1
|
Dass S, Shunmugam S, Charital S, Duley S, Arnold CS, Katris NJ, Cavaillès P, Cesbron-Delauw MF, Yamaryo-Botté Y, Botté CY. Toxoplasma acyl-CoA synthetase TgACS3 is crucial to channel host fatty acids in lipid droplets and for parasite propagation. J Lipid Res 2024; 65:100645. [PMID: 39306040 PMCID: PMC11526091 DOI: 10.1016/j.jlr.2024.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 10/18/2024] Open
Abstract
Apicomplexa comprise important pathogenic parasitic protists that heavily depend on lipid acquisition to survive within their human host cells. Lipid synthesis relies on the incorporation of an essential combination of fatty acids (FAs) either generated by a metabolically adaptable de novo synthesis in the parasite or by scavenging from the host cell. The incorporation of FAs into membrane lipids depends on their obligate metabolic activation by specific enzyme groups, acyl-CoA synthetases (ACSs). Each ACS has its own specificity, so it can fulfill specific metabolic functions. Whilst such functionalities have been well studied in other eukaryotic models, their roles and importance in Apicomplexa are currently very limited, especially for Toxoplasma gondii. Here, we report the identification of seven putative ACSs encoded by the genome of T. gondii (TgACS), which localize to different sub-cellular compartments of the parasite, suggesting exclusive functions. We show that the perinuclear/cytoplasmic TgACS3 regulates the replication and growth of Toxoplasma tachyzoites. Conditional disruption of TgACS3 shows that the enzyme is required for parasite propagation and survival, especially under high host nutrient content. Lipidomic analysis of parasites lacking TgACS3 reveals its role in the activation of host-derived FAs that are used for i) parasite membrane phospholipid and ii) storage triacylglycerol (TAG) syntheses, allowing proper membrane biogenesis of parasite progenies. Altogether, our results reveal the role of TgACS3 as the bulk FA activator for membrane biogenesis allowing intracellular division and survival in T. gondii tachyzoites, further pointing to the importance of ACS and FA metabolism for the parasite.
Collapse
Affiliation(s)
- Sheena Dass
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Serena Shunmugam
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Sarah Charital
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Samuel Duley
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Christophe-Sébastien Arnold
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Nicholas J Katris
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Pierre Cavaillès
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Marie-France Cesbron-Delauw
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France.
| | - Cyrille Y Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France.
| |
Collapse
|
2
|
Charital S, Shunmugam S, Dass S, Alazzi AM, Arnold CS, Katris NJ, Duley S, Quansah NA, Pierrel F, Govin J, Yamaryo-Botté Y, Botté CY. The acyl-CoA synthetase TgACS1 allows neutral lipid metabolism and extracellular motility in Toxoplasma gondii through relocation via its peroxisomal targeting sequence (PTS) under low nutrient conditions. mBio 2024; 15:e0042724. [PMID: 38501871 PMCID: PMC11005404 DOI: 10.1128/mbio.00427-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Apicomplexa parasites cause major diseases such as toxoplasmosis and malaria that have major health and economic burdens. These unicellular pathogens are obligate intracellular parasites that heavily depend on lipid metabolism for the survival within their hosts. Their lipid synthesis relies on an essential combination of fatty acids (FAs) obtained from both de novo synthesis and scavenging from the host. The constant flux of scavenged FA needs to be channeled toward parasite lipid storage, and these FA storages are timely mobilized during parasite division. In eukaryotes, the utilization of FA relies on their obligate metabolic activation mediated by acyl-co-enzyme A (CoA) synthases (ACSs), which catalyze the thioesterification of FA to a CoA. Besides the essential functions of FA for parasite survival, the presence and roles of ACS are yet to be determined in Apicomplexa. Here, we identified TgACS1 as a Toxoplasma gondii cytosolic ACS that is involved in FA mobilization in the parasite specifically during low host nutrient conditions, especially in extracellular stages where it adopts a different localization. Heterologous complementation of yeast ACS mutants confirmed TgACS1 as being an Acyl-CoA synthetase of the bubble gum family that is most likely involved in β-oxidation processes. We further demonstrate that TgACS1 is critical for gliding motility of extracellular parasite facing low nutrient conditions, by relocating to peroxisomal-like area.IMPORTANCEToxoplasma gondii, causing human toxoplasmosis, is an Apicomplexa parasite and model within this phylum that hosts major infectious agents, such as Plasmodium spp., responsible for malaria. The diseases caused by apicomplexans are responsible for major social and economic burdens affecting hundreds of millions of people, like toxoplasmosis chronically present in about one-third of the world's population. Lack of efficient vaccines, rapid emergence of resistance to existing treatments, and toxic side effects of current treatments all argue for the urgent need to develop new therapeutic tools to combat these diseases. Understanding the key metabolic pathways sustaining host-intracellular parasite interactions is pivotal to develop new efficient ways to kill these parasites. Current consensus supports parasite lipid synthesis and trafficking as pertinent target for novel treatments. Many processes of this essential lipid metabolism in the parasite are not fully understood. The capacity for the parasites to sense and metabolically adapt to the host physiological conditions has only recently been unraveled. Our results clearly indicate the role of acyl-co-enzyme A (CoA) synthetases for the essential metabolic activation of fatty acid (FA) used to maintain parasite propagation and survival. The significance of our research is (i) the identification of seven of these enzymes that localize at different cellular areas in T. gondii parasites; (ii) using lipidomic approaches, we show that TgACS1 mobilizes FA under low host nutrient content; (iii) yeast complementation showed that acyl-CoA synthase 1 (ACS1) is an ACS that is likely involved in peroxisomal β-oxidation; (iv) the importance of the peroxisomal targeting sequence for correct localization of TgACS1 to a peroxisomal-like compartment in extracellular parasites; and lastly, (v) that TgACS1 has a crucial role in energy production and extracellular parasite motility.
Collapse
Affiliation(s)
- Sarah Charital
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Serena Shunmugam
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Sheena Dass
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Anna Maria Alazzi
- Team Govin, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Christophe-Sébastien Arnold
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Nicholas J. Katris
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Samuel Duley
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Nyamekye A. Quansah
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Fabien Pierrel
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Jérôme Govin
- Team Govin, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Cyrille Y. Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
3
|
Shunmugam S, Quansah N, Flammersfeld A, Islam MM, Sassmannshausen J, Bennink S, Yamaryo-Botté Y, Pradel G, Botté CY. The patatin-like phospholipase PfPNPLA2 is involved in the mitochondrial degradation of phosphatidylglycerol during Plasmodium falciparum blood stage development. Front Cell Infect Microbiol 2023; 13:997245. [PMID: 38089812 PMCID: PMC10711835 DOI: 10.3389/fcimb.2023.997245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/09/2023] [Indexed: 12/18/2023] Open
Abstract
Plasmodium falciparum is an Apicomplexa responsible for human malaria, a major disease causing more than ½ million deaths every year, against which there is no fully efficient vaccine. The current rapid emergence of drug resistances emphasizes the need to identify novel drug targets. Increasing evidences show that lipid synthesis and trafficking are essential for parasite survival and pathogenesis, and that these pathways represent potential points of attack. Large amounts of phospholipids are needed for the generation of membrane compartments for newly divided parasites in the host cell. Parasite membrane homeostasis is achieved by an essential combination of parasite de novo lipid synthesis/recycling and massive host lipid scavenging. Latest data suggest that the mobilization and channeling of lipid resources is key for asexual parasite survival within the host red blood cell, but the molecular actors allowing lipid acquisition are poorly characterized. Enzymes remodeling lipids such as phospholipases are likely involved in these mechanisms. P. falciparum possesses an unusually large set of phospholipases, whose functions are largely unknown. Here we focused on the putative patatin-like phospholipase PfPNPLA2, for which we generated an glmS-inducible knockdown line and investigated its role during blood stages malaria. Disruption of the mitochondrial PfPNPLA2 in the asexual blood stages affected mitochondrial morphology and further induced a significant defect in parasite replication and survival, in particular under low host lipid availability. Lipidomic analyses revealed that PfPNPLA2 specifically degrades the parasite membrane lipid phosphatidylglycerol to generate lysobisphosphatidic acid. PfPNPLA2 knockdown further resulted in an increased host lipid scavenging accumulating in the form of storage lipids and free fatty acids. These results suggest that PfPNPLA2 is involved in the recycling of parasite phosphatidylglycerol to sustain optimal intraerythrocytic development when the host resources are scarce. This work strengthens our understanding of the complex lipid homeostasis pathways to acquire lipids and allow asexual parasite survival.
