factors, such as amebapores and cysteine proteases. Although much remains to be discovered, recent studies of G protein signaling in E. histolytica have enhanced our understanding of parasitic pathogenesis and have also highlighted possible targets for pharmacological manipulation.
Collapse
|
9
|
Christy NCV, Petri WA. Mechanisms of adherence, cytotoxicity and phagocytosis modulate the pathogenesis of Entamoeba histolytica. Future Microbiol 2011; 6:1501-19. [DOI: 10.2217/fmb.11.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The unicellular parasite Entamoeba histolytica, the causative agent of the human disease amebiasis, has traditionally been distinguished from its nonpathogenic cousin Entamoeba dispar by its propensity for the ingestion of erythrocytes. This classic feature, along with the parasite’s ability to cause extensive host cell death, are critical mechanisms of pathogenesis during human infection. Recent advances have led to a greater understanding of the molecular components that allow E. histolytica to kill and phagocytose extracellular targets during human infection and include detailed studies of the role of the parasite’s cysteine proteinases and other effectors of cytotoxicity, as well as the mechanisms of ligand recognition, signaling and intracellular trafficking during phagocytosis.
Collapse
Affiliation(s)
- Nathaniel CV Christy
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, 22908, USA
| | | |
Collapse
|
10
|
Neospora caninum: comparative gene expression profiling of Neospora caninum wild type and a temperature sensitive clone. Exp Parasitol 2011; 129:346-54. [PMID: 21963790 DOI: 10.1016/j.exppara.2011.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 09/13/2011] [Accepted: 09/16/2011] [Indexed: 11/21/2022]
Abstract
To understand the genetic basis of virulence, gene expression profiles of a temperature-sensitive clone (NCts-8, relatively avirulent) and its wild type (NC-1) of Neospora caninum were characterized and compared using a high-density microarray with approximately 63,000 distinct oligonucleotides. This microarray consists of 5692 unique N. caninum sequences, including 1980 Tentative Consensus sequences and 3712 singleton ESTs from the TIGR N. caninum Gene Index (NCGI, release 5.0). Each sequence was represented by 11 distinct 60mer oligonucleotides synthesized in situ on the microarray. The results showed that 111 genes were significantly repressed and no up-regulated genes were identified in the NCts-8 clone. The level of 10 randomly selected genes from the repressed genes was confirmed using real-time RT-PCR. Of the 111 repressed genes, 58 were hypothetical protein products and 53 were annotated genes. Over 70% of the repressed genes identified in this study are clustered on five chromosomes (I, VII, VIII, X and XII). These results suggest that the down-regulated genes may be in part responsible for the reduced pathogenesis of NCts-8; further characterization of the regulated genes may aid in understanding of molecular basis of virulence and development of countermeasures against neosporosis.
Collapse
|
11
|
A C2 domain protein kinase initiates phagocytosis in the protozoan parasite Entamoeba histolytica. Nat Commun 2011; 2:230. [PMID: 21407196 DOI: 10.1038/ncomms1199] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 01/19/2010] [Indexed: 11/08/2022] Open
Abstract
Phagocytosis is a process whereby particles are taken in by cells through mechanisms superficially similar to those for endocytosis. It serves a wide range of functions, from providing nutrition in unicellular organisms to initiation of both innate and adaptive immunity in vertebrates. In the protozoan parasite Entamoeba histolytica, it has an essential role in survival and pathogenesis. In this study, we show that EhC2PK, a C2-domain-containing protein kinase, and the Ca²(+) and actin-binding protein, EhCaBP1, are involved in the initiation of phagocytosis in E. histolytica. Conditional suppression of EhC2PK expression and overexpression of a mutant form reveals its role in the initiation of phagocytic cups. EhC2PK binds phosphatidylserine in the presence of Ca²(+) and thereby recruits EhCaBP1 and actin to the membrane. Identification of these proteins in phagocytosis is an important step in amoebic biology and these molecules could be the important targets for developing novel therapies against amoebiasis.