Collapse
Affiliation(s)
- Serena Shunmugam
- Apicolipid Team, Institute for Avanced Biosciences, Centre National pour la Recherche Scientifique (CNRS) UMR5309, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France
| | - Nyamekye Quansah
- Apicolipid Team, Institute for Avanced Biosciences, Centre National pour la Recherche Scientifique (CNRS) UMR5309, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France
| | - Ansgar Flammersfeld
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Md Muzahidul Islam
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Juliane Sassmannshausen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team, Institute for Avanced Biosciences, Centre National pour la Recherche Scientifique (CNRS) UMR5309, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Cyrille Y. Botté
- Apicolipid Team, Institute for Avanced Biosciences, Centre National pour la Recherche Scientifique (CNRS) UMR5309, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
4
|
Bopp S, Pasaje CFA, Summers RL, Magistrado-Coxen P, Schindler KA, Corpas-Lopez V, Yeo T, Mok S, Dey S, Smick S, Nasamu AS, Demas AR, Milne R, Wiedemar N, Corey V, Gomez-Lorenzo MDG, Franco V, Early AM, Lukens AK, Milner D, Furtado J, Gamo FJ, Winzeler EA, Volkman SK, Duffey M, Laleu B, Fidock DA, Wyllie S, Niles JC, Wirth DF. Potent acyl-CoA synthetase 10 inhibitors kill Plasmodium falciparum by disrupting triglyceride formation. Nat Commun 2023; 14:1455. [PMID: 36927839 PMCID: PMC10020447 DOI: 10.1038/s41467-023-36921-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Identifying how small molecules act to kill malaria parasites can lead to new "chemically validated" targets. By pressuring Plasmodium falciparum asexual blood stage parasites with three novel structurally-unrelated antimalarial compounds (MMV665924, MMV019719 and MMV897615), and performing whole-genome sequence analysis on resistant parasite lines, we identify multiple mutations in the P. falciparum acyl-CoA synthetase (ACS) genes PfACS10 (PF3D7_0525100, M300I, A268D/V, F427L) and PfACS11 (PF3D7_1238800, F387V, D648Y, and E668K). Allelic replacement and thermal proteome profiling validates PfACS10 as a target of these compounds. We demonstrate that this protein is essential for parasite growth by conditional knockdown and observe increased compound susceptibility upon reduced expression. Inhibition of PfACS10 leads to a reduction in triacylglycerols and a buildup of its lipid precursors, providing key insights into its function. Analysis of the PfACS11 gene and its mutations point to a role in mediating resistance via decreased protein stability.
Collapse
Affiliation(s)
- Selina Bopp
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | | | - Robert L Summers
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Pamela Magistrado-Coxen
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Victoriano Corpas-Lopez
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sebastian Smick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Armiyaw S Nasamu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allison R Demas
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Rachel Milne
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Natalie Wiedemar
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Victoria Corey
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Maria De Gracia Gomez-Lorenzo
- Tres Cantos Medicines Research and Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Virginia Franco
- Tres Cantos Medicines Research and Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Angela M Early
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Amanda K Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Danny Milner
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Jeremy Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francisco-Javier Gamo
- Tres Cantos Medicines Research and Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Elizabeth A Winzeler
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
- College of Natural, Behavioral, and Health Sciences, Simmons University, Boston, MA, USA
| | | | - Benoît Laleu
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
5
|
Patterns of Heterochromatin Transitions Linked to Changes in the Expression of Plasmodium falciparum Clonally Variant Genes. Microbiol Spectr 2023; 11:e0304922. [PMID: 36515553 PMCID: PMC9927496 DOI: 10.1128/spectrum.03049-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The survival of malaria parasites in the changing human blood environment largely depends on their ability to alter gene expression by epigenetic mechanisms. The active state of Plasmodium falciparum clonally variant genes (CVGs) is associated with euchromatin characterized by the histone mark H3K9ac, whereas the silenced state is characterized by H3K9me3-based heterochromatin. Expression switches are linked to euchromatin-heterochromatin transitions, but these transitions have not been characterized for the majority of CVGs. To define the heterochromatin distribution patterns associated with the alternative transcriptional states of CVGs, we compared H3K9me3 occupancy at a genome-wide level among several parasite subclones of the same genetic background that differed in the transcriptional state of many CVGs. We found that de novo heterochromatin formation or the complete disruption of a heterochromatin domain is a relatively rare event, and for the majority of CVGs, expression switches can be explained by the expansion or retraction of heterochromatin domains. We identified different modalities of heterochromatin changes linked to transcriptional differences, but despite this complexity, heterochromatin distribution patterns generally enable the prediction of the transcriptional state of specific CVGs. We also found that in some subclones, several var genes were simultaneously in an active state. Furthermore, the heterochromatin levels in the putative regulatory region of the gdv1 antisense noncoding RNA, a regulator of sexual commitment, varied between parasite lines with different sexual conversion rates. IMPORTANCE The malaria parasite P. falciparum is responsible for more than half a million deaths every year. P. falciparum clonally variant genes (CVGs) mediate fundamental host-parasite interactions and play a key role in parasite adaptation to fluctuations in the conditions of the human host. The expression of CVGs is regulated at the epigenetic level by changes in the distribution of a type of chromatin called heterochromatin. Here, we describe at a genome-wide level the changes in the heterochromatin distribution associated with the different transcriptional states of CVGs. Our results also reveal a likely role for heterochromatin at a particular locus in determining the parasite investment in transmission to mosquitoes. Additionally, this data set will enable the prediction of the transcriptional state of CVGs from epigenomic data, which is important for the study of parasite adaptation to the conditions of the host in natural malaria infections.
Collapse
|
6
|
Leveraging a Fluorescent Fatty Acid Probe to Discover Cell-Permeable Inhibitors of Plasmodium falciparum Glycerolipid Biosynthesis. Microbiol Spectr 2022; 10:e0245622. [PMID: 36314974 PMCID: PMC9769509 DOI: 10.1128/spectrum.02456-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A sensitive and quantitative fluorescence-based approach is presented for characterizing fatty acid acquisition and lipid biosynthesis by asexually replicating, intraerythrocytic Plasmodium falciparum. We show that a BODIPY-containing, green-fluorescent fatty acid analog is efficiently and rapidly incorporated into parasite neutral lipids and phospholipids. Prelabeling with a red-fluorescent ceramide analog permits normalization and enables reliable quantitation of glycerolipid labeling. Inhibition of lipid labeling by competition with natural fatty acids and by acyl-coenzyme A synthetase and diacylglycerol acyltransferase inhibitors demonstrates that the fluorescent fatty acid probe is acquired, activated, and transferred to lipids through physiologically-relevant pathways. To assess its utility in discovering small molecules that block parasite lipid biosynthesis, the lipid labeling assay was used to screen a panel of mammalian lipase inhibitors and a selection of compounds from the "Malaria Box" anti-malarial collection. Several compounds were identified that inhibited the incorporation of the fluorescent fatty acid probe into lipids in cultured parasites at low micromolar concentrations. Two contrasting profiles of suppression of neutral lipid and phospholipid synthesis were observed, which implies the inhibition of distinct pathways. IMPORTANCE The human malaria parasite Plasmodium falciparum relies on fatty acid scavenging to supply this essential precursor of lipid synthesis during its asexual replication cycle in human erythrocytes. This dependence on host fatty acids represents a potential vulnerability that can be exploited to develop new anti-malarial therapies. The quantitative experimental approach described here provides a platform for simultaneously interrogating multiple facets of lipid metabolism- fatty acid uptake, fatty acyl-CoA synthesis, and neutral lipid and phospholipid biosynthesis- and of identifying cell-permeable inhibitors that are active in situ.
Collapse
|
7
|
Shunmugam S, Arnold CS, Dass S, Katris NJ, Botté CY. The flexibility of Apicomplexa parasites in lipid metabolism. PLoS Pathog 2022; 18:e1010313. [PMID: 35298557 PMCID: PMC8929637 DOI: 10.1371/journal.ppat.1010313] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Apicomplexa are obligate intracellular parasites responsible for major human infectious diseases such as toxoplasmosis and malaria, which pose social and economic burdens around the world. To survive and propagate, these parasites need to acquire a significant number of essential biomolecules from their hosts. Among these biomolecules, lipids are a key metabolite required for parasite membrane biogenesis, signaling events, and energy storage. Parasites can either scavenge lipids from their host or synthesize them de novo in a relict plastid, the apicoplast. During their complex life cycle (sexual/asexual/dormant), Apicomplexa infect a large variety of cells and their metabolic flexibility allows them to adapt to different host environments such as low/high fat content or low/high sugar levels. In this review, we discuss the role of lipids in Apicomplexa parasites and summarize recent findings on the metabolic mechanisms in host nutrient adaptation.
Collapse
Affiliation(s)
- Serena Shunmugam
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Christophe-Sébastien Arnold
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Sheena Dass
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Nicholas J. Katris
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Cyrille Y. Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| |
Collapse
|
8
|
Band G, Leffler EM, Jallow M, Sisay-Joof F, Ndila CM, Macharia AW, Hubbart C, Jeffreys AE, Rowlands K, Nguyen T, Gonçalves S, Ariani CV, Stalker J, Pearson RD, Amato R, Drury E, Sirugo G, d'Alessandro U, Bojang KA, Marsh K, Peshu N, Saelens JW, Diakité M, Taylor SM, Conway DJ, Williams TN, Rockett KA, Kwiatkowski DP. Malaria protection due to sickle haemoglobin depends on parasite genotype. Nature 2021; 602:106-111. [PMID: 34883497 PMCID: PMC8810385 DOI: 10.1038/s41586-021-04288-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022]
Abstract
Host genetic factors can confer resistance against malaria1, raising the question of whether this has led to evolutionary adaptation of parasite populations. Here we searched for association between candidate host and parasite genetic variants in 3,346 Gambian and Kenyan children with severe malaria caused by Plasmodium falciparum. We identified a strong association between sickle haemoglobin (HbS) in the host and three regions of the parasite genome, which is not explained by population structure or other covariates, and which is replicated in additional samples. The HbS-associated alleles include nonsynonymous variants in the gene for the acyl-CoA synthetase family member2–4PfACS8 on chromosome 2, in a second region of chromosome 2, and in a region containing structural variation on chromosome 11. The alleles are in strong linkage disequilibrium and have frequencies that covary with the frequency of HbS across populations, in particular being much more common in Africa than other parts of the world. The estimated protective effect of HbS against severe malaria, as determined by comparison of cases with population controls, varies greatly according to the parasite genotype at these three loci. These findings open up a new avenue of enquiry into the biological and epidemiological significance of the HbS-associated polymorphisms in the parasite genome and the evolutionary forces that have led to their high frequency and strong linkage disequilibrium in African P. falciparum populations. A strong association has been found between three regions of the Plasmodium falciparum genome and sickle haemoglobin in children with severe malaria, suggesting parasites have adapted to overcome natural host immunity.
Collapse
Affiliation(s)
- Gavin Band
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK. .,Wellcome Sanger Institute, Hinxton, Cambridge, UK. .,Big Data Institute, Li Ka Shing Centre for Health and Information Discovery, Old Road Campus, Oxford, USA.
| | - Ellen M Leffler
- Wellcome Sanger Institute, Hinxton, Cambridge, UK.,Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Muminatou Jallow
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia.,Edward Francis Small Teaching Hospital (formerly Royal Victoria Teaching Hospital), Independence Drive, Banjul, The Gambia
| | - Fatoumatta Sisay-Joof
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia
| | - Carolyne M Ndila
- KEMRI-Wellcome Trust Research Programme, PO Box 230, Kilifi, Kenya
| | | | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Anna E Jeffreys
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Kate Rowlands
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Thuy Nguyen
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | | | | | - Jim Stalker
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Richard D Pearson
- Wellcome Sanger Institute, Hinxton, Cambridge, UK.,Big Data Institute, Li Ka Shing Centre for Health and Information Discovery, Old Road Campus, Oxford, USA
| | | | | | - Giorgio Sirugo
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia.,Division of Translational Medicine and Human Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Umberto d'Alessandro
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia
| | - Kalifa A Bojang
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, PO Box 230, Kilifi, Kenya.,Nuffield Department of Medicine, NDM Research Building, Roosevelt Drive, Headington, Oxford, UK
| | - Norbert Peshu
- KEMRI-Wellcome Trust Research Programme, PO Box 230, Kilifi, Kenya
| | - Joseph W Saelens
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Mahamadou Diakité
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Steve M Taylor
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Global Health Institute, Duke University, Durham, NC, USA
| | - David J Conway
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia.,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, PO Box 230, Kilifi, Kenya.,Institute for Global Health Innovation, Department of Surgery and Cancer, Imperial College, London, London, UK
| | - Kirk A Rockett
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK. .,Wellcome Sanger Institute, Hinxton, Cambridge, UK.
| | - Dominic P Kwiatkowski
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK. .,Wellcome Sanger Institute, Hinxton, Cambridge, UK. .,Big Data Institute, Li Ka Shing Centre for Health and Information Discovery, Old Road Campus, Oxford, USA.
| |
Collapse
|
9
|
de Vries LE, Lunghi M, Krishnan A, Kooij TWA, Soldati-Favre D. Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets. PLoS Pathog 2021; 17:e1010124. [PMID: 34969059 PMCID: PMC8717973 DOI: 10.1371/journal.ppat.1010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Apicomplexa phylum comprises thousands of distinct intracellular parasite species, including coccidians, haemosporidians, piroplasms, and cryptosporidia. These parasites are characterized by complex and divergent life cycles occupying a variety of host niches. Consequently, they exhibit distinct adaptations to the differences in nutritional availabilities, either relying on biosynthetic pathways or by salvaging metabolites from their host. Pantothenate (Pan, vitamin B5) is the precursor for the synthesis of an essential cofactor, coenzyme A (CoA), but among the apicomplexans, only the coccidian subgroup has the ability to synthesize Pan. While the pathway to synthesize CoA from Pan is largely conserved across all branches of life, there are differences in the redundancy of enzymes and possible alternative pathways to generate CoA from Pan. Impeding the scavenge of Pan and synthesis of Pan and CoA have been long recognized as potential targets for antimicrobial drug development, but in order to fully exploit these critical pathways, it is important to understand such differences. Recently, a potent class of pantothenamides (PanAms), Pan analogs, which target CoA-utilizing enzymes, has entered antimalarial preclinical development. The potential of PanAms to target multiple downstream pathways make them a promising compound class as broad antiparasitic drugs against other apicomplexans. In this review, we summarize the recent advances in understanding the Pan and CoA biosynthesis pathways, and the suitability of these pathways as drug targets in Apicomplexa, with a particular focus on the cyst-forming coccidian, Toxoplasma gondii, and the haemosporidian, Plasmodium falciparum.
Collapse
Affiliation(s)
- Laura E. de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matteo Lunghi
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Taco W. A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Novel insights from the Plasmodium falciparum sporozoite-specific proteome by probabilistic integration of 26 studies. PLoS Comput Biol 2021; 17:e1008067. [PMID: 33930021 PMCID: PMC8115857 DOI: 10.1371/journal.pcbi.1008067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 05/12/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Plasmodium species, the causative agent of malaria, have a complex life cycle involving two hosts. The sporozoite life stage is characterized by an extended phase in the mosquito salivary glands followed by free movement and rapid invasion of hepatocytes in the human host. This transmission stage has been the subject of many transcriptomics and proteomics studies and is also targeted by the most advanced malaria vaccine. We applied Bayesian data integration to determine which proteins are not only present in sporozoites but are also specific to that stage. Transcriptomic and proteomic Plasmodium data sets from 26 studies were weighted for how representative they are for sporozoites, based on a carefully assembled gold standard for Plasmodium falciparum (Pf) proteins known to be present or absent during the sporozoite life stage. Of 5418 Pf genes for which expression data were available at the RNA level or at the protein level, 975 were identified as enriched in sporozoites and 90 specific to them. We show that Pf sporozoites are enriched for proteins involved in type II fatty acid synthesis in the apicoplast and GPI anchor synthesis, but otherwise appear metabolically relatively inactive in the salivary glands of mosquitos. Newly annotated hypothetical sporozoite-specific and sporozoite-enriched proteins highlight sporozoite-specific functions. They include PF3D7_0104100 that we identified to be homologous to the prominin family, which in human has been related to a quiescent state of cancer cells. We document high levels of genetic variability for sporozoite proteins, specifically for sporozoite-specific proteins that elicit antibodies in the human host. Nevertheless, we can identify nine relatively well-conserved sporozoite proteins that elicit antibodies and that together can serve as markers for previous exposure. Our understanding of sporozoite biology benefits from identifying key pathways that are enriched during this life stage. This work can guide studies of molecular mechanisms underlying sporozoite biology and potential well-conserved targets for marker and drug development. When a person is bitten by an infectious malaria mosquito, sporozoites are injected into the skin with mosquito saliva. These sporozoites then travel to the liver, invade hepatocytes and multiply before the onset of the symptom-causing blood stage of malaria. By integrating published data, we contrast sporozoite protein expression with other life stages to filter out the unique features of sporozoites that help us understand this stage. We used a “guideline” that we derived from the literature on individual proteins so that we knew which proteins should be present or absent at the sporozoite stage, allowing us to weigh 26 data sets for their relevance to sporozoites. Among the newly discovered sporozoite-specific genes are candidates for fatty acid synthesis while others might play a role keeping the sporozoites in an inactive state in the mosquito salivary glands. Furthermore, we show that most sporozoite-specific proteins are genetically more variable than non-sporozoite proteins. We identify a set of conserved sporozoite proteins against which antibodies can serve as markers of recent exposure to sporozoites or that can serve as vaccine candidates. Our predictions of sporozoite-specific proteins and the assignment of previously unknown functions give new insights into the biology of this life stage.
Collapse
|
11
|
Creative interior design by Plasmodium falciparum: Lipid metabolism and the parasite's secret chamber. Parasitol Int 2021; 83:102369. [PMID: 33905815 DOI: 10.1016/j.parint.2021.102369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 11/21/2022]
Abstract
Malaria parasites conceal themselves within host erythrocytes and establish a necessary logistics system through the three-membrane layered structures of these cells. To establish this system, lipid metabolism is needed for the de novo synthesis of lipids and the recycling of extracellular lipids and erythrocyte lipid components. Cholesterol supply depends on its uptake from the extracellular environment and erythrocyte cytoplasm, but phospholipids can be synthesized on their own. This differential production of lipid species creates unique modifications in the lipid profile of parasitized erythrocytes, which in turn may influence the biophysical and/or mechanical properties of organelles and vesicles and communication among them. Variations in local membrane properties possibly influence the transportation of various molecules such as parasite-derived proteins, because efficiencies in secretion, vesicle fusion and budding are partly determined by the lipid profiles. Comprehensive understanding of the parasite's lipid metabolism and the biophysics of lipid membranes provides fundamental knowledge about these pathogenic organisms and could lead to new anti-malarials.