Collapse
|
12
|
A proteomic and cellular analysis of uropods in the pathogen Entamoeba histolytica. PLoS Negl Trop Dis 2011; 5:e1002. [PMID: 21483708 PMCID: PMC3071361 DOI: 10.1371/journal.pntd.0001002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 03/07/2011] [Indexed: 11/19/2022] Open
Abstract
Exposure of Entamoeba histolytica to specific ligands induces cell polarization via the activation of signalling pathways and cytoskeletal elements. The process leads to formation of a protruding pseudopod at the front of the cell and a retracting uropod at the rear. In the present study, we show that the uropod forms during the exposure of trophozoites to serum isolated from humans suffering of amoebiasis. To investigate uropod assembly, we used LC-MS/MS technology to identify protein components in isolated uropod fractions. The galactose/N-acetylgalactosamine lectin, the immunodominant antigen M17 (which is specifically recognized by serum from amoeba-infected persons) and a few other cells adhesion-related molecules were primarily involved. Actin-rich cytoskeleton components, GTPases from the Rac and Rab families, filamin, α-actinin and a newly identified ezrin-moesin-radixin protein were the main factors found to potentially interact with capped receptors. A set of specific cysteine proteases and a serine protease were enriched in isolated uropod fractions. However, biological assays indicated that cysteine proteases are not involved in uropod formation in E. histolytica, a fact in contrast to the situation in human motile immune cells. The surface proteins identified here are testable biomarkers which may be either recognized by the immune system and/or released into the circulation during amoebiasis.
Collapse
|
13
|
Kumar A, Molli PR, Pakala SB, Bui Nguyen TM, Rayala SK, Kumar R. PAK thread from amoeba to mammals. J Cell Biochem 2009; 107:579-85. [PMID: 19350548 DOI: 10.1002/jcb.22159] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The p21-activated kinases (PAKs) are signaling nodes that play a crucial role in cellular processes including cell motility, differentiation, survival, gene transcription, and hormone signaling. PAKs are highly conserved family of serine-threonine kinases that act as effector for small GTPases Rac and Cdc42. Most of our knowledge about PAK functions has been derived from genetic approaches in lower organisms and many of these functions are similar to that seen in mammalian cells. In this review, we have summarized the extensive information generated in lower eukaryotes and very briefly discussed the current status of PAKs in humans.
Collapse
Affiliation(s)
- Anupam Kumar
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington, District of Columbia 20037, USA
| | | | | | | | | | | |
Collapse
|
14
|
Nakada-Tsukui K, Okada H, Mitra BN, Nozaki T. Phosphatidylinositol-phosphates mediate cytoskeletal reorganization during phagocytosis via a unique modular protein consisting of RhoGEF/DH and FYVE domains in the parasitic protozoonEntamoeba histolytica. Cell Microbiol 2009; 11:1471-91. [DOI: 10.1111/j.1462-5822.2009.01341.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Current and future perspectives on the chemotherapy of the parasitic protozoa Trichomonas vaginalis and Entamoeba histolytica. Future Med Chem 2009; 1:619-43. [DOI: 10.4155/fmc.09.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Trichomonas vaginalis and Entamoeba histolytica are clinically important protozoa that affect humans. T. vaginalis produces sexually transmitted infections and E. histolytica is the causative agent of amebic dysentery. Metronidazole, a compound first used to treat T. vaginalis in 1959, is still the main drug used worldwide to treat these pathogens. It is essential to find new biochemical differences in these organisms that could be exploited to develop new antiprotozoal chemotherapeutics. Recent findings associated with T. vaginalis and E. histolytica biochemistry and host–pathogen interactions are surveyed. Knowledge concerning the biochemistry of these parasites is serving to form the foundation for the development of new approaches to control these important human pathogens.