Collapse
|
12
|
Schalkwijk J, Allman EL, Jansen PAM, de Vries LE, Verhoef JMJ, Jackowski S, Botman PNM, Beuckens-Schortinghuis CA, Koolen KMJ, Bolscher JM, Vos MW, Miller K, Reeves SA, Pett H, Trevitt G, Wittlin S, Scheurer C, Sax S, Fischli C, Angulo-Barturen I, Jiménez-Diaz MB, Josling G, Kooij TWA, Bonnert R, Campo B, Blaauw RH, Rutjes FPJT, Sauerwein RW, Llinás M, Hermkens PHH, Dechering KJ. Antimalarial pantothenamide metabolites target acetyl-coenzyme A biosynthesis in Plasmodium falciparum. Sci Transl Med 2020; 11:11/510/eaas9917. [PMID: 31534021 DOI: 10.1126/scitranslmed.aas9917] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 09/07/2018] [Accepted: 03/28/2019] [Indexed: 01/09/2023]
Abstract
Malaria eradication is critically dependent on new therapeutics that target resistant Plasmodium parasites and block transmission of the disease. Here, we report that pantothenamide bioisosteres were active against blood-stage Plasmodium falciparum parasites and also blocked transmission of sexual stages to the mosquito vector. These compounds were resistant to degradation by serum pantetheinases, showed favorable pharmacokinetic properties, and cleared parasites in a humanized mouse model of P. falciparum infection. Metabolomics revealed that coenzyme A biosynthetic enzymes converted pantothenamides into coenzyme A analogs that interfered with parasite acetyl-coenzyme A anabolism. Resistant parasites generated in vitro showed mutations in acetyl-coenzyme A synthetase and acyl-coenzyme A synthetase 11. Introduction and reversion of these mutations in P. falciparum using CRISPR-Cas9 gene editing confirmed the roles of these enzymes in the sensitivity of the malaria parasites to pantothenamides. These pantothenamide compounds with a new mode of action may have potential as drugs against malaria parasites.
Collapse
Affiliation(s)
- Joost Schalkwijk
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Erik L Allman
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802 USA
| | - Patrick A M Jansen
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Laura E de Vries
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Julie M J Verhoef
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | | | | | | | | | - Karen Miller
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stacy A Reeves
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Helmi Pett
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Christian Scheurer
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sibylle Sax
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Christoph Fischli
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | | | - Gabrielle Josling
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802 USA
| | - Taco W A Kooij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,TropIQ Health Sciences, Nijmegen, Netherlands
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802 USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 USA
| | | | | |
Collapse
|
13
|
The impact of antimalarial resistance on the genetic structure of Plasmodium falciparum in the DRC. Nat Commun 2020; 11:2107. [PMID: 32355199 PMCID: PMC7192906 DOI: 10.1038/s41467-020-15779-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/28/2020] [Indexed: 11/09/2022] Open
Abstract
The Democratic Republic of the Congo (DRC) harbors 11% of global malaria cases, yet little is known about the spatial and genetic structure of the parasite population in that country. We sequence 2537 Plasmodium falciparum infections, including a nationally representative population sample from DRC and samples from surrounding countries, using molecular inversion probes - a high-throughput genotyping tool. We identify an east-west divide in haplotypes known to confer resistance to chloroquine and sulfadoxine-pyrimethamine. Furthermore, we identify highly related parasites over large geographic distances, indicative of gene flow and migration. Our results are consistent with a background of isolation by distance combined with the effects of selection for antimalarial drug resistance. This study provides a high-resolution view of parasite genetic structure across a large country in Africa and provides a baseline to study how implementation programs may impact parasite populations. The genome of the malaria parasite Plasmodium falciparum contains a record of past evolutionary forces. Here, using 2537 parasite sequences from the Democratic Republic of the Congo, the authors demonstrate how drug pressure and human movement have shaped the present-day parasite population.
Collapse
|
14
|
Abdel-Haleem AM, Hefzi H, Mineta K, Gao X, Gojobori T, Palsson BO, Lewis NE, Jamshidi N. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting. PLoS Comput Biol 2018; 14:e1005895. [PMID: 29300748 PMCID: PMC5771636 DOI: 10.1371/journal.pcbi.1005895] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/17/2018] [Accepted: 11/24/2017] [Indexed: 12/17/2022] Open
Abstract
Several antimalarial drugs exist, but differences between life cycle stages among malaria species pose challenges for developing more effective therapies. To understand the diversity among stages and species, we reconstructed genome-scale metabolic models (GeMMs) of metabolism for five life cycle stages and five species of Plasmodium spanning the blood, transmission, and mosquito stages. The stage-specific models of Plasmodium falciparum uncovered stage-dependent changes in central carbon metabolism and predicted potential targets that could affect several life cycle stages. The species-specific models further highlight differences between experimental animal models and the human-infecting species. Comparisons between human- and rodent-infecting species revealed differences in thiamine (vitamin B1), choline, and pantothenate (vitamin B5) metabolism. Thus, we show that genome-scale analysis of multiple stages and species of Plasmodium can prioritize potential drug targets that could be both anti-malarials and transmission blocking agents, in addition to guiding translation from non-human experimental disease models. Malaria kills nearly one-half million people a year and over 1 billion people are at risk of becoming infected by the parasite. Plasmodial infections are difficult to treat for a myriad of reasons, but the ability of the organism to remain latent in hosts and the complex life cycles greatly contributed to the difficulty in treat malaria. Genome-scale metabolic models (GeMMs) enable hierarchical integration of disparate data types into a framework amenable to computational simulations enabling deeper mechanistic insights from high-throughput data measurements. In this study, GeMMs of multiple Plasmodium species are used to study metabolic similarities and differences across the Plasmodium genus. In silico gene-knock out simulations across species and stages uncovered functional metabolic differences between human- and rodent-infecting species as well as across the parasite’s life-cycle stages. These findings may help identify drug regimens that are more effective in targeting human-infecting species across multiple stages of the organism.
Collapse
Affiliation(s)
- Alyaa M. Abdel-Haleem
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Centre (CBRC), Thuwal, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE) division, Thuwal, Saudi Arabia
| | - Hooman Hefzi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, CA, United States of America
| | - Katsuhiko Mineta
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Centre (CBRC), Thuwal, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Centre (CBRC), Thuwal, Saudi Arabia
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Centre (CBRC), Thuwal, Saudi Arabia
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
| | - Nathan E. Lewis
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
| | - Neema Jamshidi
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States of America
- Department of Radiological Sciences, University of California, Los Angeles, CA, United States of America
- * E-mail: ,
| |
Collapse
|
15
|
Perrier C, Ferchaud AL, Sirois P, Thibault I, Bernatchez L. Do genetic drift and accumulation of deleterious mutations preclude adaptation? Empirical investigation using RADseq in a northern lacustrine fish. Mol Ecol 2017; 26:6317-6335. [PMID: 29024140 DOI: 10.1111/mec.14361] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023]
Abstract
Understanding genomic signatures of divergent selection underlying long-term adaptation in populations located in heterogeneous environments is a key goal in evolutionary biology. In this study, we investigated neutral, adaptive and deleterious genetic variation using 7,192 SNPs in 31 Lake Trout (Salvelinus namaycush) populations (n = 673) from Québec, Canada. Average genetic diversity was low, weakly shared among lakes, and positively correlated with lake size, indicating a major role for genetic drift subsequent to lake isolation. Putatively deleterious mutations were on average at lower frequencies than the other SNPs, and their abundance relative to the entire polymorphism in each population was positively correlated with inbreeding, suggesting that the effectiveness of purifying selection was negatively correlated with inbreeding, as predicted from theory. Despite evidence for pronounced genetic drift and inbreeding, several outlier loci were associated with temperature and found in or close to genes with biologically relevant functions notably related to heat stress and immune responses. Outcomes of gene-temperature associations were influenced by the inclusion of the most inbred populations, in which allele frequencies deviated the most from model predictions. This result illustrates challenge in identifying gene-environment associations in cases of high genetic drift and restricted gene flow and suggests limited adaptation in populations experiencing higher inbreeding. We discuss the relevance of these findings for the conservation and management, notably regarding stocking and genetic rescue, of Lake Trout populations and other species inhabiting highly fragmented habitats.
Collapse
Affiliation(s)
- Charles Perrier
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.,Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 Campus CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Pascal Sirois
- Chaire de Recherche sur les Espèces Aquatiques Exploitées, Laboratoire des Sciences Aquatiques, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Isabel Thibault
- Direction de l'expertise sur la Faune Aquatique, Ministère des Forêts de la Faune et des Parcs du Québec, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| |
Collapse
|
16
|
Abstract
Organisms with identical genome sequences can show substantial differences in their phenotypes owing to epigenetic changes that result in different use of their genes. Epigenetic regulation of gene expression plays a key role in the control of several fundamental processes in the biology of malaria parasites, including antigenic variation and sexual differentiation. Some of the histone modifications and chromatin-modifying enzymes that control the epigenetic states of malaria genes have been characterized, and their functions are beginning to be unraveled. The fundamental principles of epigenetic regulation of gene expression appear to be conserved between malaria parasites and model eukaryotes, but important peculiarities exist. Here, we review the current knowledge of malaria epigenetics and discuss how it can be exploited for the development of new molecular markers and new types of drugs that may contribute to malaria eradication efforts.
Collapse
Affiliation(s)
- Alfred Cortés
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia 08036, Spain.,ICREA, Barcelona, Catalonia 08010, Spain
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10065
| |
Collapse
|
17
|
Triple Combination Therapy and Drug Cycling-Tangential Strategies for Countering Artemisinin Resistance. Curr Infect Dis Rep 2017; 19:25. [PMID: 28589330 DOI: 10.1007/s11908-017-0579-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW This review attempts to understand the reasons for the successes and failures of the two novel strategies that have slowly begun to emerge as potential counters for anti-malarial drug resistance-"Triple Combination Therapy" and "Drug Cycling." RECENT FINDINGS Recent reports have suggested that increasing the heterogeneity within the parasite's environment, both at an individual and the population level, may help raise the probabilistic barrier of development of resistance in the parasite. The encouraging results following the implementation of a few experimental triple combination therapies like atovaquone-proguanil-artesunate along with the re-emergence of chloroquine sensitive Plasmodium falciparum parasites in the sub-Saharan African nations have re-kindled mankind's hope of curbing anti-malarial drug resistance. The addition of a third drug with traits like a medium half-life and benign safety profile is crucial to achieving SERCAP (single encounter radical cure and preventive therapy), the principle of a triple combination therapy. Simultaneously, the plausible reasons behind the re-emergence of chloroquine sensitive Plasmodium falciparum malaria in the high transmission regions could be the re-expansion of an existing chloroquine susceptible parasite reservoir and a greater predisposition towards the development of polyclonal infections. Another potential reason for this observation could be an impaired deoxyribonucleic acid (DNA) repair mechanisms in the south-east Asian Plasmodium falciparum parasites. These strategies may potentially emerge as the key players in warding off anti-malarial drug resistance in the near future. However, their implementation would be dictated by a host of factors like the epidemiological knowledge, population pharmacokinetics, drug-resistance patterns, cost, availability, and ease of adherence.
Collapse
|
18
|
Castillo AI, Andreína Pacheco M, Escalante AA. Evolution of the merozoite surface protein 7 (msp7) family in Plasmodium vivax and P. falciparum: A comparative approach. INFECTION GENETICS AND EVOLUTION 2017; 50:7-19. [PMID: 28163236 DOI: 10.1016/j.meegid.2017.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 01/17/2023]
Abstract
Malaria parasites (genus Plasmodium) are a diverse group found in many species of vertebrate hosts. These parasites invade red blood cells in a complex process comprising several proteins, many encoded by multigene families, one of which is merozoite surface protein 7 (msp7). In the case of Plasmodium vivax, the most geographically widespread human-infecting species, differences in the number of paralogs within multigene families have been previously explained, at least in part, as potential adaptations to the human host. To explore this in msp7, we studied its orthologs in closely related nonhuman primate parasites; investigating both paralog evolutionary history and genetic polymorphism. The emerging patterns were then compared with the human parasite Plasmodium falciparum. We found that the evolution of the msp7 family is consistent with a birth-and-death model, where duplications, pseudogenizations, and gene loss events are common. However, all paralogs in P. vivax and P. falciparum had orthologs in their closely related species in non-human primates indicating that the ancestors of those paralogs precede the events leading to their origins as human parasites. Thus, the number of paralogs cannot be explained as an adaptation to human hosts. Although there is no functional information for msp7 in P. vivax, we found evidence for purifying selection in the genetic polymorphism of some of its paralogs as well as their orthologs in closely related non-human primate parasites. We also found evidence indicating that a few of P. vivax's paralogs may have diverged from their orthologs in non-human primates by episodic positive selection. Hence, they may had been under selection when the lineage leading to P. vivax diverged from the Asian non-human primates and switched into Homininae. All these lines of evidence suggest that msp7 is functionally important in P. vivax.
Collapse
Affiliation(s)
| | - M Andreína Pacheco
- Department of Biology, Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA, USA
| | - Ananias A Escalante
- Department of Biology, Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Transcriptional profile of processing machinery of 3′ end of mRNA in Trichomonas vaginalis. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0268-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Fatty acid metabolism in the Plasmodium apicoplast: Drugs, doubts and knockouts. Mol Biochem Parasitol 2015; 199:34-50. [DOI: 10.1016/j.molbiopara.2015.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/25/2022]
|
21
|
Genome-wide screen identifies new candidate genes associated with artemisinin susceptibility in Plasmodium falciparum in Kenya. Sci Rep 2013; 3:3318. [PMID: 24270944 PMCID: PMC3839035 DOI: 10.1038/srep03318] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/21/2013] [Indexed: 11/12/2022] Open
Abstract
Early identification of causal genetic variants underlying antimalarial drug resistance could provide robust epidemiological tools for timely public health interventions. Using a novel natural genetics strategy for mapping novel candidate genes we analyzed >75,000 high quality single nucleotide polymorphisms selected from high-resolution whole-genome sequencing data in 27 isolates of Plasmodium falciparum. We identified genetic variants associated with susceptibility to dihydroartemisinin that implicate one region on chromosome 13, a candidate gene on chromosome 1 (PFA0220w, a UBP1 ortholog) and others (PFB0560w, PFB0630c, PFF0445w) with putative roles in protein homeostasis and stress response. There was a strong signal for positive selection on PFA0220w, but not the other candidate loci. Our results demonstrate the power of full-genome sequencing-based association studies for uncovering candidate genes that determine parasite sensitivity to artemisinins. Our study provides a unique reference for the interpretation of results from resistant infections.
Collapse
|
22
|
Zilversmit MM, Chase EK, Chen DS, Awadalla P, Day KP, McVean G. Hypervariable antigen genes in malaria have ancient roots. BMC Evol Biol 2013; 13:110. [PMID: 23725540 PMCID: PMC3680017 DOI: 10.1186/1471-2148-13-110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 05/06/2013] [Indexed: 01/07/2023] Open
Abstract
Background The var genes of the human malaria parasite Plasmodium falciparum are highly polymorphic loci coding for the erythrocyte membrane proteins 1 (PfEMP1), which are responsible for the cytoaherence of P. falciparum infected red blood cells to the human vasculature. Cytoadhesion, coupled with differential expression of var genes, contributes to virulence and allows the parasite to establish chronic infections by evading detection from the host’s immune system. Although studying genetic diversity is a major focus of recent work on the var genes, little is known about the gene family's origin and evolutionary history. Results Using a novel hidden Markov model-based approach and var sequences assembled from additional isolates and species, we are able to reveal elements of both the early evolution of the var genes as well as recent diversifying events. We compare sequences of the var gene DBLα domains from divergent isolates of P. falciparum (3D7 and HB3), and a closely-related species, Plasmodium reichenowi. We find that the gene family is equally large in P. reichenowi and P. falciparum -- with a minimum of 51 var genes in the P. reichenowi genome (compared to 61 in 3D7 and a minimum of 48 in HB3). In addition, we are able to define large, continuous blocks of homologous sequence among P. falciparum and P. reichenowi var gene DBLα domains. These results reveal that the contemporary structure of the var gene family was present before the divergence of P. falciparum and P. reichenowi, estimated to be between 2.5 to 6 million years ago. We also reveal that recombination has played an important and traceable role in both the establishment, and the maintenance, of diversity in the sequences. Conclusions Despite the remarkable diversity and rapid evolution found in these loci within and among P. falciparum populations, the basic structure of these domains and the gene family is surprisingly old and stable. Revealing a common structure as well as conserved sequence among two species also has implications for developing new primate-parasite models for studying the pathology and immunology of falciparum malaria, and for studying the population genetics of var genes and associated virulence phenotypes.
Collapse
Affiliation(s)
- Martine M Zilversmit
- National Institute of Allergy of Infectious Disease, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Chang HH, Park DJ, Galinsky KJ, Schaffner SF, Ndiaye D, Ndir O, Mboup S, Wiegand RC, Volkman SK, Sabeti PC, Wirth DF, Neafsey DE, Hartl DL. Genomic sequencing of Plasmodium falciparum malaria parasites from Senegal reveals the demographic history of the population. Mol Biol Evol 2012; 29:3427-39. [PMID: 22734050 DOI: 10.1093/molbev/mss161] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Malaria is a deadly disease that causes nearly one million deaths each year. To develop methods to control and eradicate malaria, it is important to understand the genetic basis of Plasmodium falciparum adaptations to antimalarial treatments and the human immune system while taking into account its demographic history. To study the demographic history and identify genes under selection more efficiently, we sequenced the complete genomes of 25 culture-adapted P. falciparum isolates from three sites in Senegal. We show that there is no significant population structure among these Senegal sampling sites. By fitting demographic models to the synonymous allele-frequency spectrum, we also estimated a major 60-fold population expansion of this parasite population ∼20,000-40,000 years ago. Using inferred demographic history as a null model for coalescent simulation, we identified candidate genes under selection, including genes identified before, such as pfcrt and PfAMA1, as well as new candidate genes. Interestingly, we also found selection against G/C to A/T changes that offsets the large mutational bias toward A/T, and two unusual patterns: similar synonymous and nonsynonymous allele-frequency spectra, and 18% of genes having a nonsynonymous-to-synonymous polymorphism ratio >1.