Collapse
|
16
|
Mukherjee C, Majumder S, Lohia A. Inter-cellular variation in DNA content of Entamoeba histolytica originates from temporal and spatial uncoupling of cytokinesis from the nuclear cycle. PLoS Negl Trop Dis 2009; 3:e409. [PMID: 19352422 PMCID: PMC2659751 DOI: 10.1371/journal.pntd.0000409] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 03/11/2009] [Indexed: 11/19/2022] Open
Abstract
Accumulation of multiple copies of the genome in a single nucleus and several nuclei in a single cell has previously been noted in Entamoeba histolytica, contributing to the genetic heterogeneity of this unicellular eukaryote. In this study, we demonstrate that this genetic heterogeneity is an inherent feature of the cell cycle of this organism. Chromosome segregation occurs on a variety of novel microtubular assemblies including multi-polar spindles. Cytokinesis in E. histolytica is completed by the mechanical severing of a thin cytoplasmic bridge, either independently or with the help of neighboring cells. Importantly, cytokinesis is uncoupled from the nuclear division cycle, both temporally and spatially, leading to the formation of unequal daughter cells. Sorting of euploid and polyploid cells showed that each of these sub-populations acquired heterogeneous DNA content upon further growth. Our study conclusively demonstrates that genetic heterogeneity originates from the unique mode of cell division events in this protist. Proliferating eukaryotic cells regulate their DNA synthesis, chromosome segregation, and cell division with great precision so that daughter cells are genetically identical. Our study demonstrates that in proliferating cells of the protist pathogen Entamoeba histolytica re-duplication of DNA followed by segregation on atypical and diverse microtubular structures is frequently observed. In this parasite, cell division is erratic, so that each daughter cell may contain one or more nuclei and sometimes no nuclei. This uncoupling of cell cycle events and survival of daughter cells with unequal DNA contents leads to genetic heterogeneity in E. histolytica. Our study highlights the inherent plasticity of the Entamoeba genome and the ability of this protist to survive in the absence of strict regulatory mechanisms that are a hallmark of the eukaryotic cell cycle.
Collapse
Affiliation(s)
| | | | - Anuradha Lohia
- Department of Biochemistry, Bose Institute, Kolkata, India
- * E-mail:
| |
Collapse
|
17
|
Entamoeba histolytica encodes unique formins, a subset of which regulates DNA content and cell division. Infect Immun 2008; 76:2368-78. [PMID: 18347041 DOI: 10.1128/iai.01449-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The formin family of proteins mediates dynamic changes in actin assembly in eukaryotes, and therefore it is important to understand the function of these proteins in Entamoeba histolytica, where actin forms the major cytoskeletal network. In this study we have identified the formin homologs encoded in the E. histolytica genome based on sequence analysis. Using multiple tools, we have analyzed the primary sequences of the eight E. histolytica formins and discovered three subsets: (i) E. histolytica formin-1 to -3 (Ehformin-1 to -3), (ii) Ehformin-4, and (iii) Ehformin-5 to -8. Two of these subsets (Ehformin-1 to -3 and Ehformin-4) showed significant sequence differences from their closest homologs, while Ehformin-5 to -8 were unique among all known formins. Since Ehformin-1 to -3 showed important sequence differences from Diaphanous-related formins (DRFs), we have studied the functions of Ehformin-1 and -2 in E. histolytica transformants. Like other DRFs, Ehformin-1 and -2 associated with F-actin in response to serum factors, in pseudopodia, in pinocytic and phagocytic vesicles, and at cell division sites. Ehformin-1 and -2 also localized with the microtubular assembly in the nucleus, indicating their involvement in genome segregation. While increased expression of Ehformin-1 and -2 did not affect phagocytosis or motility, it clearly showed an increase in the number of binucleated cells, the number of nuclei in multinucleated cells, and the average DNA content of each nucleus, suggesting that these proteins regulate both mitosis and cytokinesis in E. histolytica.
Collapse
|
18
|
Lohia A, Mukherjee C, Majumder S, Dastidar PG. Genome re-duplication and irregular segregation occur during the cell cycle of Entamoeba histolytica. Biosci Rep 2008; 27:373-84. [PMID: 17592766 DOI: 10.1007/s10540-007-9058-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Heterogeneity of genome content is commonly observed in axenic cultures of Entamoeba histolytica. Cells with multiple nuclei and nuclei with heterogenous genome contents suggest that regulatory mechanisms that ensure alternation of DNA synthesis and mitosis are absent in this organism. Therefore, several endo-reduplicative cycles may occur without mitosis. The data also shows that unlike other endo-reduplicating organisms, E.histolytica does not undergo a precise number of endo-reduplicative cycles. We propose that irregular endo-reduplication and genome partitioning lead to heterogeneity in the genome content of E.histolytica trophozoites in their proliferative phase. The goal of future studies should be aimed at understanding the mechanisms that are involved in (a) accumulation of multiple genome contents in a single nucleus; (b) genome segregation in nuclei that contain multiple genome contents and (c) maintenance of genome fidelity in E. histolytica.