Collapse
Affiliation(s)
- Hsiao-Han Chang
- Department of Organismic and Evolutionary Biology, Harvard University.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rovira-Graells N, Gupta AP, Planet E, Crowley VM, Mok S, Ribas de Pouplana L, Preiser PR, Bozdech Z, Cortés A. Transcriptional variation in the malaria parasite Plasmodium falciparum. Genome Res 2012; 22:925-38. [PMID: 22415456 PMCID: PMC3337437 DOI: 10.1101/gr.129692.111] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Malaria genetic variation has been extensively characterized, but the level of epigenetic plasticity remains largely unexplored. Here we provide a comprehensive characterization of transcriptional variation in the most lethal malaria parasite, Plasmodium falciparum, based on highly accurate transcriptional analysis of isogenic parasite lines grown under homogeneous conditions. This analysis revealed extensive transcriptional heterogeneity within genetically homogeneous clonal parasite populations. We show that clonally variant expression controlled at the epigenetic level is an intrinsic property of specific genes and gene families, the majority of which participate in host–parasite interactions. Intrinsic transcriptional variability is not restricted to genes involved in immune evasion, but also affects genes linked to lipid metabolism, protein folding, erythrocyte remodeling, or transcriptional regulation, among others, indicating that epigenetic variation results in both antigenic and functional variation. We observed a general association between heterochromatin marks and clonally variant expression, extending previous observations for specific genes to essentially all variantly expressed gene families. These results suggest that phenotypic variation of functionally unrelated P. falciparum gene families is mediated by a common mechanism based on reversible formation of H3K9me3-based heterochromatin. In changing environments, diversity confers fitness to a population. Our results support the idea that P. falciparum uses a bet-hedging strategy, as an alternative to directed transcriptional responses, to adapt to common fluctuations in its environment. Consistent with this idea, we found that transcriptionally different isogenic parasite lines markedly differed in their survival to heat-shock mimicking febrile episodes and adapted to periodic heat-shock with a pattern consistent with natural selection of pre-existing parasites.
Collapse
|
25
|
Application of genomics to field investigations of malaria by the international centers of excellence for malaria research. Acta Trop 2012; 121:324-32. [PMID: 22182668 DOI: 10.1016/j.actatropica.2011.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 11/28/2011] [Accepted: 12/02/2011] [Indexed: 12/15/2022]
Abstract
Success of the global research agenda toward eradication of malaria will depend on development of new tools, including drugs, vaccines, insecticides and diagnostics. Genomic information, now available for the malaria parasites, their mosquito vectors, and human host, can be leveraged to both develop these tools and monitor their effectiveness. Although knowledge of genomic sequences for the malaria parasites, Plasmodium falciparum and Plasmodium vivax, have helped advance our understanding of malaria biology, simply knowing this sequence information has not yielded a plethora of new interventions to reduce the burden of malaria. Here we review and provide specific examples of how genomic information has increased our knowledge of parasite biology, focusing on P. falciparum malaria. We then discuss how population genetics can be applied toward the epidemiological and transmission-related goals outlined by the International Centers of Excellence for Malaria Research groups recently established by the National Institutes of Health. Finally, we propose genomics is a research area that can promote coordination and collaboration between various ICEMR groups, and that working together as a community can significantly advance the value of this information toward reduction of the global malaria burden.
Collapse
|
26
|
Weedall GD, Sherrington J, Paterson S, Hall N. Evidence of gene conversion in genes encoding the Gal/GalNac lectin complex of Entamoeba. PLoS Negl Trop Dis 2011; 5:e1209. [PMID: 21738808 PMCID: PMC3125142 DOI: 10.1371/journal.pntd.0001209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 05/01/2011] [Indexed: 01/29/2023] Open
Abstract
The human gut parasite Entamoeba histolytica, uses a lectin complex on its cell surface to bind to mucin and to ligands on the intestinal epithelia. Binding to mucin is necessary for colonisation and binding to intestinal epithelia for invasion, therefore blocking this binding may protect against amoebiasis. Acquired protective immunity raised against the lectin complex should create a selection pressure to change the amino acid sequence of lectin genes in order to avoid future detection. We present evidence that gene conversion has occurred in lineages leading to E. histolytica strain HM1:IMSS and E. dispar strain SAW760. This evolutionary mechanism generates diversity and could contribute to immune evasion by the parasites. Gene conversion is a process of recombination that can generate diversity among genes. Gene conversion occurs in some pathogenic species of protozoa to generate diversity among gene families encoding important antigens. The process may contribute to immune evasion by the parasites. Gene conversion, or indeed recombination of any kind, has not previously been demonstrated in human intestinal parasites of the genus Entamoeba. Here, we analysed genes encoding members of an important antigenic protein complex on the surface of Entamoeba parasites which is involved in invasion of the intestinal wall. Three gene families encode heavy-, light- and intermediate-subunits of the complex. We estimated genetic divergence between related genes from two species of Entamoeba, E. histolytica and E. dispar, and compared them to divergence among neighbouring genes and to the average across the whole genome, initially looking for evidence that the genes were evolving under positive selection. However, instead we saw patterns of genetic difference between some of the light- and intermediate-subunit genes indicating the action of gene conversion among members of these gene families. This indicates that recombinational mechanisms may play a part in the molecular evolution of these parasites.
Collapse
Affiliation(s)
- Gareth D. Weedall
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| | - James Sherrington
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Neil Hall
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
27
|
Protein targeting to the parasitophorous vacuole membrane of Plasmodium falciparum. EUKARYOTIC CELL 2011; 10:744-52. [PMID: 21498641 DOI: 10.1128/ec.00008-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Red blood cell (RBC) invasion and parasitophorous vacuole (PV) formation by Plasmodium falciparum are critical for the development and pathogenesis of malaria, a continuing global health problem. Expansion of the PV membrane (PVM) during growth is orchestrated by the parasite. This is particularly important in mature RBCs, which lack internal organelles and no longer actively synthesize membranes. Pfs16, a 16-kDa integral PVM protein expressed by gametocytes, was chosen as a model for studying the trafficking of material from the parasite across the PV space to the PVM. The locations of Pfs16-green fluorescent protein (GFP) reporter proteins containing distinct regions of Pfs16 were tracked from RBC invasion to emergence. Inclusion of the 53 C-terminal amino acids (aa) of Pfs16 to a GFP reporter construct already containing the N-terminal secretory signal sequence was sufficient for targeting to and retention on the PVM. An amino acid motif identified in this region was also found in seven other known PVM proteins. Removal of the 11 C-terminal aa did not affect PVM targeting, but membrane retention was decreased. Additionally, during emergence from the PVM and RBC, native Pfs16 and the full-length Pfs16-GFP reporter protein were found to concentrate on the ends of the gametocyte. Capping was not observed in constructs lacking the amino acids between the N-terminal secretory signal sequence and the transmembrane domain, suggesting that this region, which is not required for PVM targeting, is involved in capping. This is the first report to define the amino acid domains required for targeting to the P. falciparum PVM.
Collapse
|
28
|
Laufer MK, Takala-Harrison S, Dzinjalamala FK, Stine OC, Taylor TE, Plowe CV. Return of chloroquine-susceptible falciparum malaria in Malawi was a reexpansion of diverse susceptible parasites. J Infect Dis 2010; 202:801-8. [PMID: 20662717 DOI: 10.1086/655659] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The spread of drug-resistant Plasmodium falciparum malaria has been a major impediment to malaria control and threatens prospects for elimination. We recently demonstrated the return of chloroquine-susceptible malaria in Malawi after chloroquine use was abandoned. In this study, we trace the origins of chloroquine-resistant and chloroquine-susceptible parasites in Malawi by sequencing the P. falciparum chloroquine resistance transporter gene (pfcrt) and by genotyping microsatellites flanking this gene in isolates from infections that occurred in Malawi from 1992 through 2005. Malaria parasites from 2005 harbored the expected wild-type pfcrt haplotype associated with chloroquine susceptibility and have maintained high levels of diversity without linkage disequilibrium, which suggests that the return of chloroquine susceptibility is not the result of a back mutation in a formerly resistant parasite or a new selective sweep. Chloroquine-susceptible parasites that predominate in Malawi likely represent a reexpansion of the susceptible parasites that survived in the population despite widespread drug pressure in the region.
Collapse
Affiliation(s)
- Miriam K Laufer
- Center for Vaccine Development, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Déchamps S, Shastri S, Wengelnik K, Vial HJ. Glycerophospholipid acquisition in Plasmodium - a puzzling assembly of biosynthetic pathways. Int J Parasitol 2010; 40:1347-65. [PMID: 20600072 DOI: 10.1016/j.ijpara.2010.05.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 01/06/2023]
Abstract
Throughout the Plasmodium life cycle, malaria parasites repeatedly undergo rapid cellular growth and prolific divisions, necessitating intense membrane neogenesis and, in particular, the acquisition of high amounts of phospholipids. At the intraerythrocytic stage, glycerophospholipids are the main parasite membrane constituents, which mostly originate from the Plasmodium-encoded enzymatic machinery. Several proteins and entire pathways have been characterized and their features reported, thereby generating a global view of glycerophospholipid synthesis across Plasmodium spp. The malaria parasite displays a panoply of pathways that are seldom found together in a single organism. The major glycerophospholipids are synthesized via ancestral prokaryotic CDP-diacylglycerol-dependent pathways and eukaryotic-type de novo pathways. The parasite exhibits additional reactions that bridge some of these routes and are otherwise restricted to some organisms, such as plants, while base-exchange mechanisms are largely unexplored in Plasmodium. Marked differences between Plasmodium spp. have also been reported in phosphatidylcholine and phosphatidylethanolamine synthesis. Little is currently known about glycerophospholipid acquisition at non-erythrocytic stages, but recent data reveal that intrahepatocytic parasites, oocysts and sporozoites import various host lipids, and that de novo fatty acid synthesis is only crucial at the late liver stage. More studies on the different Plasmodium developmental stages are needed, to further assemble the different pieces of this glycerophospholipid synthesis puzzle, which contains highly promising therapeutic targets.
Collapse
Affiliation(s)
- Sandrine Déchamps
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Centre National de la Recherche Scientifique (CNRS) - Universite Montpellier 2, cc 107, Place Eugene Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
30
|
Weedall GD, Conway DJ. Detecting signatures of balancing selection to identify targets of anti-parasite immunity. Trends Parasitol 2010; 26:363-9. [PMID: 20466591 DOI: 10.1016/j.pt.2010.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/04/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
Abstract
Parasite antigen genes might evolve under frequency-dependent immune selection. The distinctive patterns of polymorphism that result can be detected using population genetic methods that test for signatures of balancing selection, allowing genes encoding important targets of immunity to be identified. Analyses can be complicated by population structures, histories and features of a parasite's genome. However, new sequencing technologies facilitate scans of polymorphism throughout parasite genomes to identify the most exceptional gene specific signatures. We focus on malaria parasites to illustrate challenges and opportunities for detecting targets of frequency-dependent immune selection to discover new potential vaccine candidates.
Collapse
Affiliation(s)
- Gareth D Weedall
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool, UK, L69 7ZB.
| | | |
Collapse
|
31
|
Déchamps S, Maynadier M, Wein S, Gannoun-Zaki L, Maréchal E, Vial HJ. Rodent and nonrodent malaria parasites differ in their phospholipid metabolic pathways. J Lipid Res 2010; 51:81-96. [PMID: 19561325 DOI: 10.1194/jlr.m900166-jlr200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria, a disease affecting humans and other animals, is caused by a protist of the genus Plasmodium. At the intraerythrocytic stage, the parasite synthesizes a high amount of phospholipids through a bewildering number of pathways. In the human Plasmodium falciparum species, a plant-like pathway that relies on serine decarboxylase and phosphoethanolamine N-methyltransferase activities diverts host serine to provide additional phosphatidylcholine and phosphatidylethanolamine to the parasite. This feature of parasitic dependence toward its host was investigated in other Plasmodium species. In silico analyses led to the identification of phosphoethanolamine N-methyltransferase gene orthologs in primate and bird parasite genomes. However, the gene was not detected in the rodent P. berghei, P. yoelii, and P. chabaudi species. Biochemical experiments with labeled choline, ethanolamine, and serine showed marked differences in biosynthetic pathways when comparing rodent P. berghei and P. vinckei, and human P. falciparum species. Notably, in both rodent parasites, ethanolamine and serine were not significantly incorporated into phosphatidylcholine, indicating the absence of phosphoethanolamine N-methyltransferase activity. To our knowledge, this is the first study to highlight a crucial difference in phospholipid metabolism between Plasmodium species. The findings should facilitate efforts to develop more rational approaches to identify and evaluate new targets for antimalarial therapy.
Collapse
Affiliation(s)
- Sandrine Déchamps
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Centre National de la Recherche Scientifique (CNRS) - Universite Montpellier II, cc 107, Place Eugene Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | | | | | |
Collapse
|
32
|
Tarun AS, Vaughan AM, Kappe SHI. Redefining the role of de novo fatty acid synthesis in Plasmodium parasites. Trends Parasitol 2009; 25:545-50. [PMID: 19819758 DOI: 10.1016/j.pt.2009.09.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/23/2009] [Accepted: 09/08/2009] [Indexed: 12/27/2022]
Abstract
Fatty acids are essential components of membranes, and are also involved in cell signalling. Plasmodium, the parasite that causes malaria, scavenges fatty acids from its hosts. However, Plasmodium also possesses enzymes for a prokaryotic-like de novo fatty acid synthesis pathway, which resides in the apicoplast. Recent research has demonstrated that Plasmodium parasites depend on de novo fatty acid synthesis only for liver-stage development. This finding demonstrates that basic anabolic functions of Plasmodium parasites are not necessary for the growth and replication of every life cycle stage. We discuss the role of fatty acid metabolism in Plasmodium and why we believe that de novo fatty acid synthesis is only required for parasite late liver-stage development.
Collapse
Affiliation(s)
- Alice S Tarun
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA; Infectious Diseases and Microbiology, University of Pittsburgh PA 15261, USA
| | | | | |
Collapse
|
33
|
Tetteh KKA, Stewart LB, Ochola LI, Amambua-Ngwa A, Thomas AW, Marsh K, Weedall GD, Conway DJ. Prospective identification of malaria parasite genes under balancing selection. PLoS One 2009; 4:e5568. [PMID: 19440377 PMCID: PMC2679211 DOI: 10.1371/journal.pone.0005568] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 04/13/2009] [Indexed: 11/20/2022] Open
Abstract
Background Endemic human pathogens are subject to strong immune selection, and interrogation of pathogen genome variation for signatures of balancing selection can identify important target antigens. Several major antigen genes in the malaria parasite Plasmodium falciparum have shown such signatures in polymorphism-versus-divergence indices (comparing with the chimpanzee parasite P. reichenowi), and in allele frequency based indices. Methodology/Principal Findings To compare methods for prospective identification of genes under balancing selection, 26 additional genes known or predicted to encode surface-exposed proteins of the invasive blood stage merozoite were first sequenced from a panel of 14 independent P. falciparum cultured lines and P. reichenowi. Six genes at the positive extremes of one or both of the Hudson-Kreitman-Aguade (HKA) and McDonald-Kreitman (MK) indices were identified. Allele frequency based analysis was then performed on a Gambian P. falciparum population sample for these six genes and three others as controls. Tajima's D (TjD) index was most highly positive for the msp3/6-like PF10_0348 (TjD = 1.96) as well as the positive control ama1 antigen gene (TjD = 1.22). Across the genes there was a strong correlation between population TjD values and the relative HKA indices (whether derived from the population or the panel of cultured laboratory isolates), but no correlation with the MK indices. Conclusions/Significance Although few individual parasite genes show significant evidence of balancing selection, analysis of population genomic and comparative sequence data with the HKA and TjD indices should discriminate those that do, and thereby identify likely targets of immunity.
Collapse
Affiliation(s)
- Kevin K. A. Tetteh
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lindsay B. Stewart
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lynette Isabella Ochola
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- MRC Laboratories, Fajara, Banjul, The Gambia
- KEMRI Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | | | - Alan W. Thomas
- Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Kevin Marsh
- KEMRI Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | - Gareth D. Weedall
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - David J. Conway
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- MRC Laboratories, Fajara, Banjul, The Gambia
- * E-mail:
| |
Collapse
|
34
|
Templeton TJ. The varieties of gene amplification, diversification and hypervariability in the human malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol 2009; 166:109-16. [PMID: 19375460 DOI: 10.1016/j.molbiopara.2009.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/05/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
Abstract
The human malaria parasite, Plasmodium falciparum, is able to evade host cell-mediated and humoral immunity to maintain both persistent and repeated infections. Immune evasion is in part due to a robust repertoire of proteins which participate in host-parasite interactions but also exhibit profound antigenic diversity, and in some instances switches in gene expression. The antigenic diversity occurs both at the parasite level within families of amplified proteins, and within populations of parasites in which mechanisms of recombination and gene conversion conspire to create a broad plasticity in the antigenic exposure to the host. This review will introduce the spectrum of amplified protein families in P. falciparum and focus on three sub-telomeric encoded families, RIFIN, STEVOR and Pfmc-2TM which exhibit hypervariability with respect to their antigenic diversity.