Collapse
Affiliation(s)
- Anuradha Lohia
- Department of Biochemistry, Bose Institute, Kolkata, 700054, India.
| | | | | | | |
Collapse
|
19
|
Dutta S, Sardar A, Ray D, Raha S. Molecular and functional characterization of EhPAK3, a p21 activated kinase from Entamoeba histolytica. Gene 2007; 402:57-67. [PMID: 17761392 DOI: 10.1016/j.gene.2007.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/10/2007] [Accepted: 07/17/2007] [Indexed: 11/25/2022]
Abstract
p21-activated kinases (PAKs) are a family of serine/threonine kinases whose activity is regulated by the binding of the small Rho family GTPases as well as by RhoGTPase independent mechanisms. PAKs have wide-ranging functions which include cytoskeletal organisation, cell motility, cell proliferation and survival. We have identified a PAK from Entamoeba histolytica - EhPAK3 that is distributed in the cytoplasm of unstimulated cells and localizes to the caps after induction of capping with Concanavalin A. EhPAK3 contains a GTPase interacting (CRIB) domain, an N-terminal pleckstrin homology (PH) domain and a C-terminal kinase domain. Among the PAKs of E. histolytica studied so far, EhPAK3 bears the maximum similarity to Dictyostelium discoideum PAKC (DdPAKC). Phylogenetic analysis showed that EhPAK3 was closely related to DdPAKC and forms a group with DdPAKA, Dd Myosin I heavy chain kinase (DdMIHCK), and a PAK reported earlier from E. histolytica EhPAK2. Recombinant full-length EhPAK3 undergoes auotophosphorylation and phosphorylates histone H1 in vitro in the absence of any small GTPase. This is the first comprehensive characterization of a PAK protein from E. histolytica, which has constitutive activity and has demonstrated a strong involvement in receptor capping.
Collapse
Affiliation(s)
- Suman Dutta
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhan nagar, Kolkata-700064, India
| | | | | | | |
Collapse
|
20
|
Arias-Romero LE, de la Rosa CHG, Almaráz-Barrera MDJ, Diaz-Valencia JD, Sosa-Peinado A, Vargas M. EhGEF3, a novel Dbl family member, regulates EhRacA activation during chemotaxis and capping inEntamoeba histolytica. ACTA ACUST UNITED AC 2007; 64:390-404. [PMID: 17323375 DOI: 10.1002/cm.20191] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rho GTPases are critical elements involved in the regulation of signal transduction cascades from extracellular stimuli to cytoskeleton. The Rho guanine nucleotide exchange factors (RhoGEFs) have been implicated in direct activation of these GTPases. Here, we describe a novel RhoGEF, denominated EhGEF3 from the parasite Entamoeba histolytica, which encodes a 110 kDa protein containing the domain arrangement of a Dbl homology domain in tandem with a pleckstrin homology domain, the DH domain of EhGEF3 is closely related with the one of the Vav3 protein. Biochemical analysis revealed that EhGEF3 is capable of stimulating nucleotide exchange on the E. histolytica EhRacA and EhRho1 GTPases in vitro, however only a partial GEF activity toward Cdc42 was observed. Conserved residue analysis showed that the N816 and L817 residues are critical for EhGEF3 activity. Cellular studies revealed that EhGEF3 colocalises with EhRacA in the rear of migrating cells, probably regulating the retraction of the uroid and promoting the activation of these GTPase during the chemotactic response toward fibronectin, and that EhGEF3 also regulates EhRacA activation during the capping of cell receptors. These results suggest that EhGEF3 should have a direct role in activating EhRacA, and in bringing the activated GTPase to specific target sites such as the uroid.
Collapse
|