Collapse
Affiliation(s)
- Thomas J Templeton
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
35
|
Duplicate gene evolution toward multiple fates at the Drosophila melanogaster HIP/HIP-Replacement locus. J Mol Evol 2009; 68:337-50. [PMID: 19333534 DOI: 10.1007/s00239-009-9213-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 02/10/2009] [Accepted: 02/16/2009] [Indexed: 10/20/2022]
Abstract
Hsc/Hsp70-interacting protein (HIP) is a rapidly evolving Hsp70 cofactor. Analyses of multiple Drosophila species indicate that the HIP gene is duplicated only in D. melanogaster. The HIP region, in fact, contains seven distinctly evolving duplicated genes. The regional duplication occurred in two steps, fixed rapidly, and illustrates multiple modes of duplicate gene evolution. HIP and its duplicate HIP-R are adaptively evolving in a manner unique to the region: they exhibit elevated divergence from other drosophilids and low polymorphism within D. melanogaster. HIP and HIP-R are virtually identical, share polymorphisms, and are subject to gene conversion. In contrast, two other duplicate genes in the region, CG33221 and GP-CG32779, are pseudogenes, and the chimeric gene Crg1 is subject to balancing selection. HIP and HIP-R are evolving rapidly and adaptively; however, positive selection is not sufficient to explain the molecular evolution of the region as a whole.
Collapse
|
36
|
The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. Cell Host Microbe 2009; 4:567-78. [PMID: 19064257 DOI: 10.1016/j.chom.2008.11.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/03/2008] [Accepted: 11/05/2008] [Indexed: 01/01/2023]
Abstract
The fatty acid synthesis type II pathway has received considerable interest as a candidate therapeutic target in Plasmodium falciparum asexual blood-stage infections. This apicoplast-resident pathway, distinct from the mammalian type I process, includes FabI. Here, we report synthetic chemistry and transfection studies concluding that Plasmodium FabI is not the target of the antimalarial activity of triclosan, an inhibitor of bacterial FabI. Disruption of fabI in P. falciparum or the rodent parasite P. berghei does not impede blood-stage growth. In contrast, mosquito-derived, FabI-deficient P. berghei sporozoites are markedly less infective for mice and typically fail to complete liver-stage development in vitro. This defect is characterized by an inability to form intrahepatic merosomes that normally initiate blood-stage infections. These data illuminate key differences between liver- and blood-stage parasites in their requirements for host versus de novo synthesized fatty acids, and create new prospects for stage-specific antimalarial interventions.
Collapse
|
37
|
Natalang O, Bischoff E, Deplaine G, Proux C, Dillies MA, Sismeiro O, Guigon G, Bonnefoy S, Patarapotikul J, Mercereau-Puijalon O, Coppée JY, David PH. Dynamic RNA profiling in Plasmodium falciparum synchronized blood stages exposed to lethal doses of artesunate. BMC Genomics 2008; 9:388. [PMID: 18706115 PMCID: PMC2536677 DOI: 10.1186/1471-2164-9-388] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 08/18/2008] [Indexed: 11/23/2022] Open
Abstract
Background Translation of the genome sequence of Plasmodium sp. into biologically relevant information relies on high through-put genomics technology which includes transcriptome analysis. However, few studies to date have used this powerful approach to explore transcriptome alterations of P. falciparum parasites exposed to antimalarial drugs. Results The rapid action of artesunate allowed us to study dynamic changes of the parasite transcriptome in synchronous parasite cultures exposed to the drug for 90 minutes and 3 hours. Developmentally regulated genes were filtered out, leaving 398 genes which presented altered transcript levels reflecting drug-exposure. Few genes related to metabolic pathways, most encoded chaperones, transporters, kinases, Zn-finger proteins, transcription activating proteins, proteins involved in proteasome degradation, in oxidative stress and in cell cycle regulation. A positive bias was observed for over-expressed genes presenting a subtelomeric location, allelic polymorphism and encoding proteins with potential export sequences, which often belonged to subtelomeric multi-gene families. This pointed to the mobilization of processes shaping the interface between the parasite and its environment. In parallel, pathways were engaged which could lead to parasite death, such as interference with purine/pyrimidine metabolism, the mitochondrial electron transport chain, proteasome-dependent protein degradation or the integrity of the food vacuole. Conclusion The high proportion of over-expressed genes encoding proteins exported from the parasite highlight the importance of extra-parasitic compartments as fields for exploration in drug research which, to date, has mostly focused on the parasite itself rather than on its intra and extra erythrocytic environment. Further work is needed to clarify which transcriptome alterations observed reflect a specific response to overcome artesunate toxicity or more general perturbations on the path to cellular death.
Collapse
Affiliation(s)
- Onguma Natalang
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, CNRS URA 2581, 28 Rue du Docteur Roux, F-75724, Paris, Cedex 15, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Koziol AG, Durnford DG. Euglena light-harvesting complexes are encoded by multifarious polyprotein mRNAs that evolve in concert. Mol Biol Evol 2007; 25:92-100. [PMID: 17947344 DOI: 10.1093/molbev/msm232] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Light-harvesting complexes (LHCs) are a superfamily of chlorophyll- and carotenoid-binding proteins that are responsible for the capture of light energy and its transfer to the photosynthetic reaction centers. Unlike those of most eukaryotes, the LHCs of Euglena gracilis are translated from large mRNAs, producing polyprotein precursors consisting of multiple concatenated LHC subunits that are separated by conserved decapeptide linkers. These precursors are posttranslationally targeted to the chloroplast and cleaved into individual proteins. We analyzed expressed sequence tags from Euglena to further characterize the structural features of the LHC polyprotein-coding genes and to examine the evolution of this multigene family. Of the 19 different LHC transcriptional units we detected, 17 encoded polyproteins composed of both tandem and nontandem repeats of LHC subunits; organizations that likely occurred through unequal crossing-over. Of the 2 nonpolyprotein-encoding LHC transcripts detected, 1 evolved from the truncation of a polyprotein-coding gene. Duplication of LHC polyprotein-coding genes was particularly important in the LHCI gene family where multiple paralogous sequences were detected. Intriguingly, several of the individual LHC-coding subunits both within and between transcriptional units appeared to be evolving in concert, suggesting that gene conversion has been a significant mechanism for LHC evolution in Euglena.
Collapse
Affiliation(s)
- Adam G Koziol
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | | |
Collapse
|
39
|
Cortés A, Carret C, Kaneko O, Yim Lim BYS, Ivens A, Holder AA. Epigenetic silencing of Plasmodium falciparum genes linked to erythrocyte invasion. PLoS Pathog 2007; 3:e107. [PMID: 17676953 PMCID: PMC1937010 DOI: 10.1371/journal.ppat.0030107] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 06/11/2007] [Indexed: 11/20/2022] Open
Abstract
The process of erythrocyte invasion by merozoites of Plasmodium falciparum involves multiple steps, including the formation of a moving junction between parasite and host cell, and it is characterised by the redundancy of many of the receptor–ligand interactions involved. Several parasite proteins that interact with erythrocyte receptors or participate in other steps of invasion are encoded by small subtelomerically located gene families of four to seven members. We report here that members of the eba, rhoph1/clag, acbp, and pfRh multigene families exist in either an active or a silenced state. In the case of two members of the rhoph1/clag family, clag3.1 and clag3.2, expression was mutually exclusive. Silencing was clonally transmitted and occurred in the absence of detectable DNA alterations, suggesting that it is epigenetic. This was demonstrated for eba-140. Our data demonstrate that variant or mutually exclusive expression and epigenetic silencing in Plasmodium are not unique to genes such as var, which encode proteins that are exported to the surface of the erythrocyte, but also occur for genes involved in host cell invasion. Clonal variant expression of invasion-related ligands increases the flexibility of the parasite to adapt to its human host. Plasmodium falciparum is responsible for the most severe forms of human malaria. Invasion of host erythrocytes is an essential step of the complex life cycle of this parasite. There is redundancy in many of the interactions involved in this process, such that the parasite can use different sets of receptor–ligand interactions to invade. Here, we demonstrate that the parasite can turn off the expression of some of the proteins that mediate invasion of erythrocytes. Expression can be turned off without alterations in the genetic information of the parasite by using a mechanism known as epigenetic silencing. This is far more flexible than genetic changes, and permits fast, reversible adaptation. Turning on or off the expression of these proteins did not affect the capacity of the parasite to invade normal or modified red cells, which suggests that the variant expression of these genes may be used by the parasite to escape immune responses from the host. Parasite proteins that participate in erythrocyte invasion are important vaccine candidates. Determining which proteins can be turned off is important because vaccines based on single antigens of the parasite that can be turned off without affecting its growth would have little chance of inducing protective immunity.
Collapse
Affiliation(s)
- Alfred Cortés
- Division of Parasitology, Medical Research Council National Institute for Medical Research (NIMR), London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
40
|
Mazumdar J, Striepen B. Make it or take it: fatty acid metabolism of apicomplexan parasites. EUKARYOTIC CELL 2007; 6:1727-35. [PMID: 17715365 PMCID: PMC2043401 DOI: 10.1128/ec.00255-07] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jolly Mazumdar
- Department of Cellular Biology, University of Georgia, Paul D Coverdell Center, Athens, GA 30602, USA
| | | |
Collapse
|